
Accelerating Virtual Endoscopy

József Koloszár, Yi Jae-Young
Dept. of Control Engineering and Information Technology,

Budapest University of Technology and Economics
Pázmány Péter sétány 1/D
 1117, Budapest, Hungary

kj212@hszk.bme.hu

ABSTRACT

Applying volumetric ray tracing in interactive visualization has always been limited by low rendering speeds.
This paper presents methods for accelerating first-hit ray tracing based virtual endoscopy with negligible impact
on image quality, which aim at improving empty-space traversal (tracing all rays to the colon wall and storing
the results in a depth buffer) and shading (surface normal approximation at hit locations and simple Phong
shading applied to obtain pixel color). The first method proposed accelerates empty-space traversal by
exploiting inter-ray coherence based on the fact that the colon wall is a (C2) continuous natural surface, which
does not exhibit erratic behavior, such as sharp jumps, steps or edges. The second method presented improves
shading performance by using conditional interpolation in pixel space. Results have been successfully
implemented in the virtual colonoscopy application ColVis, maintained by the author.

Keywords
Volume Visualization, Volumetric Ray Tracing, Virtual Endoscopy, Virtual Colonoscopy.

1. INTRODUCTION
Ray tracing based volume visualization is a direct
volume rendering approach to visualizing various
datasets. Common applications include medical
visualization problems, such as virtual endoscopy, or
more specifically virtual colonoscopy [Vis96].
Virtual Colonoscopy aims to reconstruct internal
views of the human colon from CT (Computer
Tomography) scans, preferably at interactive speeds,
thus providing a diagnostic examination of the inside
of the colon. It is argued to be a valid cost-effective
and more patient comfortable alternative to classic
colonoscopy in screening for colorectal polyps and
cancerous tumors. In order for virtual colonoscopy to
become a widespread diagnostic method, it is
important that it not be confined to the realm of high-
end graphic workstations [Li99] [Wan00].

Attaining interactive rendering performance - ten or
more frames per second - is no trivial task, and has

been subject to extensive research. Most methods
suggested in the past where indirect, surface
rendering based techniques. Though providing
superior image quality, better accuracy, and requiring
very little or no preprocessing, direct volume
rendering algorithms lack the extensive hardware
acceleration support widely available for surface
based rendering. When implementing ray tracing
based applications on mainstream PC hardware,
performance is still the biggest issue. As will be
shown, however, recent advances in computer
hardware have made direct volume rendering a
viable alternative [Joc02].

ColVis was developed to be a simple, convenient
visualization tool, originally intended for virtual
colonoscopy. Because of its very generic and direct
approach, however, it proved to be applicable to
other endoscopy problems, such as bronchoscopy.

Section 2 gives a brief overview of the ray tracing
problem specific to virtual endoscopy, and the
concept of separating empty-space traversal from
shading is introduced. Sections 3 and 4 review
previous techniques, and present the new algorithms
for empty-space traversal and shading respectively.
The numeric results from benchmarking are
summarized in Section 5. Results are very promising,
and indicate that virtual endoscopy using direct
volume rendering feasible on mainstream PC
hardware.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972

WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

2. RAY TRACING IN VIRTUAL

ENDOSCOPY
When dealing with virtual endoscopy, the rendering
problem can be defined very clearly. Further
discussion is limited to very basic virtual
colonoscopy, and the following assumptions can be
made without penalty [Joc01]:

• The camera is always inside the colon.

• The colon wall is defined by a threshold value, and
all voxels inside the colon have a lower value.

• The inside of the colon is considered non-
interfering empty-space (air).

The third assumption is justified in theory, as the
colon is cleansed and inflated prior to scanning. In
practice, the cleansing is not perfect. However,
differentiating the colon wall from occasional fecal
residue (fecal tagging) lies outside the scope of this
paper.

What the above assumptions mean in terms of
rendering is that rays cast from the camera position
traverse empty-space without any calculations, hit
the colon wall, where a surface normal is estimated,
which is used to obtain the shade, or color of the
pixel corresponding to the ray. Note that the above is
a simple case of direct volume rendering, where the
opacity curve is defined as a simple step function at
the threshold specified. Regarding visual quality, the
requirement is that features greater than 5mm should
not be lost, as polyps of this size should be
recognizable.

