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ABSTRACT

Genetic algorithms (GAs) and fuzzy logic (FL) have been playing important roles
in solving many problems in pattern recognition and image processing. This paper
presents a hybrid approach of GAs and FL that is used to fuse (combine) extracted
features from intensity and range images. GAs are used to help construct member-
ship functions that are necessary to classify the strength of existence of image feat-
ures through FL. Since range and intensity images provide different types of sensory
modality, fusing the extracted features from these images reveals more accurate info-
rmation about the scene. The extracted features are fused to generate a segmented
image of the scene. The segmented image is compared with its ideal counterpart for

the purpose of experimental evaluation.
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1 INTRODUCTION

In a multisensory system, several sources of infor-
mation can be used in a complementary fashion
to gather different information which would yield
more meaningful information otherwise unavailable
or difficult to acquire by a single sensory modal-
ity. This method of reasoning is justified by the
often incomplete, uncertain, and/or imprecise sen-
sory reading [2, 3]. Numerous papers based on non—
deterministic approaches have appeared in the lit-
erature dealing with combination of uncertain in-
formation. Bayesian approaches, the mathematical
theory of evidence (i.e. Dempster’s rule of combina-
tion), and FL are often used to deal with uncertain
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information. Bayesian approach and Dempester’s
rule of combination often fall short in their ability
to provide stisfactory results when extreme conflicts
among pieces of evidence are encountered [4, 8, 12].
Despite the success of FL in many real world appli-
cations, few limitations in their use must be pointed
out. For a given problem, the construction of mem-
bership functions and the extraction of rule bases
(RBs) have no unique solutions. Due to the na-
ture of fuzziness, it is not expected that fuzzy en-
gineers would perceive a subjective attribute iden-
tically. Often common sense and the experience of
designers are important factors in the success of a
given design [11]. It follows that the construction
of membership functions has no specific rules. Re-
searchers have recognized the shortcomings of FL-
based schemes. GAs can serve as a searching al-
gorithm to compute membership functions [13, 9].
Based on the concept of the best fitness value of
a GA, optimal membership functions can easily be
achieved. The selection process of best solutions
is based on a test of their performances. Hence,
a fraction of good solutions is selected, and other
are eliminated (survival of the fittest.) The selected



solutions are then used through the processes of re-
production, crossover, and mutation to generate a
set of new solutions. These new solutions are ex-
pected to perform better than those generated in
the previous evolution. The processes continue un-
til a convergence within a generation of solutions
is reached. For illustration, this hybrid approach is
applied to extract different types of features from
multisensory images. Features are used in a com-
plementary fashion to generate complete scene in-
formation, which are necessary for segmentation of
given images. Several images have been acquired
using an Odetics Laser Range Scanner. Feature
edge maps are extracted using the Gradient opera-
tor [7]. The edge maps from the range image report
no information about texture features in the scene.
Likewise, the edge maps from the intensity image
have failed to provide complete information about
roof edges. In the latter, the scanner is unable to
sense low variations at the surface intersections of
the object. This shows the necessity of integrating
several feature maps.

In section 2, we describe an FL system, which has
been used extensively in the literature. In section
3, we present a GA as a searching procedure. In
section 4, we describe how the concept of GAs and
FL systems are incorporated in a single system to
solve an image processing problem. That is, we
present a complete data fusion system that is based
on FL and GAs to achieve image segmentation of
real range and intensity images. In section 5, a sum-
mary of the performance of this work is presented.

2 AFUZZY LOGIC SYSTEM
FOR DATA FUSION

Fuzzy sets theory allows us to characterize crisp
measurements in terms of fuzzy concepts. This
characterization is essential to manage the com-
bination of measurements through their degrees
of uncertainty [16, 14, 10]. Fuzzy values can
be characterized by membership functions such as
Hweak, Wstrong €tc. Formally, a fuzzy subset is char-
acterized by membership functions, u, over a set
of elements of @: © = (0y,05,---,6,) and p :
© — [0, 1]. The fuzzy concept “weak” can be rep-
resented by a membership function that character-
izes a weak portion of the universe of discourse.
Suppose that we quantize the universe into por-
tions such as weak, moderate, and strong. This will
lead to three fuzzy-set values named as WE, MO,
and ST. For each input in the universe of discourse,
we assign a fit vector of length 3, where each ele-
ment in the fit vector is assigned by the correspond-
ing membership function. For two inputs #; and
B2, we have 01 — [phwe(61), tmo(01), st (01)] and

