VEGA: Vienna Environment
for Graphics Applications

Robert F. Tobler, Helwig Loffelmann, Werner Purgathofer!

Institute of Computer Graphics, Technical University of Vienna
A-1040 Karlsplatz 13/186/2

Abstract

This paper presents a software development environment for rendering applications. The main
parts of this environment are a set of rules concerning the coding style, a set of tools to
maintain source files and a number of libraries providing graphics functionality. The
environment has been successfully used in a number of internal projects, dealing with
rendering.

1 Introduction

VEGA has been introduced to standardize the software development efforts at the Institute of
Computer Graphics. The goal of this standardization is to create maintainable software and
benefit from the synergistic effects of code and software reuse.

This standardization is only meaningful if the majority of the software produced at the
institute conforms to a common set of rules, uses the same tools and uses common libraries
and file formats. For this reason a number of conventions and guidelines have been
introduced, which should help to attain the standard goals of software engineering.

As a main vehicle of software reuse, a number of libraries have been implemented that
provide the core functionality for graphics and rendering applications. The problem of
programming Graphical User Interfaces has not been addressed, and standardizing efforts in
this direction have not been attempted yet.

The experience gathered in previous projects (RISS [Gerv 88] and VAST [Gerv 93]) has
been used, and the problems that have arisen in these projects have been addressed.

2 The Goals of VEGA

With the introduction of VEGA we try to ensure that the software created at the Institute of
Computer Graphics meets a number of criteria. These criteria are of course the standard
criteria established by software engineering which should be applied to any type of software,
but in a university environment additional problems arise that have to be addressed.

1 email: ft@cg.tuwien.ac.at, helwig@cg.tuwien.ac.at, wp@cg.tuwien.ac.at

323

Maintainability:
Over time a huge number of people will develop software using VEGA. A large
proportion of the people developing such software will be students. In general, the goal
of a student developing a piece of software is normally to write a thesis based on the
result of the software, not to produce maintainable code. Therefore the student will use
all kinds of tools and software, just to complete the job at hand. For this reason it is not
easy to maintain a large collection of software at a university.

A prime goal of VEGA is to make the software written at our Institute somewhat
maintainable. We think that any effort in this direction will result in an incresed reuse
of the software at our Institute.

Documentation:

Since it is the prime motivation of most programmers at universities to obtain results
for some research, the documentation of the programmed software is often very scarce.
Therefore a second goal is to introduce conventions on source code documentations,
that make it possible to easily produce documentation of modules, libraries and source
code.
Portability:

Another major goal of software development should be portability. In a university
setting there are typically a number of different platforms in use, and in addition to that
a lot of students want to do their software development at home. Therefore one of the
goals of the development environment should be an easy way to port software to the
major platforms in use.

Software Reuse:

Although mentioned at the end this is actually a kind of meta-goal of VEGA: all goals
listed so far have software reuse as their motivation. The goal of VEGA is of course to
increase the reuse of all software written at our Institute, and avoid the duplication of
efforts among the developers using VEGA.

3 The Parts of VEGA

In order to address all of the stated goals it is necessary to introduce a number of guidelines
and tools for software development. The following sections gives an overview of the aspects
that are covered by these guidelines and the tools that have been introduced to maintain these
guidelines.

3.1 Programming Language

Writing major parts of the software in the same language, simplifies technical details like
linking, porting and other related problems. If we had based our decision solely on the
portablity of the language, the logical choice would of course be ANSI-C [Ansi 90]. In
previous projects we made the experience, that C’s protection mechanisms to shield different
parts of the implementation from each other, are not adequate. Thus a lot of variables and
fur(lictions will end up in the global namespace, and special efforts have to modularize the
code.

We also based our decision on the current trend towards object oriented programming.
The compromise between these two goals is C++ [Stro 91]. Although it is not as portable as
C, a certain level of portability can be maintained by avoiding some newer features of the
language. The C++ class mechanism makes it possible to implement object oriented designs,
and also provide protection between different modules of the code.

- 324

3.2 Coding Style

One of the biggest problems in maintaining a huge number of source files, is the readability of
the code. In order to increase the readability it is necessary to impose a number of conventions
on the coding style. The conventions that we adopted were chosen in such a way as to keep
the number of rules that have to be considered, very low. The conventions specify (among
other things) the following aspects of the coding style:

» source file headers

e recommended indentation and tabs
* naming conventions for identifiers
¢ rules for documentation

3.3 VEGA Tools

In order to maintain a huge base of software, it is necessary to use a consistent set of tools that
ensure that all sources conform to the guidelines that have been established.

