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Abstract

Normally rendered images are the polished output of rendering software and are, by definition, "perfect”.
However, as we think about rendering abstractions of the underlying models, rather than photorealistic images,
it becomes evident that user involvement is necessary to tune rendered images to his or her satisfaction.

In this paper we outline methods to tune rendered images. We concentrate on line-drawings, as these are most
readily edited to make the modelled objects appear more abstract. Rather than having users edit individual
lines, our emphasis lies on studying, what users really want to achieve, and how we can support them more
directly to attain these effects. This emphasis is used to guide the design of the user-interface to the system for
tuning line-drawings.

We present a tool which allows high-level intent-based interaction to generate line-drawings from rendered 3D-
models. Included in the system are editing facilities to fine-tune and thereby individualizing line-drawings.
High-level interaction draws on statistical methods to distribute lines over the rendered image. We show how the
interaction can be improved if information about the model is available to the image editor.
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1 Introduction

Computer-graphics research has been obsessed with the dream of emulating the effect of a camera pointed at a
scene. Ever more sophisticated display processing hardware has, over the years, turned this dream into reality to the
point when so-called photorealistic images can be generated from 3D-models. However, there is much more to
graphics than photorealism, as Scott McCloud (1993) recently demonstrated when explaining the concept of
abstraction in comics (see Figure 1).

Figure 1: Stepwise abstraction in comics: There is more to graphics than just photos (left). Computer graphics is lacking
algorithms to render more abstract images

The picture on the left of Figure 1 is redrawn by hand at different levels of abstraction; indeed there even appears to
exist a continuum of images, from realistic ones to highly abstract ones. Actually, since there are many different
rather abstract images, there no doubt are many corresponding continuums.
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Our long-range goal is to learn more about the generation of successively more abstract renditions of geometric
models. In the present instance we are restricting ourselves to line-drawings, for which there are important
applications in CAD. In this area, abstraction plays an important role for several reasons. First, if every line
corresponding to an edge in the model were drawn, the resultant image would often become rather cluttered.
Second, “extra” polygons are often encoded in a geometric model as artifacts of the modelling process; drawing all
such polygons would mislead the viewer. Finally, abstraction is the way of amplifying the actual message contained
in an image.

In this paper we study a particular approach to abstraction in rendering line-drawings. First, we introduce a post-
rendering process which reduces the line-density in an image by foreshortening or even removing lines based on
heuristics. The important point is that the heuristics do not have the 3D-model at their disposal, but rather work
exclusively on the rendered output. Second, we relax this restriction and consider what additional benefit can be
achieved when the 3D-model can be exploited as an information source for interaction. We provide tools whereby a
user can fine-tune a rendered line-drawing to suit the purposes of the application at hand. The fine-tuning process
turns out to use an interesting combination of graphical and textual information.

The paper is organized as follows. We discuss previous papers on non-photorealistic rendering in Chapter 2. Global
techniques to tune line-drawings are described in Chapter 3. Chapter 4 describes the sketch-renderer on which our
work is based. In Chapters 5 and 6, we first apply the global techniques of tuning to rendered images and then turn
to interactive facilities to enable local object-oriented changes. These Chapters also describe the system we
implemented and give a variety of examples. Finally, we discuss the usefulness of heuristics and possible extensions
of the system in Chapter 7.

2 Rendering Non-Photorealistic Images

Surveying previous work on rendering images which go over and above photorealism shows that work has been
done on pixel-based systems to design drawings with filters and other image-processing methods as well as special
purpose systems.

Saito and Takahashi (1990) created line-drawings from 3D-models with an emphasis on communicating spatial
relations. By contrast, Hiberli (1990) worked with scanned images which he processed with special filters to make
them look like some artistic style (e.g. impressionistic). Both systems use image-processing algorithms, in addition
to which Saito and Takahashi also use information which are stored in so-called G-Buffer from the rendering-
process. These G-Buffers contain geometric information (e.g. surface normals) about each individual pixel and are
employed to detect and enhance edges.

Another interesting area of rendering pertains to the generation of copper-plates. Leister (1994)) presents a system
which is based on a ray-tracer and uses image-processing software to detect edges. These edges form the basis for
producing interesting line-drawings.

Tools to design sketches are presented in Salisbury et al. (1994) as well as in Winkenbach and Salesin (1994). The
focus in Salisbury ef al. (1994) is on creating flexible hatching techniques and an interface to allow incremental
improvement of an illustration. These applications are restricted to 2D-models. In contrast to this work Winkenbach
and Salesin (1994) use a 3D-model and generate illustrations without offering the user the possibility to interact with
the picture.

