[FVFH0]

[Kolio3]

[KuWy?7]

[Mar192]

[Mart93]

[MSHG92)

[Ruzi91)

[SoZa89]

[Sung91]

[TaLu88)

[Z¢it92)

FOLEY, 1.D.,- VANDAM, A, - FEINER, §., - HUGHES, J.: Computer
Graphics:Principles and Practice, Addison-Wesley Publishing Company, Inc.,
1990.

KOLINGEROVA, 1.: Vyuziti duainiho prostoru pro metodu sledovani
paprsku, Zimni $kola PG, Plzen, 1993.

KUNIIL T. L., - WYVILL, G.: CSG and Ray Tracing Using Functional
Rrimitives, pp. 137-152, Computer Generated Images: The State of the An.

MARTINKA, ! : Ray Tracing, SVK 1992, MFF UK Bratislava. ¢

MARTINKA, J.: Ray Tracing (impiementécia urychl'ovacieho algoritmu),
$VK 1993, MFF UK Bratislava.

McNEIL, MD.J., - SHAH, B.C., - HEBERT, M.-P., - LISTER, P.F,, -
GRIMSDALE, R.L.: Performance of Space Subdivision Techniques in Ray
Tracing, Computer Graphics forum, Volume 11 (1992), number 4, pp.
213-220.

RUZICKY, E.: Uvod do potitatovej grafiky, skriptum, MFF UK Bratislava,
1991.

SOCHOR. J., - ZARA, J.: Svtlo a stin v pogitadové grafice, Proceedings of
Moderni programovani 1. diel, 1989

SUNG, Kelvin: A DDA Octree Traversal Algorithm for RayTracing,
Curographics '91, pp. 73-85.

TANG, Zesheng, LU, Shengkai: A New Algorithm for Converting Boundary
Representation to Octree, Eurographics '88, pp. 105-116.

ZEITLBERGER, René: The Octree Data Structure, Seminar aus Informatik,
Technische Universitat Wien, 1992.

PARALLELISATION OF THE
RAY-TRACING ALGORITHM

CTU, Fac. of Electrical Eng.
Dept. of Computer Science
Karlovo nam. 13,

121 35 Praha 2.

Jii{ Zdra (zam@cs.felk.cx}ut.cz)
Ales Holeéek (zholecek@sun.felk.cout.cz)
Jan Piikryl (zprikryl@sun.felk.cvul.cz)

Abstract

The two typical methods for distribution of ray~tracing rendering algorithm are presented in this article.
The implementation of a distributed ray-tracer on 2 network of UNIX workstations is described in
details. The first results are discussed from the point of view of memory load, time of computation and
cost of ication among p

Keywords
computer graphics, rendering, parallel algorithm, ray-tracing, PVM.

1 Ray-tracing algorithm

The methods of computer generated, realistic looking pictures of three dimensional scenes are
characterized by their extremely high claims on computing equipment and the fact that they are
incredibly time consuming. Typical algorithms (ray tracing, radiosity method) are so complex and
complicated, that their direct transformation into computer hardware is not effective yet. The
performance capacity of a single CPU and the amount of memory available on today’s perso-
nal computers and workstations are still low for large, reality describing scenes when using the
algorithms mentioned above. H

Although some rendering methods were already implemented into hardware of graphics work-
stations (z-buffer, Gouraud shading), the ray-tracing technique is still too complex method and
its hardware support is a task for computing equipments in the future.

We can compare typical features of now-a-days rendering methods done by hardware with ray- .
tracing in the following table:

z-buffer & Gouraud shading | ray-tracing

integer arithmetics in raster floating point arithmetics in 3D space
sequential processing of polygons | computations in whole 3D scene
constant number of rendered faces | recursive generation of rays

The disadvantages of the ray-tracing algorithm are clear, but the quality of images rendered
by ray-tracing is so high, that this algorithm is used in many applications. Its improvement and
increasing of its efficiency are one of current topics in computer graphics.

