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Abstract

A revised radiosity method for curved surfaces is proposed, based on the Monte Carlo
approach. In order to improve the accuracy of the soluton, a smoothly reconstructed
illumination function with selected discontinuites is used during the radiosity computation. The
reconstructed function is used as a random number distribution for position sampling to
overcome the constant radiosity assumption syndrome. Illumination information stored at the
surface control points is used to preserve continuity of the illumination across the boundary of
adjacent surfaces and to avoid Mach band effects. Implementation in Flatland is discussed.

LIntroduction

Realistic simulation of illumination effects is often a primary goal in compuier
gencrated imagery. Because of the complexity of light behavior interacting with an
environment, one can't hope for closed-form solutions to global illumination problems. The
techniques for global illumination have to consider the basic interdependency of the light
energy transfer problem: the radiance of every object is determined by the radiance of all other
objects in the scene visible from this object. Radiosity methods have been shown to be an
effective solution to the global illumination problem in diffuse environments. They have been
introduced to computer graphics from the simulation of radiative heat transfer. The method is
based on the pﬁndple of energy conservation. All light energy emitted within the scene is
reflected off surfaces and transfered between surfaces within this environment. Thus, the basic



building brick of the radiosity solution is the energy transfer between two surfaces as an
instance of the rendering equation [7]. The energy transfer is expressed using the concept of
formfactors [18].

To simplify the rendering equation and speed up computation, several approaches have
been developed. Conventional radiosity requires the scene to be discretized into small areas
(called patches) and approximates the illuminaton function over a patch as a piecewise
constant. Much work has been spent to increase the accuracy of the solution by discontinuity
meshing [9] and ray-tracing form-factor evaluation {18]. Further improvements can be
achieved by introducing piecewise linear approximation of the illumination function [10] and
extending this technique to higher order finite element methods [19] {16). The demand for
increasing visual quality of a result led to the development of post-processing echniques for
reconstruction of the illumination function from Gouraud linear interpolation shading to higher
order reconstruction [13], [2].

Another effort has been devoted to the invention of stachastic methods for radiosity
and has resulted in Monte Carlo radiosity techniques [14], [12]. A difference to conventional
radiosity is that instead light energy transfer is modelled by shooting photons (packets of
energy) from emitting surfaces, instead of using form-factor computation. Photons are
absorbed at the surface of the receiver and transfered energy is stored for rendering.

2.Higher order finite element methods and the reconstruction of the
illumination functions

The conventional radiosity algorithm computes the energy transport at a collection of
points and uses this information for a piecewise constant approximation to the illumination
function. This leads to a "faceted" appearance of the rendered objects. Through Gouraud
interpolation as 2 rendering post-process, a continous solution is achieved. A more accurate
illumination function for each surface can be obtained using a higher number of patches. Thus,
meshing is a crucial part of a radiosity pre-process. Lischinski et al. in [9] have introduced a
discontinuity meshing, which means that surfaces are subdivided along the lines of
discontinuity caused by shadow boundaries. The main disadvantage of this approach is an
increasing computational complexity. Higher order radiosity methods (Galerkin Radiosity [16],
[19] and The Point Collocation Method [16]) have exchanged a large number of low-order
elements (patches) with a smaller number of higher order elements using methods of finite
element analysis. Rather than assuming a piecewise constant illumination function, they use a
set of basis functions defined on the element. Thus, the illumination function over a patch is
described as a linear combination of the relative contributions of each basis function to the final
radiosity value. In order to maintain energy transfers in the environment, basis function-to-
basis function form-factors were introduced, instead of patch-to-patch form-factors of
conventional radiosity. Although higher order finite element methods produce a more accurate
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solution, there is still a lot of problems left for further research. For example, the Galerkin
method does not mathematically guarantee continuity between adjacent coplanar surfaces. This
leads to the complication using any of the well known meshing techniques. This is an important
problem, because environments usually contain a lot of singularities, which can be simply
handled by discontinuity meshing. Another possibility is to use basis functions. of significantly
higher orders, which is, on the other hand, computationally very expensive. Another significant
disadvantage is shadow weatment. Shadow masking (suggested in [19]) is only a local
approximation to the true shadow edge generation. If an impontant shadow is missing, a
smooth illumination function over a patch will lead to a "wave like" appearance caused by
Gibbs ringing,

