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ABSTRACT
This paper summarizes several quality issues of an approach for high-quality filtering with arbitrary filter kernels on
PC graphics hardware that has been presented previously. Since this method uses multiple rendering passes, it is prone
to precision and range problems related to the limited precision and range of intermediate computations and the color
buffer. This is especially crucial on consumer-level 3D graphics hardware, where usually only eight bits are stored
per color component. We estimate the accumulated error of several error sources, such as filter kernel quantization
and discretization, precision of intermediate computations, and precision and range of intermediate results stored in the
color buffer. We also describe two approaches for improving precision at the expense of a higher number of rendering
passes. The first approach preserves higher internal precision over multiple passes that are forced to store intermediate
results in the less-precise color buffer. The second approach employs hierarchical summation for attaining higher overall
precision by using the available number of bits in a hierarchical fashion. Additionally, we consider issues such as the
order of rendering passes that is crucial for avoiding potential range problems, and a variant of hardware-accelerated
high-quality filtering that is able to reduce the number of passes by four for filtering single-valued data, thus improving
both performance and precision.
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1 Introduction

Many recent real-time rendering algorithms are able to
achieve high quality results by using many rendering
passes. These methods accumulate intermediate results
in the frame buffer in order to generate the final image.

One common problem shared by all of these ap-
proaches is the limited range and precision of hardware
frame buffers. Usually, graphics hardware offers only
eight bits per color component stored in the frame buffer,
severely limiting the potential of color buffers for storing
intermediate results of general computations. Addition-
ally, the common[0, 1] range even further complicates
storing intermediate results in hardware color buffers,
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since not even a sign bit is available and large values
cannot be stored directly. A common method for tack-
ling the range problem is to employ scale and bias oper-
ations to fit the needed range into the constraints of the
hardware. However, this further exacerbates the prob-
lems related to limited precision.

Recently, interest in higher precision and range for
storing intermediate results of computations in graph-
ics hardware has increased noticeably, especially since
the introduction of real-time shading languages [12, 13].
Apart from simply extending the precision and range of
frame buffers themselves, alternative approaches such as
F-buffers [6] have also been suggested. Only with the
most recent hardware architectures (ATI Radeon 9700
and NVIDIA NV30), the process of moving towards
floating-point color computations has begun. However,
such hardware is far from being widely available, or not
yet available at all.

Although the precision in color buffers of most avail-
able hardware is severely limited, recent hardware em-
ploys higher precision and range for internal computa-
tions before finally storing the unsigned eight-bit result
in the frame buffer. The NVIDIA GeForce 3 and 4 offi-
cially use eight bits plus one sign bit internally, although
our experimental results suggest that their internal pre-
cision is actually higher. Intermediate computations are



performed in a range of[−1, 1]. The ATI Radeon 8500
internally uses twelve bits for the fractional part, plus
four bits for integer part and sign, thus achieving an ex-
tended range of[−8, 8].

Extended internal precision and range can be ex-
ploited for higher quality rendering by choosing an or-
der of rendering passes that minimizes the impact of the
limited external precision as much as possible. Addition-
ally, higher internal precision can be preserved between
passes by splitting up the intermediate results, only gen-
erating the final result in a final combination pass. The
drawback of this, however, is a higher number of render-
ing passes.

We are especially interested in estimating the error in-
curred by limited precision and range in an approach for
using arbitrary filter kernels for high-quality filtering on
graphics hardware [3, 4, 5]. We describe the sources of
numerical error, and present results of a numerical simu-
lation of the errors incurred by filter kernel quantization
and discretization, according to different sampling reso-
lutions and filter types. Kernel sampling parameters are
a crucial issue in the approach we are interested in, since
it samples and stores the actual continuous filter kernel
into multiple texture maps. The algorithm treats the ker-
nel as though it were continuous, although it is stored
in a discrete representation, and reconstruction is used at
run-time in order to retrieve weights from the “original”
continuous filter function on-the-fly.

2 Estimating the error of high-
quality hardware filtering

This section analyzes hardware-accelerated high-quality
filtering with regard to the different sources of error (es-
pecially numerical error).