Imai and Iri (1988) as well as Hershberger and Snoyeink (1994) present algorithmic solutions to the problem of
approximating and simplifying geometric objects with focus on transforming complex polygons into more abstract
ones with a given number of vertices or a given error-tolerance. Such techniques can be useful for an abstraction
process for line-drawings, although they have not yet been used in this context.

Seligman and Feiner (1991) regard illustrating as a process which is goal-driven and develop style and design rules
to create illustrations to fulfill communicative intents which the user has directly specified. In their paper the focus
is on generating illustrations with the appropriate perspective and placement of arrows. Although the kind of
illustrations they create is totally different from our system the approach to the illustration process is related.

229




3 Line-Drawings as a Medium of Expression

In this Chapter we describe some effects which can be achieved using line-drawings, irrespective of whether the
drawings come from a computer or a human artist. With these observations in mind we later develop techniques to
support the user of an interactive system directly to attain some of these effects.

3.1 Attracting Attention

We concentrate on drawing techniques for focusing and examined the images in Figure 2, both of the same scene.
To understand how we derived techniques to influence the viewer's attention, the interested reader should ask
himself the questions: Where do you look first and what do you look at most intensively? Is there a relationship
between the techniques applied in the pictures and your impression?

The nature of pictures is responsible for the diversity of
interpretations. In the upper picture, the hatchings on
the left side are denser than in the right picture, whereas
the relation is vice versa in the lower picture.
Furthermore, the left side of the upper picture is
modelled with more detail (see, for instance, the
fireplace), while the opposite is true for the lower
picture. The dense hatching and the amount of detail
influences how viewers perceive the picture. Generally
viewers of the upper image which focus on the left part
of the room, while viewers of the bottom image will
focus on the right part of the room.

In addition to the above-mentioned means we found
o . that thick — or multiply-drawn — contour lines attract
- — ' 5 = — the user, reinforcing a dramatic effect. Using these
L T : | heuristics to generate pictures can lead to the desired
; = G . | effect, even though a user cannot be forced to focus on
L "THis. , q | a particular part. Experiments of Schumann (1994)
il B 1"“ i, .| showed that observers tend to regard the different
= | - - amount of detail and the strength of contours as
i 1 BgliE~|  indicators for a lighting configuration.
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3.2 Amplifying Effects

Abstraction is a process by which an image is
Figure 2: Examples of hand-drawn images - by an artist simplified so as to amplify a certain effect. There are at
least two reasons to do this. First, the amount of detail should be adapted to the available screen space; a small
image generally should not contain as much detail as a large one of the same object. Second, the amount of detail
should be dependent on the focus within a picture. To allow explicit abstraction, we classify the lines in a picture
and sort them to decide which ones could be left out on a certain level of abstraction. The main question is how to
generate a picture with a limited number of lines which shows the most important features while still looking
"natural". There is a relatively close relationship between focus and abstraction: Looking again at Figure 2 shows
that more detail in one part of the picture is connected with the simplification of other parts.

4 Sketch-Rendering

We now turn to practical aspects of rendering line-drawings. The system we developed to support focusing and
abstraction is based on the sketch-renderer which was presented in Strothotte et al. (1994). This renderer processes
3D-CAD models encoded in the ”.rib”- format of the Pixar Renderman®. Over and above this unstructured format
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these models are enriched with object definitions which group several polygons belonging together. These object
definitions can be nested so that the modeller (the person who creates the model) can construct an object
hierarchically. The renderer produces not only a projection of the 3D-model to the screen, but in addition provides a
list of visible lines (vectors) which can contain pointers to the objects to which they belong. This additional
information binds together the rendered image and the model for use in algorithms. This relation allows powerful
means to interact with the graphics.

The images the sketch-renderer produces
immediately after loading the model (see
Figure 3) are the basis for the tuning
process. In the system of Strothotte et al.
(1994), this tuning involves the selection of
individual objects and the assignment of
line-styles to them.

In the system presented here, we extend the
editing facilities to combine object-oriented
editing (editing based on object-
information) with picture-oriented editing
(editing exclusively on the picture).
Furthermore, we provide additional
interactive features. While in the original
sketch-renderer the set of visible lines is
invariant (only the apperance can be

changed), the focus here is on statistical
Figure 3: An office room with all lines available produced by the sketch- methods to leave certain lines out to support
renderer

visual effects.