To overcome discontinuity of the illumination function in the rendered picture, several
post-processing reconstruction techniques have been developed. The first auempt to solve this
problem uses Gouraud shading for smoothing the radiance value over a patch. Although this
approach doesn't increase the accuracy of the radiosity solution, the rendered pictures are
visually more pleasant. In order to eliminate Mach banding, linear interpolation has been
extendend to higher order interpolation methods (e.g. Bicubic Hermite Interpolation [2]) and
reconstruction functions with selected discontinuities (e.g. Interpolation using Bezier triangles
[13]). The main disadvantage of these techniques is their post-processing behavior. In contrast
to higher order finite element methods, smooth reconstruction of the illumination functon is
not used during the radiosity solution, but as a blurring step for the rendering process only. v

3.Revised Monte Carlo Radiosity

3.1 Problem Formulation:

OGiven: A scene described as a set of Bezier triangles T with a set of Bezier control
vertices V. A light sources described as a set of emintance functions E;:R* ~ C. for
each Bezier triangle where C is a color space.

OTo find: A set of functions B;:R* — C for each Bezier triangle, such that:

B(X)=E(X)+p(X)Y, [B.(X)G(X.X")ax"
i

where:
B - radiance (energy/unit time/unit area)
E - emittance (energy/unit time/unit area)
p - reflectivity (unitess)
G - geometry term (unitless)
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3.2 The Monte Carlo Algorithm

The Monte Carlo algorithm is based on the energy transfer simulation using a finite
number of samples called photons. It is a stochastic method, therefore it is only possible to
predict the expected value and the variance of the converged radiosity solution. Shirley in [14]
has proved that the computation of the radiosity solution with any variance requires only O(N)
shooted photons (N is the number of patches in the scene), if the scene satisfies the following
conditions:

1. The maximum radiosity in the scene is bounded.
2. The maximum reflectance in the scene is less than one.
3. The rato of the largest to the smallest patch area is bounded.

These conditions are reasonable and make Monte Carlo approach competitive with
other radiosity methods, especially for extremely fine meshed scenes.

Algorithm:

For each photon repeat steps 1-6 below:

1. Choose a light emitter, from which a photon will be shot- (each ray transports
approximately the same amount of energy and hence has the same effect on the radiosity
solution, therefore it is not necessary to select the patch which emits the most unshot
energy within the scene. Nonetheless, the selected patches should be equally distributed
according to the remaining unshot light energy).

2. Reconstruct the illumination function over the emitting surface using piecewise cubic
interpolation (reconstruction is done using a method introduced in [13] and is described in
detail in chapter 3.3).

3. Choose a random position on the light emitter using a position sampling of the emitter
surface geometry according to the reconstructed radiosity distribution (this is a crucial part
of the revised Monte Carlo algorithm and therefore it is described in detail in chapter 3.4).

4. Choose a random direction in which the photon is emitted by directional sampling of the
emission distribution of the emitter (a good discussion of sampling approaches for different
surface geometries can be found in [12]).

5. Compute the photon's energy. (energy is given by the product of the total unshot radiosity
of the emitter and the emitter's area divided by the number of rays emitted).

6. Find the nearest patch hit by the ray and store the transfered energy at the receiving patch
(this is simply done using the ray-casting method. Some improvements have been proposed
in [17] and are described in chapter 3.5).
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3.3 Reconstruction of the illumination functions with selected
discontinuities using Bezier triangles

The complete reconstructing algorithm is described in [13], so this paper presents only
a summary of the method. The original paper proposes an interpolation technique for mriangular
meshing, although this method can be easily extended for curved surfaces modelled using
Bezier triangles. Instead of interpolating across a real triangle, reconstruction is performed in

parametrical space.

Problem formulation:

O Given: A triangulation with vertex set, edge set and triangular face set. Intensity and
normal vectors of ‘i;n;énsity for every vertex. A continuity flag C, for every edge in
triangulation. - .

