Computer Animation and Human Animators
Philip J Willis

Computing Group, School of Mathematical Sciences.
University Of Bath, Claverton Down, Bath BA2 7AY, UK
Email: P.J.Willis@bath.ac.uk

Abstract

There is often a gap between what technology can deliver and what users
want. Sometimes this is because of fundamental technological constraints
but often it is because technologists do not address the realities of user
needs and expectations before attempting to solve the problem.

The talk will describe our approach to computer animation and some of
the pitfalls of trying to address a community which is visually more liter-
ate than typical computer graphics people, while being far less computer
oriented.

Keywords: computer animation, animation

1 Introduction

The computer graphics community has paid much attention to improving ways of
modelling and rendering a wide variety of objects, including natural phenomena.
There is almost a feeling of competition in some areas, trying to outdo the effects
produced last year. The results can be visually stunning but the real value of
these techniques is only realised when they are put in the hands of those who are
trying to create pictures as a means to an end.

Such people are visual designers, in the broadest sense of the term, who may have
no computing skills at all but will typically be much more visually-aware than
the mathematicians or computer programmers who win the conference prizes. To
reach this ‘industrial strength’ software product, the core software will have been
extended to offer a proper user-interface. Sometimes this is a straightforward

431



process, though it seems to be surprisingly easy to get it wrong! The simple
solution most often arises when the users do not need to get their hands on the
picture being manipulated. For example, certain fractal-generation programs let
the user set parameters but the program then runs non-interactively to build up
the required picture.

Computer animation is an area which almost requires that the user manipulates
the objects directly. The movements and distortions involved very much start
in the mind of the animator and then have to be transferred to the animation.
This is by no means an easy process and it is noteworthy that the 3D animation
community is pushing towards higher-level control of largely autonomous actors,
which ‘know’ how to move and how to avoid obstacles, rather than expecting the -
animator to build-up detailed movements.

Our own work is in 2D animation, which mimics the traditional process of layer-
ing together drawings to produce each frame. Here the drawing does not match
reality, not just in the sense that such work tends to use exaggerated cartoon char-
acters but also in the sense that the animator may deliberately produce drawings
which cannot have come from a ‘real’ 3D character, in order to produce a partic-
ular effect. For example, both eyes may be visible in a side view, when one eye
would be hidden in reality. This stretches to the limit the need for the animator
to have direct control of the pictures while at the same time pushing the computer
system beyond what would be needed for more conventional applications.

2 Traditional Animation

Traditional animation is an art which happens to make use of photographic tech-
nology as the means of recording moving pictures. As the pictures first have to
be drawn, the movement originally exists only in the mind of the animator. The
translation of this idea to paper requires skills beyond those of a good visual
imagination and the ability to draw, because it turns out that the best results
are obtained only when the limitations of the medium are overcome to expressive
advantage by the animator: animation can be an art, rather than a craft.

As a result of neariy a century of practice, the animation community has devel-
oped a corpus of knowledge about how to represent movement and emotion while
at the same time providing incidental clues to emphasise the effect required[1, 2].
For example, a rapid exit to the left is often preceded with a ‘winding-up’ move-
ment to the right, effective when seen but with no counterpart in reality, so not
predictable from everyday experience.

The move to a new recording technology, such as video, or to a new drawing
technology, such as the computer, should not result in the throwing away of the
previous 100 years’ knowledge, yet this has happened in the computer graph-

432




ics community. As late as 1987 John Lassiter found it necessary to write a
paper recommending the application of traditional techniques in 3D computer
animation[3]. Even so, much 3D work has concentrated on making the pup-
pets more life-like (very useful for some applications but most traditional ani-
mation does not mimic life), or on making them more autonomous (to gear the
amount of output from a given amount of animator’s input) and hence less-finely
controlled[5, 6, 7].