5 Global Tuning Techniques

Based on the heuristics from hand-made drawings, we developed algorithms to change a picture’s apperance with a a
small number of parameters. These algorithms bridge the gap between the intention of the designer and the basic
operations, and can be combined with fine-tuning facilities to be described later in Chapter 6. The prototypical
system was implemented on a PC and runs under MS Windows. The following experiments were done on the office
room (recall Figure 3).

5.1 Influencing the User’s Attention

In accordance with the observations from Chapter 3, we use the amount of detail and the strength of lines to
influence which parts of a picture are accentuated more thouroughly. The user can specify directly the focus via
mouse-click or alternatively by selecting a direction.

We experimented with different strategies how to handle the lines in the focusing process. It turned out that the
question whether to draw a line or to leave it out is not appropriate, as it leads to too severe discontinuities. It is
necessary to differentiate more strongly and to display foreshortened lines. This leads to the following classification
of lines: left out, foreshortened, drawn in original length, or reinforced (by drawing it thicker). To judge, which
lines to draw and which to leave out, we need a measure as to which lines are more important than others and a way
to calculate this measure based on objective criteria. This measure we refer to as the relevance of a line and define it
as a function of its length, the distance to the focus and the density of lines in the environment. The calculation of
the relevance and its consequences on the appearance of a line are shown in Figure 4. With this formula, long lines
and those near to the focal point are highly relevant. If there are many lines in the vicinity of a given line (more than
average), the relevance is reduced; by contrast it is increased if the line is in a sparse part of the picture.
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Figure 4: Relation between relevance and appearance of a line
Figure 5 shows an example of two images of the office scene, one with the focus to the left and one with the focus to

the right. To design these images, the user only specified the focal point by an appropriate click of the mouse. For
the influence of the focus on the contour and the amount of detail, the default values were used.

Figure 5: The office room with more detail allocated on the left (left image) and right (right image)

5.2  Techniques for Simplification

When applying the described focusing techniques, some lines are left out and some others foreshortened. The user
can specify to what extent the amount of detail changes with respect to the focus, but he cannot specify the overall
amount of detail which is necessary for abstraction. To adjust this amount of detail, we implemented a dialog which
allows a user to move sliders to indicate the amount of detail to be allocated. These sliders represent the number of
lines and the overall length of all lines. They can be moved from a minimum (0%) where nothing is displayed to a
maximum (100%) where all lines which are produced by the renderer are also presented in their full length. The
movement of the sliders results in a more or less abstract picture. This way the user has control over the amount of
drawing resources used to display a picture.
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Figure 6: Dark positions indicate important parts in the
picture (Empirical function based on the rule of the
Golden Section)

To restrict the lines in a scene in a meaningful way, all lines are
sorted according to their relevance. In addition to the formula
in Figure 4, we consider the position within the picture as a
factor which influences the relevance of lines. According to
the rule of the Golden Section, we empirically developed a
function which assigns a real number between 0 and 1 to all
points in the picture. Points near the borderline are assigned
minimal values to, whereas points near the four dark points get
maximal values. The visualization of this function (see Figure
6) is necessary to understand how the position influences the
display process and a prerequisite for direct manipulation of
this function. The process of displaying a simplified picture
with reduced resources is shown in Figure 7.

Limited Resources to Show A Simplified Picture

Ask how much to reduce the length

while (not Finish)

Draw the corresponding line

Finish
if (AllocatedlLines > LineLimit)

Finish

Ask how much to reduce the line number
Sort all lines with respect to screen position, local density and line length

Initialization for the drawing process

Update how many resources are allocated (length, pixels, . .)
Check whether the limits are exceeded
if (AllocatedLineLength > LengthLimit)

Figure 7: Displaying a simplified picture with reduced resources

Ea—

The result of such an abstraction process as described

- T in figqre 7 can be seen in the picture in_ Figure 8.
&= This picture was generated moving the slider to set
— the line number to 30%. The influence of the position

within the picture can be seen in the left part of the
bookshelf and in the beginning of the ceiling, where
more detail is presented than in the right part of the
ceiling. Whilst of the ceiling, which produces more

% E visible lines than any other object, 90% were left out
—| or foreshortened by the algorithm of Figure 7, the

lines of the right bookshelf (which is the object with
the minimum of visible lines) are almost not affected
by the reduction. Indeed, 70% of the lines of the

right bookshelf were drawn in the original length.

