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Abstract

The dual representation of points, lines and polygons introduced
in {Gun88} can also be used for computing convex hulls of a set
of points in E2. The main principles of the dual representation
and a sketch of the algorithm for convex hull computation are
given in this paper. Algorithm can be used both for statical and
semi-dynamical case. More details can be seen in [Kol94].

1. Introduction

While working on acceleration of the 1line - polyhedron
intersection computation by the means of the dual representation,
some other application areas for this type of representation
appeared. One of them is the problem of convex hulls
construction. It is one of the most frequently solved problems in
computer graphics, many algorithms were proposed to it, the
complexity of the worst case proved ([Yao81], [Ben83} - the
convex hull of a set of points can be found in time O(N log N) in
the worst case) and no substantial efficiency improvement can be
done. But, maybe, the solution by the means of the dual
representation, as not so frequently used access, . could be
inspiring for other problems solutions.
We concentrate on construction of the convex hull of a set of
points in Ez in two cases : 1. all data are available at one time
(statical problem)
2. the points are comming one after
another (semi-dynamical problem)
Probably the best already known statical algorithm was done
by [KisS86] and is output-sensitive; that means, that its expected
time complexity is closer to O(N log K) than to O(N log N), where
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N is the total number of points and K is the total number of
points in convex hull.

The content of the paper i$\3s follows. Chapter 2 gives a
short survey of mathematical background. Chapter 3 shows the
principles of tests used in the algorithm and the differences
between statical and semi-dynamical version. Chapter 4 lists the
algorithm. Chapter 5 concludes the paper. Chapter 6 brings

references.

2. Mathematical background

The dual representation scheme used in this work was proposed in
[Gun8sg].
Let’s denote

p = [PI,PZ]T a point in g2

1

and )
2. xTa=c¢c }, a € E - {0}, c € E, a, = 0

L{a,c) = { x € E x
a non-vertical line in EZ. )
Then the dual image D(p) of the point p € E° is the line.

Its equation can be written as

X; = T Pi%] * Py ’
that means that the coordinates of a point are used as
coefficients in line equation in a dual space representation.

The dual image D(L) of the 1line L is the point with

coordinates
x) = -2,/ a,
x, = ¢ / a, )

The dual representation of a convex polygon P in E” are two
functions named TOPP and BOTP : D(Ez)-> D(El). These functions

can be proved to be piecewise linear, continuous and convex.

More precisly,

Pryry = .
TOP® (x}) = ngx D(x,;)(x])
Prowry = mi .
BOT" (x}) = “iﬁ_n(xi)(xl)
where D(xl’ i=1,2,...,N are dual images of the polygon vertices

x5 (line equations).
See also examples in Fig.1, 3.

The dual representation defined in this way has two
substantial properties : it doesn't change coincidence and
vertical distances (that means, the distances on the vertical
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axis). These properties can be utilized for computer graphics
problems solution.

For the purposes of our algorithm, we need to decide whether
the given point x lies inside the given polygon P. In dual
representation, from the point x we obtain a line D(x) and from P
functions TOPP and BOTP. The character of these functions and
their mutual position imply that D(x) can have maximally two
intersections with them (special cases are not considered, in
more detailes see [Kol94]).

The following situations can appear (see Fig.2)

1. x lies inside P « D(x) has no intersections with either

tor® or BOTE

2. x lies outside P ¢« D{(x) has two intersections with TOP

or two intersections with BOTP or one intersection with
both.

With this basical knowledge about dual representation we can

P

advance to the convex hull problem.

3. The main principles used for convex hull construction

The convex hull CH(S) of a set of points S = { Xy k=1,2,...,N }
is in fact a polygon the vertices of which are some points from
the given set. All the other points stay inside, no point can be
outside the area of the polygon CH(S).

If the convex hull of some of the points (we will denote it
CH(Si-l) for the points { Xy k=1,2,...
point can be inserted or denied according to its position
inside/outside CH(S1 l) This is the problem of point in polygon
test which can be done in dual representation.

,i-11}) is given, new

In order to insert a point X into CH(Si-l)’ we must find for
it the right place in CH(si—l)' Point insertion can cause some
other point deletion, too. In the dual representation it is not a
difficult task as the results of point-inside test can be
utilized as follows

According to the last chapter, point outside a polygon has
two intersections with functions TOP/BOT. Let’'s suppose that
D(x ) has two intersections with TOPCH(S
and i, see Fig.4. Bs ropCH{S;
both intersections always lies bellow D(xi). That means that this

i- 1) in line segments 11
i- 1) is convex, its part between

part doesn’t satisfy the definition of TOP (maxima) and has to be
replaced by tine line D(xi), see Fig.4. After this reconstruction,
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the function TopCH(S5-1) toge:;Ef with unchanged BorCH(Si-1)

correspond to the convex bull CH(Si).

If the line D(xi) has one intersection with TOP and one with
BOT, it is necessary to find which side of TOP and BOT lies
bellow D(x ) and is to be replaced. The decision can be made
according to the position of vertices of TOP and BOT to the line
D(x ) (by substitution to the line equation).

The last question to be solved is to find the initial convex
hull. For this purpose the points which are extremal in both
coordinates can be used. These points are always members of the
convex hull and so it is advantageous to start with them, see
Fig.S.