Two stages of rendering are distinguished, and
discussed separately. In the first stage, empty-space
was traversal, all rays are traced to the colon wall and
the results are stored in a depth buffer. In the second
stage, shading, normal vectors are approximated at
hit locations and simple Phong shading is applied to
obtain pixel color. The lighting model consisted of a
single camera-mounted light source (headlight
model).

3. EMPTY-SPACE TRAVERSAL
A number of methods have already been suggested to
accelerate empty space traversal in volume
rendering. The most notable ones are potential-field
based, or exploit frame-to-frame coherence. In the
potential field method [Wan99], the distance to the
colon wall is calculated and stored for every voxel
inside the colon. This value is a safe increment to the
ray in every iteration of the trace. One of the
drawbacks to this method is that the setup is sensitive
to the threshold value defining the colon wall, and
the recalculation of the potential field buffer cannot
be performed at interactive speed.

Another example of buffer based methods is the
surface-volume rendering hybrid [You97]. In this
case the “buffer” is, in fact, the extracted colon
surface data. Surface rendering is used to obtain the
z-buffer only, and shading is done using methods of
volume rendering for superior image quality. As
surface based depth rendering has hardware
acceleration support, this is probably the fastest way
to traverse empty space. However, pre-calculations
are even more expensive and lengthy than setting up
a potential field, memory issues are also a concern as
are other non-trivialities of surface rendering
[Wan99].

Exploiting frame-to-frame coherence [Vil99]
assumes little camera displacements and rotation
between frames, but information derived and used in
the acceleration process is less precise [Joc01]. The
following technique can be used instead of or to
complement either of the above methods.

Proposed Algorithm
With no acceleration all rays are cast from the
camera position, and are incremented by unit length
every iteration of the trace (voxel precision). The
maximum value of the eight voxels cornering the
sampling point is checked against the threshold
value. If the result indicates a possible hit, a refined
calculation is performed to scan for the hit location
every 0.2 units along the ray (sub-voxel precision)
and checking against the value obtained by tri-linear
interpolation from the eight cornering voxels. To
improve collision detection performance, the
maximum value of the cornering voxels is pre-
calculated for every cell (unit volume cornered by
eight neighboring voxels), reducing the number of
comparisons from eight to one per sampling. The
calculation is performed only once when the volume
is first loaded, and is application independent. The
buffer is of the same size as the original volume.

 Figure 1: Exploiting inter-ray coherence in empty-
space traversal.

Acceleration is based on the fact that the colon wall
is a (C2) continuous natural surface, which does not
exhibit erratic behavior, such as sharp jumps, steps or
edges. Thus if two close rays have already been
traced to the colon wall, a ray between them would
probably not hit the surface closer to the camera than
the shorter one of the two. The exception would be
hitting the “peak” of a concave curvature. This case
could be detected either by evaluating the normals at
the two hit locations already obtained, or by checking

the result of the trace for the occurrence of an
unusual jump in z-space (depth image). However,
reducing full traces to as low as only 64x64 rays
results in only negligible loss of image quality in the
focus of attention (features closer than 100 units).

This method provides a dramatic increase in empty
space traversal performance. Reducing full traces to
one fourth results in about 60% increase in
performance.

 Figure 2: The same scene traced with 2562, 1282, 642 (from left to right respectively) full traces traversing
empty-space.

4. SHADING
The real issue in determining pixel color is
approximating the surface normal at the hit location,
which is passed to the shader. Volume data in case of
virtual colonoscopy is obtained by the sampling of a
continuous object, the human body. Through
discretization the information, from which exact
normals could be derived, is lost, and approximating
techniques must be used. Discrete normal estimation
methods usually fall into either of two fundamentally
different categories: image-space and object-space
methods [Neu00].

Image space methods base their approximations on
the 2D projected image. A well-known image-space
method, depth gradient shading calculates normals
from gradients in the z-buffer. Approaches like this,
however, fail to deliver expected image quality in
most virtual endoscopy applications without some
form of tuning to reduce artifacts.