Os — [we(B2), timo(62), st (62)]. Fuzzy reasoning
is governed by rules that are sufficient to generate
consensus among fuzzy entries, say #; and 6>. We
construct a RB which is able to reflect subjective
reasoning in particular when conditional statements
are involved. Entries of the RB are found accord-
ing to application domain and the nature of the
problem. In general, RB asserted through mapping
scheme that is able to map input values with differ-
ent domains to an output value with only one do-
main. A mapping function F' : 6; ® 82 — 6 maps
each element of the domain 6; & 85 to only one el-
ement for 6. For instance, 81 © 02 = {(a1,a2) —
a} =element of €, where a1, as, and a are prespec-
ified linguistic values within the universe(s) of dis-
course [5]. In our case, they are the quantized seg-
ments weak, strong, etc. Note that & is defined as
a combination operator such as logical or weighted
average operators, where the selection of the opera-
tion depends on the formulation of the problem [14].
That is, 0; ® 6 = {(MO,ST) — ST} = element
of 6.

Outputs of fuzzy values are then defuzzified to gen-
erate a crisp value for the variable 8. Figure 1 shows
an example of output from two possible rules. Of-
ten, the centroid method is used to recover crisp
values for the output, which is given by
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In this equation, r is the rule number, p(" =
min{:uAl (Ukl)v sy AL, (Ukm)}a Aj - Vjv Jj =
1,...,m, 9,(;;.) (c) is the center of the suggested out-
put at rule r, and s is the number of rules involved
in the computation.

3 GENERATING MEMBER-
SHIPS USING GAs

Given universes for inputs and outputs of a sys-
tem and an RB governing the fuzzy reasoning be-
tween these inputs and outputs, one can assume
the shape and the number of fuzzy values for each
universe. To use GAs, we code the membership
functions as some finite unsigned bit strings that
are then concatenated to represent the entire uni-
verses. For illustration, consider the case of a single
input(x)-single output(y) system with an RB and
input-output values as shown in Fig. 2. In the RB,
the symbols SM, MD, and LG represent the fuzzy
values small, medium, and large, respectively. We
assume that the universes for the input-output z



and y range from 0 to 60 and from 0 to 1, respec-
tively. To simplify the illustrations, let membership
functions be constrained at the left and right sides
of the universes. Hence, the unknown variables are
the lengths of the bases of the membership func-
tions. That is, we have four unknown variables.
For this problem, we will code each base as a binary
unsigned integer of length 6. Strings are then con-
catenated to form a 24-bit string. The strings are
mapped to values representing the lengthes of the
bases of the assumed membership functions. This
mapping process is computed through a simulation
model
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in and C%M are arbitrary constants; usu-
ally they are chosen as the minimum and the max-
imum of the universes (Cpin = 0 and Chyep = 60
for x and Cpin = 0 and Cey = 1 for y), d is the
decimal value of each sub-string, L is the length of
the bit string of each base, and b(?) is the ith base of
the membership functions. Details about this sim-
ulation model can be found in [13, 6].
A GA is implemented as follows. (1) After creating
strings randomly for all variables, a set of parame-
ters represented by these strings are passed through
a numerical model such as the one suggested in Eq.
2. Solutions are evaluated with respect to the given
values in the tables and then they are assigned fit-
ness values. Those with the best fitness are selected
and duplicated to substitute for those with low fit-
ness values. Strings of the best solutions are con-
sidered for the second iteration of the GA. These
solutions are expected to perform better than those
which were eliminated. This part of the process in
a GA referred to as reproduction. (2) In the second
step of a GA, selected strings from the first step are
mixed and matched in a random fashion. This step
is important for solutions with high fitness values
to share their properties among other strings that
have relatively lower fitness values. This part of
the process in a GA is referred to as crossover. (3)
After mixing and matching, redundancy of 0 in the
same locations of strings is not desirable. The rea-
son is that the repetition could cause an early false
convergence of the GA. The locations that are re-
dundant must be checked and at least one of them
is converted to 1. This part of the process in a GA
referred to as mutation. Applying this procedure of
GAs on the given example, the first iteration and
the generated membership function are illustrated
in Table 1 and in Fig. 3. The selected strings for
the second iteration are
010101100101010110001101
010101100101010110001101
100110011010101111101011

where ¢

100110011010101111101011.

Strings after crossover and mutation are
011101100101010110001011
010101100101011110011011
100110011010101111101101
100110011010101111101101.

This process of reproducing and evaluating strings
continues until we get the optimal membership
functions which have the best fitness for both z and

Y.