Figure 8: The office room with the total line number reduced to
30%




Combining Abstraction and Focussing

According to the observations from Chapter 3, abstraction and focusing can be combined to specify a degree of
abstraction with emphasis on a certain part. To do this, the user can take the grey-level-picture (recall Figure 6),
specify a focus (which leads to a changed grey-level-scale) and fine-tune the grey-level image. This presents a
comfortable way to control the relevance of picture parts, however, the obvious disadvantage is that the
manipulation is not directly on the picture. Figure 9 shows two images of a simple street scene with two cars
meeting. The images were simplified by setting the overall line length to 50% compared to the total line length of
the originally rendered output. After reduction, different picture parts were emphasized (see the grey-level picture
which visualizes different focal directions).

Figure 9: Simplified pictures with a focus, the overall line length was reduced to 50%

When generating simplified drawings, the question arises how many lines are necessary to display objects so that
they remain recognizable. Taking into account the object structure of the model, we collect statistics about how
many lines an object has after simplification, how long they are and how many of them are connected. These
statistics can be used as a basis to determine whether an object is unrecognizable by a viewer. Naturally the question
whether an object is recognizable cannot be decided exactly but the statistics lead to a rough estimation. The process
of allocating resources can be modified to take the recognizability into account. Different strategies are possible,
e.g. to try to prevent the drawing of unrecognizable objects or to try to allocate enough resources for all objects.

6 Interacting with Line-Drawings

The previous chapter described global techniques which are applied to the picture as a whole. While interesting
pictures can be generated this way, interaction facilities are necessary to allow individualization. These interaction
techniques can be used for a fine-tuning process.

Several issues arise in this context. The first is how to define what should be changed. How can a user describe the
small changes, so that the computer can carry them out? The second concerns the operations to perform and the
relation between several edit operations in overlapping areas. Because smooth transitions seem to prevail in hand-
drawn pictures, we aim at a continuous transition between the image area changed and its environment.
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6.1  Object-Oriented Editing

Whilst some changes can be carried out easily on the picture (by
marking a region with a pen), other editing-operations could be
performed better on the level of the objects involved. Because mutual
occlusions between the projections of different objects can occur, it is
not always possible to mark a region which contains all the lines of
exactly one object. To exploit the object structure contained in the
model, we present a list of all objects involved in a dialog box after
marking a region. This list can be used as an additional filter.

The next editing operation refers to all lines which are in the marked
region and which belong to objects that were tagged. Figure 10
shows an example of a drawing with a sketchy linestyle. On the left
Figure 10: A region marked with the pen and side a region is marked for editing and a list of involved objects (in

the objects involved this case the table and the bookshelf) are presented. Per default all
involved objects are tagged (no filter).

To extend this object-oriented approach the object-structure (especially the hierarchy of objects) could be made
transparent in the form of a structure-browser. Schleich and Diirst (1994) describe structure browsers and employ
them to allow direct manipulation on the level of objects. Such a feature would be desirable in our application but
has not been implemented.

6.2 Editing Operations

The edit operations are selected such that everything that can be changed in the picture as a whole can also be
changed for a part of a picture. Editing operations can be classified basically in two categories: absolute and relative
changes. Absolute changes are independent of the current appearance of the picture. An example for an absolute
change is defining the thickness of contour lines with a numerical value.

Relative changes are incremental taking into account how a picture currently looks. Therefore, they are important
with respect to our design principle that the system should make a suggestion which is adapted and modified by the
user. In accordance with the above-mentioned considerations we concentrated on the following operations:

Modifying the amount of detail (no details, less detail,more detail, all details)
Modifying the strength of lines (stronger, much stronger, less, much less)
Controlling the allocation of resources for drawing (reduce lines)

Changing the line-style (select a new line-style)

The modification of the amount of detail is carried out by changing the relevance (cp. Figure 5) of all lines involved.
That is, the relevance is multiplied by a factor above 1 if more detail is specified for a region the line belongs to and
below 1 if less detail is specified. See Figure 11 for an example of a picture with an edit operation and its resuit.

Combining Edit Operations

The process of fine-tuning normally consists of a series of edit operations. If a certain part of a picture is involved in
several edit operations, the question is how these operations influence each other. Operations of different categories
are independent of each other (basically those which are in different lines, e.g. the modification of the amount of
detail and the modification of the contour) and therefore don’t influence each other at all.