Object-space methods, on the other hand, work with
the 3D neighborhood of the point being sampled.
Methods in this category are fairly diverse and are
based on concepts that range from traditional
derivative filters to associating voxels with convex
geometric primitives or local iso-surface extraction.
Mathematically accurate approximating methods
tend to involve solving systems of equations or

finding the roots of higher degree polynomials. Most
of these methods are either time consuming or do not
deliver the expected image quality. Therefore, the
implementation of a relatively new method based on
4D linear regression [Neu00] was chosen to estimate
the gradient (which can be normalized and used as
the surface normal). The concept being that a linear
function

f(x,y,z) =Ax+By+Cz+D

is used to estimate density in the close proximity of a
voxel where x, y and z are distances from the voxel
along the corresponding axis. Minimizing the error-
squared based on values of the 26 closest
neighboring voxels A, B, C and D can be calculated
very efficiently. The (A,B,C) vector is a good
estimate of the gradient and D can be used as the
filtered density value for the pixel.

The algorithm performs a linear regression based
approximation of the gradient vectors at the eight
voxels cornering the hit location. These gradients are
in turn subjected to tri-linear interpolation to estimate
the gradient at the sampling point, which is
normalized to yield the surface normal
approximation used for shading the hit-location. This
method was found to deliver great image-quality
with sufficient precision.

Proposed Algorithm
In [Kol02] calculations for minimizing the error-
squared were still deemed costly, and a hybrid
rendering engine was proposed to further boost
performance. The hybrid used a z-space based
gradient estimation method, which performed much
faster than the algorithm detailed above. In the
implementation only regions close to the camera
were rendered with the linear regression based
algorithm, while the rest was shaded with the z-
buffer based method, resulting in 30% increase in
performance at the price of a noticeable hit to image
quality.

Recent optimizations by restructuring code have
drastically accelerated the linear regression
calculations. As a result the two shading methods
used in the hybrid now perform at comparable levels,
making the concept of the hybrid obsolete for the
time being.

To accelerate the algorithm conditional interpolation
in pixel-space is proposed. Note that with the
lighting model specified pixel color is in direct
relation with the angle between the surface normal

and light direction, in our case with the direction of
the camera. Assuming that two close pixels have
already been rendered, a pixel between them must
not necessarily be shaded from scratch. Two
conditions are checked to determine whether a
simple interpolation between the two pixels already
rendered is enough to estimate the value for the new
pixel:

 Figure 3: Conditional interpolation in shading.

 Figure 4:

Top: The same scene shaded from 2562, 1282, 642 (from left to right respectively) pixels shaded, with the rest
interpolated conditionally using.

Bottom: Bitmaps indicating shaded (white) and interpolated (black) pixels for the corresponding images above.
The ratio of pixels interpolated is 0%, 62% and 74% (from left to right respectively).

The first is an absolute condition. Interpolation is
safe if both already rendered pixels are “bright
enough”, meaning that the surface region being
rendered is close to “facing” the camera.

The second, relative condition checks the difference
in depth between the two already rendered hit
location. If they differ too much, interpolation is
deemed unsafe. If either check fails, the pixel in
question is shaded from scratch.

The quality-performance compromise of the
acceleration can be tuned by adjusting the parameters
defining the conditions. We have found that
rendering every fourth pixel from scratch and
conditionally interpolating the rest results in around
65% increase in performance in the average look-
forward view.

5. RESULTS
All results presented in this section were obtained
from implementing on the following system:

Platform: 1.6GHz PC (x86) w/ 768MB RAM
running MS Windows XP Pro.
Implementation: C++ with DirectDraw compiled
using Visual C++. No low-level, hardware-specific
code optimizations have been implemented, all code
except drawing (DirectDraw) and window handling
(Win32SDK) in ANSI C++.
Dataset: 512x512x192 array of voxels stored at
16bit precision. Benchmarking was performed at
256x256 and 128x128 rendering resolutions.
The Tables below show results for empty space
traversal and shading of images. The parameters for
conditional interpolating in shading were specified as
follows: 96/256 for “brightness” in the absolute, and
1.0 in the “depth delta” relative checks.

In each test the camera was positioned in the same
(typical) location and rotated a complete 360-degree
circle, while tilting up and down in a wave-like
manner to obtain 180 frames. Timing was
implemented in the code on a per-frame basis, the
results accumulated and averaged.