QO To find: An interpolation function over 2 triangulation with continuity C' everywhere,
except of edges with continuity flag C™,C°.

A cubic Bemnstein-Bezier polynomial P defined over a triangle (u,v,w) is given by the » '
equation:

_ 3N ipiat
P(B.,B..B.)—os%gm-!ﬁ.ﬂ.ﬁ.ba

i j+k=3

where: B,,8,,B,, are the barycentric coordinates with respect to the domain triangle, and the
scalar values b, are called the Bezier ordinates of P.

According to [13] we will denote the Bezier ordinates as follows:

uun = by, VW = by, www =By,
wv =byg uw = by ™
ww =b o vww = by, vww =by, and ww=b,

The Clough-Tocher interpolant (see Fig.l), which ensures a C' (continuously
differentiable) continuity everywhere across the surface, is based on splitting each triangle at
the centroid into three subtriangles. A cubic Bemnstein-Bezier polynomial is defined for each
subtriangle. The construction requires the following constraints:

1. The ordinate vvv for each vertex v is set to correct intensity value for this vertex.

2. The ondinate uvv for each ordered edge uv must lie in tangent plane defined by intensity
normal vector in vertex v.

3. The points (uuv,uvv,cuv.c'uv) must lie in the same plane, for each edge uv whose adjoining
triangles have centroids ¢ and ¢'.

4. The quadruples (cuu,uuu,uuv,uuw),(ccu,cuu,cuv,cuw), and (cce,ceu,cev,ccw) must each
lie in the same plane, for each ordered triangle (u,v,w) with centroid c.
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Figure 1. The Clough-Tocher construction

Discontinuities can be introduced as follows:

O Suppose that vertices u and v should be C', but edge uv should be C°. In this case, the
coupling between cuv and c'uv is removed by eliminating constraint (3).

O Suppose that vertex v should also be C°. In this case, constraint (2) is removed. Each
ordinate vvx for any vertex x in the original triangulation can be set to any arbitrary value.

0O If an edge uv is to be discontinuons in position C™', then the ordinates uuv and uvv split
into two independent values each.

G If a vertex v is also to be C™', then the ordinate vvv splits into different values for each
triangle incident at v.

Complete reconstructing algoxi&xm can be found in [13].

3.4 Positional and Directional sampling for revised Monte Carlo
Radiosity.

Directional emissivity of the light source can be easily supported by the Monte Carlo
radiosity approach. The simplest way is to use it as a random number distribution for
directional sampling of photons. In diffuse environments, the emitted intensity is uniform in all
directions. Thus, for the photon emitted from a diffuse emitter, the direction is given by the
pair (2x&,,arcsin (J—i: )}, where &,,&, are uniform random variables in the range <0,1>.

If an assumption about uniform emission intensity over the emitter surfaces is made
(that means, the radiosity function is constant), then photons must be generated uniformly over
the surface. Therefore, the proper sampling strategy for arbitrary surface geometry is needed.
In the radiosity method for scenes consisting of Bezier triangles a sampling based on
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parametric space can be used. For cach Bezier triangle, one can consider the domain triangle
Fo, B, P, sampled uniformly by the following formula: Fo+(1=vu(B —F,)+v(P, - F,),
where u is a uniform random number in the range <0,1> and v is sampled as (I—JE), where &
is another uniform random number in the range <0,1>. The sample is projected from
parametric space onto the Bezier triangle as a photon origin. The derivation of the directional
distribution and positional distribution for various geometries can be found in {12].

‘The problem is more complicated for emitters with non-constant illumination over the
surface. Instead of uniform sampling of the domain triangle, sampling can be dependent on the
illumination function of the surface. Thus, the reconstructed radiosity function must be used as
a random number distribution for positional sampling. That means, the density of photons'
origins is higher in those parts of the emiuer, which have a greater illumination. This method
allows us to overcome a constant radiosity assumption syndrome, which is described in [15].
This is a basic difference to well known illumination reconstructing methods, which used the
additional radiosity information only in the post-processing step.