As for the apparently easier 2D computer animation, as early as 1978 Ed Catmull
was arguing that there were grave difficulties with even bringing the new technol-
ogy to the old approach[4]. It seems we have not made very much progress since,
certainly nothing to compare with the extremely rapid progress in rendering or
indeed in computer performance. Recently however, there has been a renewal of
interest in 2D computer animation, some lessons have been learned and some of
the real problems are being addressed. It is these ideas which we wish to explore
briefly in this paper.

3 What is 2D Computer Animation?

First let us describe a model of traditional animation which has a ready analogy
with computer graphics. We will focus on the central, graphical component of the
process. Readers wishing for a full account, from initial concept to final product,
should refer to details we have given elsewhere[8].

In essence, each frame of an animation is constructed from layers of transparent
“cels”, on which various components of the action are drawn and painted. Typ-
ically the rearmost layer is a background painted on paper, while the cels hold
individual characters, or even parts of a character. The entire stack is brought to-
gether, illuminated and a single frame is recorded on film. Some components are
then changed or moved, the next frame is exposed and so on. This is necessary
because films cannot otherwise take advantage of what the computer graphics
community calls “coherence”, similarities which carry over from frame to frame.
The use of cels allows re-use of material. For the cheaper ferms of animation,
this is taken to the extreme of re-drawing only those parts of a character which
must move.

4 A Computer Approach

This sounds a close match to computer graphics. We can certainly build pictures
in multiple frame buffers and composite them together, retaining any needed
for the next frame. Of course this begs the question of how we represent the

433



drawings, and indeed of how we interact with them to revise them. In a sense it
can also lead us astray: we should not start by thinking of pixels at all. Some
years ago work started in the author’s laboratory on paint programs which, by
using an underlying vector-based recording, were able to achieve high resolution
independent of the display[9, 10]. This lead to a vector-based paint program,
UltraPaint{11, 12, 13], with an independent scan-converter, UltraScan, capable
of rendering at any definition. This software had a number of advantages over
the pixel-pushing normally used for this kind of application. Specifically, a vector
representation is inherently scale-free. It is important to understand that by
“vector-based” we do not mean that only line drawings are possible. What we
did was present the user with a normal paint program interface, including a
choice of brush sizes and shapes and a colour palette. The user created drawings
by direct painting: pixel-pushing was used to give the screen feedback. However,
at the same time the program stored in vector form the path of the mouse, thus
recording the drawing actions and indeed all of the menu selections made. This
recording could be to arbitrary scale, within the generous limits of the 32 bit
wordlength of the host computer, and indeed it was possible to add fine detail by
zooming and continuing to paint. The full-quality final picture was generated off-
line, essentially by replaying the actions over a virtual framestore of arbitrarily
high definition. To achieve this we wrote a scanline renderer for these vector
files, which compressed each scanline as it was produced. Thus it was possible
to attain very high definition without the need for a full framestore. In fact we
demonstrated pictures of 32k by 32k[13] and the performance of the renderer was
linear in the resolution, avoiding the square-law problems of frame buffers.

During the UltraPaint project, we realised that the approach had the same ad-
vantages for moving pictures as it had for stills. Now the output-independence
became an additional virtue. Most of the animation market is in television but
television formats are in a state of flux as the merits of high-definition versus
enbanced definition, and digital versus analogue are debated. The same is true in
the domestic video market where various disk-based systems have come and gone.
Previously, recording to 35mm film (the highest available quality) was the only
way of future-proofing, but this is a very expensive solution. With the computer
approach, it is possible to retain a form which can be scan-converted on demand
to meet any future standard.

In the mid 1980s we discussed this approach at length with people known to
us in the industry, who were also looking to escape from the tyranny of the
pixel. These people subsequently founded Cambridge Animation Systems and
their core product, Animo, has recently established itself as a world-leader. It
differs in many detailed ways appropriate to a commercial product but it is a
vector system at heart.