Traced Initially 256x256 128x128 64x64

Time[ms] 336 144 103
Table 1: Average empty-space traversal times for

256x256 image.

Shaded Initially 256x256 128x128 64x64

Time[ms] 177 53 25
Table 2: Average shading times for 256x256 image.

Traced Initially 128x128 64x64 32x32

Time[ms] 84 34 29
Table 3: Average empty-space traversal times for

128x128 image.

Shaded Initially 128x128 64x64 32x32

Time[ms] 45 14 8
Table 4: Average shading times for 128x128 image.

Sh\Tr 256x256 128x128 64x64

256x256 1,949 3,115 3,56

128x128 3,115 5,116 6,442

64x64 3,583 6,507 7,95
Table 5: Overall average performance for 256x256

rendering with varying levels of acceleration in
shading (columns) and empty-space traversal (rows)

in frames per second (fps).

Sh\Tr 128x128 64x64 32x32

128x128 7,798 12,252 13,575

64x64 10,16 19,386 23,997

32x32 10,66 21,763 27,236
Table 6: Overall average performance for 128x128

rendering with varying levels of acceleration in
shading (columns) and empty-space traversal (rows)

in frames per second (fps).

The tri-linear interpolation based collision detection
used to find the exact hit location at sub-voxel
precision poses the limit to accelerating empty-space
traversal, as associated calculations must not only be
performed for “full traces” (rays initiated from the
camera position), but every ray in the image.
Comparing the results from tracing all rays from the
camera in the low resolution image (128x128) with
those obtained while rendering at higher resolution
(256x256) with just every fourth ray traced from the
camera, one can conclude that around 1/4th of the
time tracing each ray is spent in the sub-voxel
precision stage. Volumes are generally sampled with
voxels not representing unit cubes, but square based
slabs instead. As resampling the volume would raise
memory issues in most cases (boosting volume data
size by a factor of up to 4-8, depending on the
original CT scanning parameters), the engine
presented resolves the issue by performing additional
on-the-fly interpolation volume data is referenced.
Future optimizations will target the resulting
performance hit as well as the relative high cost of
the sub-voxel sampling stage.

Calculations involved in the surface normal
estimation method by applying tri-linear
interpolation to the gradients estimated using linear
regression at the eight voxels cornering the hit
location have undergone some manual optimization.
In the original code calculations were performed by
the formula as presented in [Neu00]. By unrolling
nested loops, rearranging and eliminating
instructions overall performance was effectively
doubled. In case of the 256x256 image, with 64x64
rays cast and 64x64 pixels shaded initially, the
average frame rate increased from 4.09 to 7.95 fps.

It was also found that implementing some low-level
optimizations, such as hand-coded vector arithmetic
using 3Dnow! did not drastically improve overall
performance over the binary generated by the
compiler. Though it has not been the focus of this
study, the author suggests that this mainly due to the
true low-level bottleneck being memory access, or
rather the lack of cache hits, as data was stored in
unstructured linear multidimensional arrays.

6. CONCLUSIONS
It was found that conditional interpolation based
techniques applied in object-based ray tracers can
also be used to efficiently accelerate volumetric ray
tracing. Results suggest that computing power of
mainstream processors today can cope with raw
empty-space traversal and high-quality shading at
interactive, but not yet at true real-time (>20) frame
rates.

Full traces can be reduced to and beyond 64x64 rays,
without loss in visual quality or detail on significant
features. Depth buffers can be set up in under 30ms
for low resolution (128x128), and around 110ms for
higher resolution (256x256) images. Though still the
bottleneck in the rendering engine presented, empty-
space traversal will cease to be a significant issue in
virtual endoscopy in the very near future.

Despite the impressive capabilities of available C++
compilers (Microsoft Visual C++, GCC, Intel C++),
it was found that they still lag behind in some crucial
aspects of optimizing volume rendering related code.
Though an extensive evaluation of compilers was not
the main focus of this research, a number of
compilers and compiler options have been
experimented with. The dramatic performance gain
resulting from high-level manual optimization,
however, suggests that compilers lack in efficiency
when it comes to unrolling and optimizing (multi-
dimensional) nested loops with otherwise simple
bodies, or simplifying and/or eliminating floating-
point arithmetic expressions.