The ray-tracing algorithm is based on tracing of rays, that are shot from viewpoint through
the screen window to the scene. When an intersection point between a ray and the nearest solid
or face is found, a2 new generation of rays is created — one reflected ray, one refracted ray (if
solid is transparent or semitransparent) and several "shadow” rays (one for each light source).
Recursive creation of rays is finished either after several generations or in case of achievement of

113

certain conditions (reaching the lower limit of the intensity that is decreased in every generation).
Resulting images then contain shaded solids with shadows and reflected objects.

The main problem of the discussed algorithm is the huge number of tests for solid-—ray in-
tersections. In a typical scene, several thousands of intersections must be computed, but only the
nearest intersection point is used for later color evaluation. The time needed for finding the nearest
intersection of the ray is about 60-90% of whole rendering time, depending on the amount and

quality of textures and other special features.))
The effort for decreasing the time of a ray-tracing corresponds very often with a decreasing of
number of intersection tests. One way to do this is to use more independent processors for rendering

one picture.

2 Ways of distributing the ray-tracing method
There are two different approaches to distribute the rendering of a ray-traced scene:

e screen subdivision
* space subdivision

Using the first approach, each processor receives information about the whole scene and a
part of the screen that has to be filled up with pixels. Each processor in the system is absolutely
autonomous, that means there is no interprocessor communication in the system. It decreases the
time of computation but not the amount of memory needed for the description of a scene.

_[1.1,1]
-
e
[0,0,0]
3D scene Black Box . Virtual Fall(s)

(processor)

Figure 1: Space subdivision using ”Virtual Walls” concept -

The aspect of insufficient memory is one of the main limitations for ren-deril.xg reality, well
describing scenes. The solution for that is the second type of distribution. It is suitable fo‘r com-
puters with a Jower capacity of memory and with the ability of fast interprocessor commun{cauon
(transputers). Instead of dividing the screen we divide the object space [2]. Every processor is then
responsible for the computation of all rays going through its part of space. Messages going through
the system carry information about the rays. That is why the interprocessor communication plays
such an important role in the evaluation of the scene.

114

We decided to implement a distributed ray-tracing algorithm that uses the space subdivision
approach. The space subdivision technique called "Virtual Walls” [1] was designed and improved
at the Paderborn Center for Parallel Computing. The 3D model space is subdivided by- walls that
are parallel with coordinate axes, as shown in Fig.1. The division can be uniform or adaptive with
respect of displacement of objects in a scene. We'll get a set of volume boxes (called ”Black Boxes”
in our implementation) which are surrounded by walls as a result of this subdivision.

Every box performs one ray-tracing algorithm, but only with its local scene that is subset of
the complete original scene. This is an important decrease of time — the amount of intersection
computations is much lower comparing with the whole scene. The higher efficiency of geometrical
computations costs greater communication needs. Once a ray generated in a box leaves its boun-
daries, it is sent to another neighboring box. In a common situation one ray goes through many
boxes and several communication packages have to be sent to the parallel computing environment
for this ray.

R
RB
Send veflected 'Rr
& vefracted voy| N
Send shadow Ry
Send evaluated R* vays
back to its origin J[
-
Wait for all RR
k— R2
child rays — T
R2.
S5

Figure 2: Fiow of rays R in a "Black Box”

Fig.2 shows scheme of data flow in a "Black Box”. If a ray intersects any object inside the box,
a new generation of rays (called child rays) is created and sent from the point of intersection to
the space. The original ray must be stored in a local queue and it waits for evaluation of all its
child rays. Local queue for waiting rays can become long, especially in the case of a large number of
boxes, a high recursion level and a big number of light sources that are reason for sending shadow
rays.

Every ray bolds information about its geometrical characteristics and address of jts original
"Black Box”. After complete evaluation of a ray, a small data package with color information is
sent to the "Black Box”, in which the origin of this ray was previously computed.