We had also moved our own research in the same direction, investigating new ways

434




Figure 1: Interpolating a falling pencil

of representing layers of colour, with separate control of each cel’s illumination[14]
and new formulations of curves (in fact NURBS-based) appropriate to scanline
rendering[15]. We thereby escape from the limitations of poor polygonisation
resulting from the unforseen effects of the transformation pipeline, while ensur-
ing that we retain the ultra-high definition option of our earlier paint program.
Importantly, we have also examined the way the system can be presented to
users[16).

5 TUser Interaction

Animators are used to working with key-frames, which are the most important
poses of a sequence. The process of generating the other frames required is one
of in-betweening, usually performed by teams of less-skilled technicians. A goal
of computer animation has been to produce the in-between frames automatically,
thereby both improving productivity. Typically this has proved more difficult
than it might seem, so that additional key-frames have had to be inserted to
guide the software more closely. This can degenerate to the point where the main
animator is in fact drawing all the in-betweens as well!

What this tells us is that in-betweening is not a simple matter of interpolating
between two pictures. The classic example, rapidly becoming the Utah teapot of
2D animation, is the falling pencil (Figure 1). Here the key-frames are the vertical
and horizontal pencils. Linear interpolation produces in-betweens which shrink

435




and grow larger again as the pencil falls. In-betweening is more of a circular
interpolation than it is a linear one, as John Patterson and colleagues at the
University of Glasgow realise[17]. This is an interesting area of research. The
basic problem is that the transformation of one drawing into another can be done
in many ways. In the case of the apparently-similar morphing, the in-betweens
are only required to blend smoothly, there is no requirement that the various
components of a picture behave in a correctly animated way. In-betweening is
at the heart of the potential productivity gains from using a computer so it is
important to have software which behaves as expected most of the time.

Another area which matters to the user is shape manipulation. Characters can
be built from areas bounded by closed curves. These curves must be maleable
in such a way that the user can perform both localised changes, to produce the
right shape, and global changes, to produce squash and stretch effects. Some
effects, such as the indentation of a character as a result of an object hitting it,
really require a curve formulation with an appropriate (and variable) degree of
“stiffness”. Curve segments must not be so loosely coupled that the joins become
apparent under these circumstances, but neither should they be so tightly coupled
that all of the shape changes. It is easy for the software designer to overlook this
problem and assume that the user will overcome it.

This is very much an application in which users wish to have their hands on the
shape, working first with a rough freehand drawing and then refining it until the
shape is right. It is perhaps not widely appreciated how much a drawing is a
thinking tool to an animator. A rough sketch may be overdrawn many times,
trying the effects of different emphasis, pushing a curve this way and that. It is
not the case that the animator starts with a well-formed mental model and only
uses the drawing to make the idea visible. Typical solutions to this problem are
to bring the computer into use only after the thinking has been done by using
traditional materials. Often this goes a step further: the user must first produce
a clean drawing on paper which is then scanned to produce a pixel image. If the
software leaves the drawing in pixel form, many of the advantages of using the
computer are lost. Pixel-to-vector conversion therefore is the correct thing to do
first.

We would argue that control of lighting is something which computers are good
at, which is of enormous benefit to animation, and is poorly addressed by current
2D animation systems. Back-lights, soft spotlights and colouration can all be
used to great dramatic effect. To our knowledge, our own proposals[14] are the
only ones to address this properly. Our approach allows fine control of the front
and back lighting of each cell, coloured filters to produce graded and localised
effects, and full animation of the resulting effects.

Special effects are commonplace. These include: rain and other water effects such
as waves on the sea and ripples on a pond; lightening flashes; dust swirls from

436



rapidly departing characters; and many others. The vector-based approach wins
here because these can all be created in a library, held until needed. They are
then coloured appropriately and transformed to fit the scene in question.

Similar arguments apply to the main characters of a series. The important poses
can be stored in a library and extracted as needed. This is an example of re-use
and it follows that the visual quality of the animation can be improved cost-
effectively: the effort which goes into drawing the character will be used over and
over again, so it makes sense to take extra trouble to get a fully-detailed original.