With over 10 frames per second possible, rendering
images of acceptable resolutions providing enough
detail on significant features, it is concluded that
first-hit volumetric ray tracing based virtual
endoscopy, virtual colonoscopy in particular is
technically feasible and application-ready on
mainstream PC hardware, even without extensive
low-level optimizations. Further performance
increases are expected once volume data storage is
optimized to maximize cache hits, and SIMD
instructions are manually implemented.

7. ACKNOWLEDGMENT
This project is supported in part by “Ötletlabor”
project, by the Scientific Research Fund (OTKA ref.
No: T029135) and by the Slovene-Hungarian Action
Fund.

8. REFERENCES
[Chi98] R. Chiou, A. Kaufman, Z. Liang, L. Hong, M.

Achniotou: Interactive Path Planning for Virtual
Endoscopy, Conf Record IEEE NSS-MIC, Nov. 1998.

[Chi99] R. Chiou, A. Kaufman, Z. Liang, L. Hong, and M.
Achniotou: Interactive Fly-Path Planning Using
Potential Fields and Cell Decomposition for Virtual
Endoscopy. IEEE Trans Nuclear Sciences, vol. 46, no.
4, Aug 1999, pp. 1045-1049

[Csé98] Csébfalvi, B. & Szirmay-Kalos, L.: Interactive
Volume Rotation. Machine Graphics and Vision, Vol.
7, 1998. p 793–806.

[Hon97] L. Hong, S. Muraki, A. Kaufman, D. Bartz, T. He:
Virtual Voyage: Interactive Navigation in the Human
Colon, Proc. ACM SIGGRAPH '97, Aug. 1997, pp. 27-
34

[Kol02] Koloszar, J. & Jocha, D.: Accelerating Volumetric
Ray Tracing in Virtual Endoscopy. First Hungarian
National Conference on Computer Graphics, 2002.

[Joc01] Jocha D. & Koloszár J.: Interactive Virtual
Colonoscopy. CESCG 2001, Bumerice, SK.

[Joc02] Jocha D. & Koloszár, J.: Virtual Colonoscopy
using Direct Volume Rendering of Surfaces from
Volumetric Data. KEPAF 2002, Hungary, 2002.

[Li99] Li W. Li, M. Wan, B. Chen, and A. Kaufman
(1999): Virtual Colonoscopy Powered by VolumePro.
pp., 1999.

[Neu00] L. Neumann, B. Csébfalvi, A. König, E. Gröller:
Gradient Estimation in Volume Data using 4D Linear
Regression. EUROGRAPHICS 2000, Eurographics
Association, 2000.

[Szi99] Szirmay-Kalos, L.: Számítógépes Grafika.
Computerbooks, 1999.

[Vil99] A. Villanova I Bartroli, K. Buhler: On Coherence
in Rendering. Frorshungsseminar Visualisierung
WS98/99, 1999.

[Vis96] A. Viswambharan, M. Wax, L. Hong, A. Kaufman,
Z. Liang, T. Botton: Virtual Colonoscopy: Three-
dimensional Reconstruction of the Mucosal Surface of
the Colon. Conf of Radiological Society of North
America (RSNA), Dec. 1996, pp. 565 (Scientific Merit
Award)

[Wan99] M. Wan, Q. Tang, A. Kaufman, and Z. Liang:
Volume Rendering Based Interactive Navigation
within the Human Colon. IEEE Visualization ’99
conference, San Francisco, CA, Oct, 1999, pp. 397-400

[Wan00] M. Wan, W. Li, K. Kreeger, I. Bitter, A.
Kaufman, Z. Liang, D. Chen, and M. Wax: 3D Virtual
Colonoscopy with Real-time Volume Rendering. SPIE
Medical Imaging 2000, 2000.

[You97] S. You, L. Hong, M. Wan, K. Junyaprasert, A.
Kaufman, S. Muraki, Y. Zhou, M.Wax, and Z. Liang:
Interactive Volume Rendering for Virtual Colonscopy.
IEEE Visualization ’97 Conf Proc, ACM/SIGGRAPH
Press, Oct. 1997, pp. 433-436

