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Abstract: Today smoothed particle hydrodynamics (SPH) play an impor-
tant role in the computation of gas dynamical processes appearing in astro-
physics and other fields. Nevertheless the visualization techniques for this
particle based model are still rudimentary. In order to visualize the density
and pressure appearing in the simulation correctly we investigated the sim-
ulation in more detail. By this investigation we show that a splatting based
visualization technique displays the volume density and pressure used in the
simulation exactly. Furthermore we conclude that in our situation splatting
is the only reasonable technique and is superior to other techniques such as
raycasting. Finally, our visualization method enables the scientist to con-
trol the result of the simulation especially with few particles and gives high
quality rendering at every state of the research process.

Introduction

The visualization of concentrations or density values is one of the main tasks
of volume rendering systems. Various fields of natur sciences produce three
dimensional data which need to be visualized. The data produced can have
various structures. Besides Cartesian grids where all the cells are identical
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axis-aligned cubes there exist other structered data on regular, rectilinear,
structured and unstructured grids. Finally there exist data where the values
are assigned to scattered points in the volume (cf. [Elv92]). Scattered data
are produced from measurements in, e.g., geophysics and chemistry. Also
SPH simulations produce data with no underlying grid since it is a particle
based model.

SPH Simulation

Gas dynamical processes play an important role in the evolution of astro-
physical systems. In order to verify model assumptions on an astrophysical
phenomen the scientist are often using numerical calculations. SPH was
used in the last years with great success in the field of astrophysics (cf., e.g.,
[GMT77] and [FMH94]).

One reason for that success was the fact that finite-difference code on a
Cartesian grid was not able to handle the necessary resolution. This was
mainly due to memory and cpu limitation. SPH offered a new method to
overcome these problems and was introduced by Gingold-Monaghan [GMT77].
In SPH the fluid is modeled as a collection of fluid elements and is represented
as particles with interactions. The dynamical equations are obtained from the
Lagrangian formulation of the hydrodynamic conservation laws (cf. [Mon82],
[FMH*94] and [HK94]).

We briefly present the way how the discretization of the thermodynamical
equations works. This step is called smoothing procedure.

Suppose -

f:DCR*—> R"
is given. We approximate f by the kernel estimate

<) >= )= [ W', B, e

where W is the so called smoothing kernel and h the smoothing length. The
smoothing kernel has to be normalized, i.e. the volume integral of W over
its support equals 1

/ W(r,r' k) dr' = 1.
Furthermore W has to be choosen in a proper way such that
fa(r) =3 £(r).
All this can be performed by kernels which are of the form
W(r,r',h) = W(r —r', k)

and because this greatly simplifies the discussion most of the authors use this
representation.
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If we consider the values of f only at a finite number of points, distributed
with the number density n(r) = £, §(r — r;), we can multiply the inte-
grant in Equation 1 by n(r')/ < n(r') > and obtain the following discrete
approximation

f(r:)
~ ~Yy ——W(r—rh
f(r) =< f(r) > 2,-:<n(r;)> (r—ri,h) (2)
where < n(r) >= >, W(r —ri).
In the special case of mass density p necessary in gas dynamical simulations
we have to replace the function f by p, < n(ri) > by p(r;)/m; and obtain

the following final approximation

p(r) = ZmiW(T —ri, k)

where m; denotes the mass of the pseudo-particle ¢.

We can interpret this final equation in such a way that the mass of the
particles is distributed in space according to the values of the kernel.

All interesting thermodynamical quantities can be approximated by the same
procedure with the same kernel W. Since in most applications the kernel is
choosen with compact support the smoothing length also determines the
interaction radius of the particles.

Indeed we have to deal with scattered data for our visualization but we have
to keep in mind that the discrete data are coordinates in a vector space of
scalar valued functions.

3. Volume Function and its Visualization

In the field of volume rendering most works implicitly suppose that the vol-
ume data is already given in a discrete form. Indeed numerical computations
and measurements yield this kind of data. Nevertheless often we have the
discrete datasets given either as sample points of continuous volume func-
tions or as coordinates in finite dimensional function spaces and the linear
combination of the basis functions forms the continuous function.

From this observation we can assume that the volume data always correspond
to a volume function f given by

f:DCR*—-R"

From this point of view we can now apply the same smoothing procedure to
the volume function as done in the previous section for the density function
in the SPH simulation. So we are able to approximate the volume function
in the first step with smoothing kernel W (r —r', h) as before and obtain

< f(r) >= fa(r) = ]D W(r — ', h)f(r') dr'.
We have




falr) =5 £(r)

and now discretize f for given sample points r;. We obtain the following
approximation

~ 3 _S(r) |
< f(r) >= Z <n(r) >W(r —ri,h)

with n(r) = 3; 6(r — ;).