3.3.1 Makefiles

For every sizeable project, it is necessary to create a system that makes it possible to easily
recompile parts that have been changed. On UNIX systems the standard way of doing this, is
by using the make utility.

Maintaining a large number of makefiles which should be portable is not very easy. For
this reason a makefile system has been introduced, which makes it possible to create projects
similar to those in integrated development environments: it is only necessary to specify all
sources and the desired output. The platform dependent parts of all makefiles have been
centralized so that they can easily be ported.

3.3.2 Source File Tools

Maintaining all the established guidelines for a huge number of source files requires a set of
tools that operate on these sourcefiles. Some of the tools that have been introduced are the
following:

Header Tool:

this allows to generate and update the headers of source files that conform to the
established coding style. Using a fixed format for file headers makes it possible to
introduce tools to extract certain information about files (e.g. author, history, projects,
aso.) from these file headers.

Manpage Tool:

this tool generates UNIX man pages from c++ header files. This makes it possible to
keep all API documentation of all software in the c++ headers, and reduces the
maintainance overhead for documentation.

Renaming Tool:

on some platforms filenames suffer severe limitations in length. Since these
restrictions impede the readability of filenames, a renaming tool has been introduced,
that allows to map long filenames to short ones and backwards. (the tool knows about
c++ include statements and renames them accordingly). Thus it is possible to use the
longer and more readable file names on platforms that support it.

3.4 VEGA Libraries
The main vehicles of software reuse at our institute are a number of libraries that can be used

by all projects developed under VEGA. These libraries have been especially designed to be
portable, consistent and easy to use.

325

The following short description of the VEGA Libraries is not complete, but it highlights
some special features of the libraries that are of interest to the developer of graphics
applications.

34.1 The VEGA Base Library

The Base Library contains core functionality which defines some common abstractions for all
other software. It is not specific to any application area.

ErrorHandlers;

The exception facility of the C++ language has not been implemented on a number of
important platforms. For this reason an alternate scheme for reporting errors has been
introduced that is based on error handlers.

An error handler is an object that error messages and numbers are sent to, so that they
can be reported or retrieved. Error handlers can be defined seperately for each library,
module or even function, and the behaviour of each error handler can be changed from
the default which is to report messages and exit, to record the errornumber for later
retrieval.

Tracers:

For debugging code it is often necessary to insert statements into the code, hat report
some status. These statements are not intended to stay in the code, but they will be
removed after the debugging session. In order to make it possible to leave these
statements in the code without suffering a performance penalty, tracers have been
introduced. Debugging output is now sent to these tracer objects, and each tracer
object has a state which decides if the output is displayed or suppressed. These checks
are only performed if the code is compiled in a debugging version. In the production
version of the software no trace code is left, thus there is no reason to remove the
statements that perform the debugging output.

3.4.2 The VEGA Math Library
This Library provides some mathematical core functionality for implementing specialized
graphics classes.

Mathematical Constants and simple Functions:

This module provides an extension to the <math.h> module of the C standard
library. A consistent naming scheme for mathematical constants has been introduced
and a number of simple useful functions like min, max, abs, clamp, aso. have been
added.

Two-, Three- and Four-Dimensional Coordinates:
These types represent arbitrary coordinates which are not restricted to any specific use.
Thus various different graphics types can be based on this implementation of
coordinates: colors, vectors, points, aso.

Vectors and Matrices of arbitrary Dimensions:
These types represent n-dimensional vectors and n x m-dimensional matrices of single-
or double-precision floating point values. The classes have been designed to make it
possible to write an interface for code of the Numerical Recipies [Press 92].

34.3 The VEGA Graphics Library
The VEGA Graphics Library contains a large number of useful classes for 2D and 3D
Computer Graphics. It does not contain any code for specific Graphical User Interfaces.

Two- and Three-Dimensional Vectors and Points:

These types represent the core of the graphics functionality of the VEGA Libraries.
They have been designed in a typesafe way, so that only geometrically meaningful
operations can be performed (i.e. it is not possible to add two points). There are single-

326

and double-precision versions of these types, so that it is possible to adapt the memory
usage and precision requirements to the application at hand.

Transformation Objects:

Vectors and points by themselves are not sufficient to write serious graphics
applications. It is often necessary to transform them in various ways. For this reason a
number of transformation classes have been defined. Thus each type of transformation
can be represented by a transformation object, and the transformation can be easily and
efficiently applied to a set of vectors and points. The available transformation objects
are: scaling, special rotations around major axes, general rotations (implemented via
quaternions [Shoe 85]), shears along each major plane, linear transformations,
translations, and general homogeneous transformations. Operator overloading has been
used to introduce all concatenations of transformation objects and all transformations
of points and vectors with these transformation objects.