4 EXPERIMENTAL
RESULTS

The implementation of this system is divided into
five stages: detecting and extracting edge features,
fuzzification or modeling of real data through GAs,
fusion, defuzzification, and segmentation. In this
experiment, two edge maps of intensity and range
images are selected as inputs to the data fusion sys-
tem. The combined output map is used as a reliable
input for a segmentation procedure.

4.1 Edge Detection

In this work, the Gradient operator is used to detect
and extract edges from range and intensity images.
The gradient of an image function f(z,y) is defined
as a vector, which is given by
of of

Glew) =[5 5] (3)
The magnitude of G(z,y) is equal to the maxi-
mum rate of increase of f(z,y) per unit distance
in the direction of the gradient G(z,y) [7]. Hence,
at a discontinuity in an image, the first derivative
will give a peak response, which is an indication of
edginess. In contrast, the derivative of a smooth
region will give a low response, which is an indica-
tion of the absence of edginess. An approach for
computing the gradient components G, and G, is
based on the use of the Sobel operators. Assume a
3X3 neighborhood labeled as x1,z2,- - -, z9 around
the point z5. Using this mask, the components of
the gradient at the center of the mask are given by
Ge(z,y) = (xr+2Xx3+29)— (X1 +2X T2 +23) and
Gy(z,y) = (z3+2Xx6+29)— (21 +2XT4+27). Com-
puting G, and G, for each point in the image and
substituting into Eq. 3 will result in a new image,
which is often called the gradient image. Ideally,
the gradient image highlights all edges and dims all
smooth regions (see Fig. 6).

4.2 Fuzzification Using GAs

From a real robotics environment, intensity and
range images are acquiring by using an Odetics



Laser Scanner. Based on the surface normal values
of the range image, a new image can be derived [15].
Before fuzzification, edges are extracted from both
image modalities. An edge in an image corresponds
to a discontinuity in the scene. Through a success-
ful edge detection, a scene can be partitioned into
meaningful regions. The Sobel operator is used to
detect edges [7]. The performance of a method to
detect edges depends on the type of edge that needs
to be extracted and on the type of data that makes
up that edge. For example, roof edges (at the in-
tersection of surfaces) can successfully be extracted
from range images. The reason is that intersected
surfaces in a range image introduce significant dis-
continuities in the scene. However, texture edges do
not introduce any range discontinuities with respect
to the scanner. Hence, intensity images are better
suited for this type of edges. Since the domain of an
edginess variable can have positive values on a gray
scale, edginess strength can be normalized within
the interval [0, 1]. For each edge map, two fuzzy val-
ues were chosen. The construction of the two mem-
bership functions and the percentage of overlapping
between their clusters is determined by using GAs.
During the implementation of the GAs, we would
have two different procedures, each of which rep-
resents the system output when a single edge map
is applied at the input. The input-output range
and intensity edge data and their assumed RBs are
shown in Fig. 4. In each case, the input-output un-
known variables are the bases of four membership
functions; two for each universe of discourse. Let
us assign 6-bit string for each variable at random.
Since we have four variables (the bases of member-
ship functions), we would concatenate them to form
a 24-bit string altogether. Assume that the strings
that are used in the first iteration are
110101011001001101111011
110110111000110011010101
111100011110110011001100
110011110011110111001110.

Using the model given in Eq. 2 and evaluating
each string on the basis of the fitness values, some
of these strings are eliminated and others are con-
sidered for duplications. We repeat the procedure
which was explained in section 3 to obtain the op-
timal membership functions for two separate sets
of input-output cases, i.e., one set is for edge map
from the range image and the other is for edge map
from the intensity image. The GA of the input-
output of the range edge map converges after 25
iterations. We repeat the same procedure for the
intensity edge map, in which the GA converges af-
ter 19 iterations. In both cases, the number of it-
erations depends on the initial random strings, the
cutoff value (the fitness value), and the given data.
After convergence, optimal membership functions

are obtained (see Fig. 5).

4.3 Fusion with Fuzzy Reasoning

The membership functions along with a new RB are
used to generate a combined fuzzy value for both
range and intensity edge maps. Reasoning is car-
ried out through the following rules:

If z1, is MO and z» is WE, then y is MO

If z; is ST and z» is WE, then y is MO

If z; is MO and x5 is MO, then y is MO

If 21 is ST and z5 is MO, then y is ST.