The derivation of the positional sampling with reconstructed illumination function can
be done using the principle of transformation of the random variable. Let's consider a 2
dimensional parametric space and the illumination function B(x,y) defined over this space. Let's
define a function C(x) as follows:

b
Cx)= [B(x,y)dy

If function B(x,y) defines a probability of the sample located in the point (x,y), than the
function C(x) represents a probability of different x-slices in parametric space (Note, that
functions B(x,y) and C(x) are not normalized, that means they don't describe the probability
directly, only a sampling importance). In order to choose the most probable x-slice, uniform
random variable §, must be transformed in the following way:

jC(x)dx

£ =%
IC(x)dx

As 2 result u value for the parametric space is obtained. After choosing a x-slice, the same
method can be applied to the selection of the v value for parametric space:

JBw.nay

&=+
B,y

Note, that §,,&, are uniform random variables in the range <0,1>.
Using this approach, a non uniformly distributed 2 dimensional random value (u,v) is obtained.
Because of the random value distribution based on the illumination function B(x,y), this
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method results in the exact positdon sampling for Monte Carlo radiosity with non-constant
illumination function over the surface.

Another, more straightforward, method should use the reconstracted illumination
function as a weight of the energy carried by a photon. An important disadvantage of this
second approach is violation of the Monte Carlo radiosity assumption, that each ray carries the
same amount of energy. In this case, time complexity proved to be O(N) by Shirley in [14],
may not be achieved.

3.5 Ray-object intersection using extended rays.

In the standard Monte Carlo Radiosity papers, a ray is understood to be a one
dimensional carrier of an amount of energy like a photon. Vesel et al. inroduced in {17] an
extended ray for Monte Carlo Radiosity. Each ray is considered to have a certain width and
energy inside a ray is distributed according to some distribution function (see Fig. 2). Each
sample point inside a ray describes a percentage of the whole energy carried by the ray, which
belongs to the interval determined by the current sample point. An extended ray intersection
with objects have to be considered. This problem can be solved with direct calculaton of band
of rays with an object intersection. Another approach for speeding up computation is to
consider a single ray with an extended object intersection.

"~ ™ % s % [ 0% ™ £13

Figure 2. A typical energy distribution for the extended ray

After finding a ray-object intersection, the energy carried by the ray is stored at the
surface of the object. In order to use extended rays, a way of energy distribudon among the
receiving surface control points must be defined. This is done in the following way:

O In the first step, control vertices which determine the hit surface are found out. Thus, a
transformation from 3D to parametric space is needed.

O In the second step, the energy carried by the ray is distributed to all of the control vertices.
The distance of the ray-object intersection to the control vertex can be used as a weight for
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energy distribution. It is important to note that the total transferred energy must be
preserved. That means the sum of the energy received by the control vertices must be equal
to the energy carried by the ray.

4. Implementation in Flatland

We have implemented the Monte Carlo algorithm using piecewise cubic illumination
functions on a PC in C as an extension of an algorithm described by Vesel et al. in [17). The
crucial part of the algorith is a positional and directinal sampling. For positional sampling, a
distribution function has been derived according to [12] in the following form:

jB(x)dx
-

E=4—
j’ B(x)dx
0

where v means a position of the sample point inside of the interval <0,1> and & is a uniformly
distributed random value in the range <0,1>. The principle of transformation of the random
variable has been used for derivation of positional sampling.

5. Summary

The revised radiosity algorithm takes advantage of the stochastic nature of Monte
Carlo methods. Since the origin and the direction of each ray are selected randomly, it is
possible to incorporate a smooth illumination function into the previous concepts, using it as a
direction sampling distribution for shot rays. It is important to note that in the Monte Carlo
simulation, the role of the meshing structure is only to store illumination informaton.
Therefore computation time depends only on the number of simulated photons and doesn't
depend on the size of the meshing. The Monte Carlo simulations of the particle model of light
are intuitively simple and quite straightforward to implement. In spite of this, they are suitable
to mode! global illumination effects for scenes consisting of curved surfaces even with a
additional special demand on the solution (smooth illumination function, specular reflection
and refraction, etc.). Another advantage is the possibility to use suitable acceleration
techniques like spatial subdivision and progressive ray refinement (see [6]) which were very
intensively studied in the context of ray tracing methods.
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