To model the process of rendering the volume function, we assume the fol-
lowing. Each infinitesimal volume element yields a contribution to a plane.
Assuming that these contributions are additive and only along one coordi-
nate in a suitable coordinate system we formulate the rendering step in form
of an integration along the z-coordinate, i.e.,

fp(z,y) = /]RZ f(r' W(r—r,,h)dz

<nr,

= Z fr,) /]RW(r—r,,h)dz

<nr,

with r = (z,y,2). Note that a similiar approach was done by Westover in
[Wes90] in his paper on splatting.

In the special situation of SPH we have to render the density function, resp.
the pressure function. Applying our model to this function we have to eval-
uate the picture function

P2D ) y Z m; /IR, TH dZ

with kernel W used in the s1mulat10n.
In the situation of identical masses for each particle the picture function p;p
is of the simple form

pi(e,y) = 3 [ Wir =i h)dz. 3)

The important fact is that our picture function uses the same smoothing
kernel and the same smoothing length as used in the simulation. Thus we
picture the density function used in the simulation exactly. Since our ren-
dering model coincides with the simulation model the display of p;p will give
insight in the data produced by the SPH simulation without any artefacts.
Performing the integration and summation will now be the task of the ren-
dering algorithm. The scalar values of pp will be coded by the intensity of
a RGB color.
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4. Volume Rendering

According to Westover [Wes90] volume rendering is the direct display of data
sampled in three dimensions and there are two principle approaches to this:
backward mapping algorithms (raycasting) that map the image plane onto
the data by shooting rays from each pixel in the scene (cf. [Lev88], [Lev90],
[UK88]), and forward mapping algorithms (splatting) that map the data onto
the image plane (cf. [Wes90] and [LH91)).

With respect to our picture function p,p this means that we have either to
compute the value of pop(z;,y;) for each pixel (z;,y;) or to compute first the
contribution of each datapoint by evaluating the function

p2p0,i(z,y) = /R W(r —ri,h)dz.

This second method is the so-called splatting method introduced by Westover
[Wes90].

Since p2p i(z,y) does not depend on the on the z-coordinate of the sample 2
we only have to evaluate once the footprint function

foot(@,) = fi, W((2,y,2),h)d

and obtain

p2pi(z,y) = foot(z — zi,y — yi).
The advantage of Westover’s method is that the integration has to be done
only once (cf. [Wes90]). Another important advantage of splatting is that
we do not need any kind of structured grid in our datasets in order to trace
the rays in the three dimensional scene.
Since in our situation the coordinates of the data samples are scattered we
have to compute first the values on a structered grid in order to apply ray-
casting algorithms.
Comparing raycasting with splatting we can use the same arguments as in
the comparison of grid-based simulations of hydrodynamics with the SPH
simulation. Since finite-difference methods are not able to treat the necessary
resolution, raycasting will not be able to display the data with sufficient
resolution.
Therefore the simplest and only realizable method to display equation (3) is
splatting.

5. Implementational Aspects

To allow perspective viewing of the volume data and to be able to render hy-
brid structures composed out of volume and surface data we used a polygonal
based splatting technique.

253




This means that we performed the integration of the footprint function in
Cartesian coordinates once and approximated this result by a planar mesh
with different transparency values at the vertices.

To every coordinate value of the samples we then translated this planar
mesh with normal orthogonal to the viewing plane. The summation was
then performed using a-blending.

In the situation with additional surface data we used the z-buffer algorithm
to eliminate hidden surfaces. In this case we had to sort the sample points
with respect to the distance to the view plane in order to obtain correct
blending results.

6. Simulation Data

The simulation data have been supplied by Peter Kroll, Theoretische As-
trophysik Tibingen. The group of Hanns Ruder investigated the model as-
sumption that Be star disks are formed by ejection of stellar matter from a
point source at the equator rotating at critical velocity (cf. [KHRR94)]).
For smoothing kernel they used a spline given by

S:(1—6¢°+6¢°) : 0<qg<1i
W(g)=1{ m(1l-9? : 1<g<1
0 1 1<¢q

where ¢ = |r|/h. For the simulation they used a smoothing length A of 5-10%°
(see figures).

7. Conclusions

We investigated the SPH simulations and constructed a visualization model
which coincides with the model used in SPH. We have been able to show that
the same assumptions can be made for the simulation and the visualization.
We concluded that in our situation splatting is the only reasonable technique
and is superior to other techniques such as raycasting.

This was shown with the same arguments as used in the comparison of finite-
difference methods with SPH simulations.

Since our visualization model coincides with the simulation assumptions we
produce relyable images which give the scientist new, correct and deeper
insight in the simulation data.
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SPH simulation of the formation of a Be star disk. Smoothing
length h =~ 1/ .. Time : y visualized with
smoothing kernel.

L=

Time=500. Mass density visualized with smoothing kernel.

The same situation as above. Mass density visualized with smooth-

ing kernel and color coding,.