At a location (a, #) in both maps, rules are chosen
according to the pixel values with respect to its de-
gree(s) of membership. Then, output fuzzy values
are generated at the corresponding rules. If there is
an overlap between the two membership functions
when a pixel value is given, then more than one
rule is needed to be included in the reasoning. This
procedure is similar to the one in section 2. Finally,
in order to recover crisp output values, the output
of the fusion system is defuzzified. The defuzzifi-
cation scheme is based on the centroid method as
described in section 2.

4.4 TImage Segmentation

Image segmentation is the process of dividing an
image into regions, each of which corresponds to
a “homogeneous” surface in a scene. Hence, our
goal is to extract closed boundaries around surfaces.
If complete edge information can be extracted, a
reliable image segmentation can be achieved. Us-
ing different types of edge maps has the advantage
of presenting most the information needed in the
scene. After fusing the edge maps, distinct regions
are identified. Figure 6 shows segmentation results
of the two sets of range and intensity images. By
inspecting the segmented image, all major regions
that are isolated and labeled can be seen. In order
to evaluate the segmentation process, results are
tested and compared against an ideal segmented
image which is synthetically generated. The evalu-
ation criterion is based on the degree of similarity
between actual and ideal segmented images. This
degree of similarity may be quantified by comput-
ing a metric distance between the two segmented
images [2, 1]. The degree of similarity between two
sets of data x and y is given by

dz
sy = (1= 7")100%, (4)

where d,, is the Euclidean distance between x and
y and d;,, is a metric distance used as normaliza-
tion factor taken with respect to the worst case,

i.e., the maximum distance between the worst case
and the ideal case. Using this formula, the degree



of similarity, s;,, between two segmented cases is
about 93%.

5 CONCLUSIONS

This research has resulted in the development of a
segmentation approach to extract a complete edge
map of an arbitrary scene. Real range and inten-
sity images are acquired by using the Odetics Laser
Range Scanner. Although images acquired by the
Odetics are associated with random and system-
atic errors, the results from this approach have a
high degree of similarity when compared to those
obtained from an ideal case. Using the gradient op-
erator, edge maps are detected and extracted from
different image modalities. FL and GAs have been
used in a complementary fashion to offset some of
the undesirable properties that are inherited in the
fuzzification of real data. GAs provide an adaptive
searching approach in which a set of optimal solu-
tions evolves over a sequence of solutions. These
solutions are optimized through a test of fitness
values that are associated with the generated so-
lutions. The collaboration between FL. and GAs
would lead to take the human out of the loop and
would simplify the design of membership functions.
The simulation and implementation processes are
carried out by using a 3000 Interprise Sun Microsys-
tems machine. In closing, it is observed that if the
search space of an optimization problem is quite
large, then a parallel architecture for this hybrid
approach would be more efficient.
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String: (D) FEO) o (3) b5 @ b2 (5)
T0I0I00I0I0I000IOITIO0OIIT 42 21 5 39
010101100101010110001101 21 37 22 13
001111011100001001010110 15 28 3 22
100110011010101111101011 38 26 a7 43

b1 (6) b (1) b3 (3) ba: (9) v2: (10)
10 30 0.08 0.62 0
20 35.2 0.35 0.21 0
14.3 26.7 0.14 0.35 0
36.2 24.8 0.75 0.68 0
¥ = 30: (1D Y2 = 60: (12) | err: (13) | /. (14) | Count: (15)
0.06 T 081 0.94 ]
0.82 1 0.9 1.04 2
0 1 0.75 0.87 0
0.62 1 0.98 1.15 2
sum = 3.24
ave. = 0.86
maz = 0.986
cutoff = 0.95

Table 1: The first iteration of the GA; err = 1 — Y (y; — yi/)?, f = err/ave..
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Figure 1: An example: Computing crisp output from fuzzy values.
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Figure 2: Input—output data with their RBs.
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Figure 3: Membership functions generated by the first iteration of the GA.
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a b
Figure 4: Input-output values(a%ld their RBs: (a) and (b) for range (m)ap; (c) and (d) for intensity map.

A A
w(z1) w(y1)
1 1
Xr1 Y1
0 054 073 1 0 014 065 1
. k(z2) . (y2)
1 1
2 Y2
0 033 086 1 0 01 087 1

Figure 5: The membership functions generated by the GA.



(h)

Figure 6: Tmage segmentation:(a) intensity image; (b) range image; (c) edge map from intensity image; (d)
edge map from range image; (e) combined edge map from (¢) and (d) using FL and GAs; (g) segmented
image (isolating distinct regions); (h) an ideal segmented image of (e).