By contrast, operations of the same category influence each other in one of the following ways:
o Relative operations reinforce each other (e.g. the sequence more detail, more detail)
e Relative operations neutralize each other (e.g. more detail, less detail).

o Absolute operations (e.g. all details) overwrite all previous operations of the same category not considering
whether they are relative or absolute (no details, more detail).
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Figure 11: An edit operation (left) and its result (right). The user has requested that all details in the specified region be
displayed.

6.3 Smooth Transition

One important feature of line-drawings is that changes occur continuously over the space of the image. Based on
this observation, we aim at smooth transitions between changed parts of a picture which have been changed and its
environment.

While it is easy to provide a smooth transition for modifications of the amount of detail and for the strength of
contours, we have no smooth transition between different line-styles. Smooth transitions can be realized taking into
account the percentage of a line which is inside a marked area. A selected editing operation is applied to all lines
which are fully inside the corresponding marked area. The operation is weakened slightly for those lines which
belong only partly to the marked area.

6.4 Display Process

Figure 12 summarizes the process of displaying a picture taking into consideration local and global tuning-
operations. The contour factor (the thickness with which a line is drawn) and the relevance are both initialized
depending on the focus and the global parameters (which specify how strong should the contour and the amount of
detail vary, which factors are to be considered).

for each visible linedo These values are modified if the line belongs — at least partly — to

contfac = calculate contourfactor| regions which are edited. If several editing operations were
performed on the line, they are combined as described above. Finally,
the drawline” procedure decides how to draw the line. According to
Figure 4, the line is either reinforced, drawn (with normal contour) in
the original length, foreshortened or left out.

rel =calculate relevance
for each edit operation do
modify contfac
modify rel
end
drawline (contfac,rel)

end

Figure 12: Display process (including fine
tuning)
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7 Conclusions and Future Work

We presented a system which supports the user to achieve some effects which are typical for line-drawings. To do
this we developed algorithms to make suggestions for a modified image, concentrating on such effects which could
be realized better in line-drawings than in pixel-oriented graphics. The interface developed allows a user to create
interesting pictures easily which would be hard to draw by hand. Further, we provide flexible fine-tuning
mechanisms and enable smooth transitions between parts of an image.

A number of areas are opened up for future work:

Enhancing the Tool to Improve the Design Process in Modelling

Looking at the process of tuning as a whole, there appears to be a relatively strict separation between global
parameters influencing the picture as a whole and local fine-tuning operations. The first step is to adjust global
parameters, after this the interaction to fine-tune the image can take place. Changing again a global parameter would
result in a new picture for which all operations of the fine-tuning are neglected. If global settings are made (e.g.
referring to a different line-style or hatching style) and local changes (e.g. of linewidth) are performed, it seems to be
possible to make a global change to the amount of detail which does not conflict with the previous changes.

It remains an open question to what extent this obvious drawback can be overcome, whether the tuning process can
be designed as a kind of loop consisting of (arbritarily) mixed global and local changes. One point necessary to
come closer to a design cycle could be to “undo” not only fine-tuning operations but also global settings. Further
work should be concentrated on this aspect to allow as many cycles as possible in the design process.

The way our fine-tuning process works is not very intuitive for a designer who is accustomed to work directly with
the picture. Employing movable widgets — like the Magic Lenses of Bier et al. (1993) which aim at exploring
photorealistic images and texts — could make the fine-tuning closer to the way designers work.

Editing by Drawing

The methods of tuning images described in this paper are text-oriented: The user has to input commands, to specify
parameters or to select items from a menu. Instead designers often prefer to draw some lines or hatchings themselves
and to tell the system to draw the rest this way. We carried out first experiments in this direction (Preim (1994)), for
instance to recognize the line-style the user himself created using a pen. This line-style recognition is the
prerequisite for enabling the system to continue the hatching process a user has initiated drawing a few lines. The
techniques developed in this context are not very sophisticated; future work should concentrate on extracting more
characteristics from user input and the modification of data structures for line-styles and hatching styles to store
user-defined styles.

Curved Surfaces

The examples used in this paper are from the area of architecture, meaning that we could get away with mainly flat
surfaces. To be able to handle other applications in which natural forms and hatched regions are important, we have
to be able to deal with curved surfaces. In this context we will combine the techniques for picture reduction with
polygonal approximation. To hatch curved surfaces requires other techniques than the ones employed here; Saito
and Takahashi (1990) provide a good start to deal with those hatchings; we are currently building on their work to
achieve more flexible fine-tuning mechanisms.
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