Now to the differences between statical and semi-dynamical
algorithm. If we start the solution with the convex hull of
extremal points, as was recommended in the last chapter, the
points outside CH(Sl 1) can have only two intersections with
'I‘OPCH(s CH(Sl 1) but not one and
one. That means that the statical variant of algorithm that

) or two intersections with BOT

starts the construction with extremes doesn’t need the branch
with one intersection with TOP and one with BOT functions. And,
on the other side, if we consider this case, we are able to
decide about points that needn’'t be inside the original box
(given by extremes). See also Fig.6 for examples of the mutual
position of D(x ) and TOPCH(Sl—l) and BOTCH(Sl 1) '

The whole algorlthm is shown in the next chapter.

4. Algorithm for computation convex hull of a set of points in Bz

1. Find in the given set S the points with extremal coordinates
in axis X, or X,. If there exist more points with the same and
minimal, resp. maximal coordinate, take only one for each
direction (that means, 2-4 points; let’s denote the total
number of selected points p).

2. From these points construct polygon CH(S_) with p vertices and
its dual representation TOPCH(S an d,_ﬁQTCH(Sp) (from the
definition; more effective constructions see in [Kol94}).

3. i :=p + 1;
while i <= N do

pbegin
5. COmpute D(x ) and find whether D(x ) intersects
TOP CH(S and BOTCH(s ) and at whlch linear parts;
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if no intersection then goto 12

7. if exist two intersections with TOPCH(si-l) in linear
parts no. k,l then
begin
. CH(S._,)
Insert D(xi) into TOP i-1’ between D(xk) and
D(x,);
if linear parts k,l don’t neighbour then
Delete from TOPCH(Si-l) parts from D(xk+1) up
to D(x;_,)
end;

the same as step 7 but with BOT;
if exists one intersection with TOPCH(Si—l) in linear
part k then
{ [pi,pé] is the endpoint of the lipear part k ,
begin
if the part k is not the last one {opened) then
left := plpi + pé - Py 0
else
left := plpi + pé - Py < 0;
if left then
CH(S. ,) .
Delete from TOP i-1’ the left side (up to
the part k-1) if it exists
else
Delete from TOP (si-l) the right side (from
the part k+1) if it exists

CH

end;

10. the same as step 9, but with BOT; in computation of
the flag "left", the relations ">" and "<" have to be
reversed;

11. p :=p + 1; { the total number of the points in the
convex hull }

12. TopCH(51) .- popCHIS;_); porCH(S;) .. porCH(S; ;);

13. i:=41i+1

end;

{ After finishing the algorithm, the convex hull is given by

functions TOPCH(SN) and BOTCH(SN). The total number of points

in the convex hull is p. }

Let’s stop at the complexity of the proposed method. For N
points in the set S, the time complexity will be O(N&f(N)); f£(N)
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is given by the complexity of searching polygon-1line
intersection. The solution with £(N) = K is obvious. Memory
demands are O(N) (for dual representation of CH(S)). No
preprocessing is necessary.

It is possible to reduce this complexity, if we reduce the
complexity of two critical points };f TOP/BOT update and of
polygon-line intersection computing. The first problem can be
solved simply if we use for TOP/BOT double chained 1list. Then  TOP
and BOT update can be done in O(1). As to the second point, we
need some intersection algorithm with logarithmic  time
complexity. The solution from [Meh84] with (2,4)-tree can .be
used.

With such improvements, we could construct the convex hull of
a set of points in Ez in time O(N log K) with O{N) preprocessing
{(construction of the tree) and with O(N log N) memory
requirements (tree, chained list).

5. Conclusion

A new algorithm for computation of the convex hull of a set of
points in E2 for statical and semi-dynamical data on the basis of
the dual representation is proposed.

The algorithm can be optimal in time if an algorithm of
computing line-polygon intersection with logarithmical time
complexity is used. It is sensitive to output as its complexity
depends on the number of points which are members of the convex

hull.
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The possible situations that can appear during point—-in-polygon
test
Fig.2
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Vertices : Edges

x, = [1,0] £, a = [1.732,-11T, ¢ = 1.732
x, = [0.5,0.866) £, a= [1.732,11%, ¢ = 1.732
x, = [-0.5,0.866) £, a-= [0,13F, ¢ = 0.866

x, = [-1,0) £, a-= [-1.732,117, ¢ = 1.732
xg = [-0.5,-0.866) £, : a= [~1.732,-1]%, ¢ = 1.732
xg = [0.5,-0.866] £, 1 a = (0.-11%, ¢ = 0.866

Dual images of the vertices : Dual images of the edges :

D(xl) : xé = -xi D(fl) = [1.732,-1.732]
D(xz) : Xﬁ = -0.5 xi + 0.866 D(fz) = [-1.732,1.732]
D(x3) xé = 0.5 xi + 0.866 D(f3) = [0,0.866]

D(x4) xé = xi D(fé) = [1.732,1.732]
D(xs) Xé = 0.5 xi - 0.866 D(fs) = [-1.732,-1.732]
D(xﬁ) xé = -0.5 xi - 0.866 D(fﬁ) = [0,-0.866]

x}
Torf

pot?

The convex polygon P and its dual representation
Fig.3
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