Indeed a computer-based library of information is one of the parts of the pro-
duction process which computers ought to be used for. They are good at dealing
with large volumes of data, cross-referenced and accessed by multiple users. A
typical medium-size animation studio has a number of people working simulta-
neously on a given production, and may have more than one project underway.
Images are space-consuming, but vector-based drawings can be dramatically less
so. Coupled with a fast renderer, this is not a disadvantage to users who wish to
see the finished frames.

Finally, there are techniques from the computer graphics community which can
be imported. High-speed motion is usually indicated with speed-streaks and dust
eddies. Where appropriate, the rather different visual language of motion blur
can be used. Similarly, texture map techniques, glossy surfaces and all the rest
can be imported as needed, even in 2D. The important point is that this should
be used to extend the animator’s language, not to supplant it.

6 Concluding Remarks

We have considered some aspects of animators, animation and the ways that
computers might be used to go between the two. Certain general approaches
have been identified and a few potential pitfalls mentioned. It seems from recent
developments that the age of computer-mediated 2D animation production is just
starting in earnest.

References

[1] A White, “The animator’s workbook”, Phaidon, (Oxford, 1986).

[2] F Thomas and O Johnson, “Disney animation - the illusion of life”, Abbeville
Press (New York 1981).

[3] J Lassiter, “Principles of traditional animation applied to 3D computer ani-
mation”, Computer Graphics (SIGGRAPH’87) 21, 4 July 1987, pp. 35-44.




[4] E Catmull, “The problems of computer-assisted animation”, Computer
Graphics (SIGGRAPH’78) 12 (3) August 1978, pp. 348-353.

[5] N Magnenat-Thalmann and D Thalmann, “Computer animation: theory
and Practice”, Springer-Verlag, (Berlin 1985).

[6] N Magnenat-Thalmann and D Thalmann, “An indexed bibliography on com-
puter animation”, IEEE CG&A (July 1985).

[7] X Pueyo and D Tost, “Survey of computer animation”, Computer Graphics
Forum 7(4), December 1988, pp. 281-300.

[8] J W Patterson and P J Willis, “Computer assisted animation: 2D or not
2D?”, Computer Journal, to be published (1995).

[9] J B Hanson and P J Willis, “A graphic arts display system”, Proc. of FElec-
tronic Displays 82, pp. 13-22, (Network 1982).

[10] P J Willis, “High fidelity pictures from digitizing tablets”, Displays, pp.
147-151, (July 1983).

[11] P J Willis, “A paint program for the graphic arts in printing”, Proc Euro-
graphics 84, Copenhagen (North Holland 1984), pp. 109-120 (1984).

[12] P J Willis and G W Watters, “UltraPaint: a new approach to a painting
system”, Computer Graphics Forum 6(2), pp. 125-132, (1987).

[13] G W Watters and P J Willis, “Scan converting extruded lines at ultra high
definition”, Computer Graphics Forum 6(2), pp. 133-140, (1987).

[14] R J Oddy and P J Willis, “A physically-based colour model”, Computer
Graphics Forum 10(2), pp. 121-127, (1991). Also: Eurographics UK Con-
ference, April 10-12th, pp. 87-103, (1991).

[15] R J Oddy and P J Willis, “Rendering NURB regions for 2D animation”,
Computer Graphics Forum, 11(3), pp. C-35 — C44 and p. C-465, (Proceed-
ings issue: Eurographics 92 Conference, Cambridge, UK, Sept 1992).

[16] Mark Owen and Philip Willis, “Modelling and interpolating cartoon char-
" acters”, Proceedings of Computer Animation ‘94, (Geneva, May 25-28th),
IEEE, (1994), Text pp. 148-155; colour plates p. 203.

[17] J H Yu, “Inbetweening for computer animation using polar coordinates Lin-
ear Interpolation”, Research Report 90/R23, (Sept 1990), Dept of Computing
Science, University of Glasgow, UK.

438