3 Implementation under PVM

For the implementation we used two different kinds of platforms:

115

1. heterogeneous network of processors using standard petwork methods of communication
(workstations using TCP/IP),

2. special homogeneous processor network (transputer grid).

In this article we present the first platform, because the second one is still under development.
The software package PVM (Parallel Virtual Machine) was used for implementation of ray-tracing
in a network of Sun workstations. PVM is a simple but powerful tool, that joins many UNIX based
workstations into one paralle] computational resource. A programmer works with the standard
programming language C and uses PVM as a library for:

« initiation of single processes
e termination of processes
e communication among processes (sending and receiving messages)

¢ synchronization of processes

Every process can run either on a certain computer identified by its network ID or on certain
computer architecture (SUN, SGI, Cray, CM2, ...) or on an arbitrary computer in whole network.
This choice depends on a programmer. In our implementation we map the processes into computers
specified by ID. This approach enables better work loads of computers in a network, especially in
the case of a small number of workstations compared with the number of processes. More powerful
computers can perform several processes, slower machines perform only few.

scene daia
initial
process
™1 black box
»| Process lo.
frame ™ black box
-
process »| Process 4-.]

~* black box
process |q

Figure 3: PVM processes in distributed ray-tracer

The structure of computing processes and data flow are shown on Fig.3. Each computer in a
network can perform several processes named Black boz. These processes are the core of the system.

116

They contain the ray-tracing algorithm and the communication layer, which makes each individual
process able to evaluate and send rays for evaluation to surrounding Black bozes. It also provides
the communication with other processes of the system then Black bozes. One of themis Initial
process. Its responsibility is to start up the application, to produce routing tables and to distribute
the global scene among the Black bozes. The two other are Qutput processes - File and Screen.
Their task is to visualize and store computed image. There is also a Framer process, which allows
" walking through” the scene by changing the position of the observer and starting the computation
from the beginning. This process has not been implemented yet.

4 Results and conclusions

We checked the strength of our implementation on a grid of 4 x 4 X 4 processes and network of 8
SUN-SPARC computers. The distributed ray tracing algorithm was tested on scenes containing a .
large number of solids. Our typical testing scene was built from 5.000 spheres, the depth of recursion
was 5 and the resolution of the image was 600 x 600 pixels.

The time for corhputing such scenes was approximately one hour and forty five minutes. This
result is considered good, although it is observed that some improvements in the implementation
have to be made. i : i '

Getting exact answers for some questions touching mainly the communication i the system .
seems to be difficult if this application is performed on a public network. There are other time
consuming processes running on the computers, which make the measuring of the performance
capacity almost impossible. .

Some observation was made that helped us to upgrade the core of implemented application.
One of the problems that appeared were too long local queues with rays waiting for the return of
their evaluated children. The resolution was using priority in selection which ray will be evaluated
next. This decreased the entropy of the computational system. Using hash tables decreased the
time needed to access the rays waiting in those queues.

Other speed up is by involving new high efficiency ray-tracing procedure. This algorithm: is
based again on volume subdivision of the object space into octree. Upgrading is also expected after
implementing some of the load balancing methods which will lead to exploiting nearly the full
performance capacity of the system. The strategy of load balancing is based on a movement of the
"Virtual Walls” and redistribution of a scene.

Also the reduction of the amount of transferred data by collecting rays into bigger packages be-
fore sending and using UDP protocol will bring a major decrease of time needed for communication
and evaluation of the scene. T

Literature

1 Menzel, K., Ohlemeyer, M.: Walking-Through Animation in 3D-Scenes on Massively
Parallel Systems, Visual Computer, International Journal of Computer Graphics, Springer
International, 1992.

2 Pitot, P.: The Voxar Project, IEEE Computer Graphics & Applications, January 1993, pp.27-
33. .

117