Bidirectional Transformation Objects:

It is often necessary to maintain a transformation and its inverse to convert points and
vectors between two coordinate systems. If matrix inversion is used to do back
transformations, this could result in severe numerical instabilities [Press 92]. For this
reason bidirectional transformation objects have been introduced that maintain both
transformations in matrix form. These objects are compatible to all other
transformation objects, and therefore it is very easy to build complex transformations
and implicitly maintain the inverse tranformation.

Color Classes:

These types represent colors in various different precisions: 8 bit per color RGB with
alpha channel (Color32), 16 bit per color RGB with alpha channel (Color64), single-
and double-precision floating point RGB. Many operations on the color values have
been introduced via operator overloading. Additional color representations like XYZ,
Lab, Luv a.s.o will be added in the future.

4 Implementation Issues

During the implementation of the libraries and tools, a number of problems had to be
overcome, which had some effect on the interface of the library and the tools provided.

4.1 Performance

The structure of the VEGA Libraries is very modular an thus different parts build on each
other. For example the two- and three-dimensional vectors in the Graphics Libary are based
on the coordinates introduced in the Math Library. It would seem that this results in a
performance penalty for the functionality for vectors and points. This has been avoided by
aggressive use of inlining and loop unrolling by hand. Examining the compiled code produced
by the GNU C++ Compiler, we found that very little of the perceived overhead remains in the
final application.

4.2 Library and Application Sizes

Due to the huge number of functions and inlined functions, the libraries and applications are
somewhat large. This problem has been addressed with the use of shared libraries on
platforms which support this facility. Therefore it is also recommended to split the
functionality of applications into different libraries: this makes it possible to reuse parts of the
functionality without any physical overhead.

327

4.3 Portability

The VEGA libraries have been ported to the following platforms: SGI Irix 5.2 using SGI's
CC, MS-DOS using Borland C 3.1, Linux 1.1.52 using GNU g++ 2.5.8 and NeXTstep 3.2
using GNU g++ 2.5.8 and 2.6.1. During these porting efforts it has been found that templates
comprise the C++ feature that generates the most portability problems. For makefiles, the
GNU version of the make tool has been chosen, since it provides some important
functionality not available in the standard version of make on some platforms.

5 Future Development and Conclusion

The tools and libraries introduced so far cover only the very basic functionality, which is
necessary to develop graphics and rendering applications. The VEGA system will be extended
by various modules and libraries in order to increase its applicability. The following libraries
are being developed, but have not been completed so far:

 Silicon Graphics OpenGL Interface: an interface that hides the OpenGL function based
interface, so that VEGA classes can be used.

* Geometry Classes: a number of classes to represent geometries and functions on
geometries.

» Image Classes: a number of classes to perform image manipulations.

The core functionality provided in the introduced parts of the libraries have been used for a
number of internal rendering projects and have been found to drastically reduce the source
code size of these projects. In addition to that, the use of error handlers and tracers has been
found to make debugging of code a lot simpler.

6 References

[Ansi 90] X3 Secretariat: Standard - The C Language. X3J11/90-013. Computer and
Business Equipment Manufactures Association, 311 First Street, NW, Suite
500, Washington, DC 20001, USA

[Gerv 88] M. Gervautz, W. Purgathofer; “RISS - Ein Entwicklungssystem zur
Generierung realistischer Bilder” (RISS - A Development System for
Genrating Realistic Images), in W. Barth (ed.): Visualiserungstechniken und
Algorithmen, Informatik Fachberichte 182, p. 61-79, September 1988

[Gerv 93] M. Gervautz, R. Devide: “VAST - An integrated Animation System Based on
an Actor - Controller Structure”, Proc. of the 4th EUROGRAPHICS 93
Animation and Simulation Workshop, Barcelona, September 1993

{Press 92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: Numerical
Recipes in C - The Art Of Scientific Computing, 2nd edition, Cambridge
University Press, 1992

[Shoe 85] K. Shoemake: “Animating Rotation with Quaternion Curves”, Computer
Graphics, 19 (3), pp. 245-254, SIGGRAPH Conference Proceedings, July 1985

[Stro 91} B. Stroustrup: The C++ Programming Language, 2nd edition, Addison
Wesley, 1991