The filter convolution sum (equation 1) is evaluated in
a multi-pass rendering algorithm, which is prone to arti-
facts due to precision and range limitations of the hard-
ware color buffer and internal computations.

g(x) = f [x] ∗ h(x) =
bxc+dme∑

i=bxc−dme+1

f [i]h(x− i) (1)

This equation describes a convolution of the discrete in-
put samplesf [x] with a continuous reconstruction filter
h(x), yielding the reconstructed output functiong(x). m
denotes the finite half-width of the filter kernel.

2.1 Error sources

Related to the evaluation of the filter convolution sum
(equation 1), we distinguish the following sources of er-
ror.

First, error related to the filter kernel used and its rep-
resentation in hardware:

• Since the filter kernel is sampled and stored in sev-
eral texture maps, it has to be quantized to the bit-
resolution of these textures. That is, the weights

in the filter kernel are represented byb bits (where
usuallyb = 8).

• Naturally, storing the filter kernel in texture maps
also requires discretization, i.e., sampling the ker-
nel at discrete locations. In the approach we are
analyzing, the maximum texture resolution of the
hardware can be used for each extent of unit size in
the filter kernel. Thus, the width of the filter ker-
nels that can be employed is not restricted by hard-
ware texture size limits. However, in practice the
sampling frequency used for the filter kernel itself
is limited by the texture memory consumed.

• When retrieving weights from the filter kernel,
the corresponding texture has to be queried, also
employing reconstruction. For this, either point-
sampling or the hardware-native linear interpolation
is employed, which introduces further error in the
filter weights that are actually used.

• The filter kernel also incurs an “inherent” non-
numeric error, depending on its type and width.
That is, a given kernel introduces a certain recon-
struction error, even if we would be able to repre-
sent it as a continuous function, instead of a col-
lection of discrete values. M̈oller et al. [8, 9, 10]
present a framework for estimating filter kernel-
native errors, as well as error bounds for several in-
teresting types of filter kernels.

Second, error is introduced by the evaluation of the con-
volution sum in hardware using fixed-point arithmetic
(usually mapping1.0 to 2b−1 instead of2b, and0.0 to 0,
in order to make maximum use of the available number
of bits):

• Precision is lost in the multiplication of input sam-
ples with filter weights, since it introduces an error
of its own (in contrast to addition, see below). The
overall error therefore greatly depends on the pre-
cision with which multiplication is performed, and
the number of multiplications needed for generat-
ing the final result, which, in our case, is equal to
the number of rendering passes.

• Addition only propagates the error of its input
operands if we assume that no clamping occurs due
to range issues (see below). The error analysis in
this section assumes that addition does not intro-
duce new error by itself.

• If internal computations are carried out at a higher
precision than the one available for storing interme-
diate results in the color buffer, further error that de-
pends on the number of rendering passes required is
introduced.

Third, additional – and usually quite severe – error may
be introduced when the color buffer range is exceeded
for intermediate results, leading to undesired clamping



(i.e., values being forced into the[0, 1] range by satura-
tion). Therefore, it is crucial to choose an evaluation or-
der of rendering passes that avoids leaving the available
range for intermediate results. In practice, this means
that intermediate results must never be below0.0, or
above1.0. See section 4 for a description of how clamp-
ing artifacts can be avoided.

2.2 Fixed-point representation

Computations on color values carried out by graphics
hardware are usually done in a fixed-point representa-
tion. However, in order to use the entire dynamic range
available for a given number of bits to represent the float-
ing point range of[0.0, 1.0] and still have an exact repre-
sentation of1.0, the interval[0.0, 1.0] is usually mapped
to [0, 2b − 1] instead of[0, 2b], see, e.g., [1, 11].

That is, as opposed to the usual fixed-point approach
of mapping1.0 to a power of two, it is mapped to the
highest number representable with a certain number of
bits. This maximizes utilization of the available number
of bits, but somewhat complicates arithmetic operations
in hardware, see section 2.4.

Mapping a floating-point color valuex to a fixed-point
color valuex̄ is thus done like this, if truncation is used:

x̄(truncated) = bx ∗ (2b − 1)c (2)

and like this, if rounding is used:

x̄(rounded) = bx ∗ (2b − 1) + 0.5c (3)

Note that this special mapping leads to a slightly differ-
ent quantization error than the one usually used (i.e., one
lsb), see below.

2.3 Filter kernel error ( εh)

We denote the error incurred by the representation of the
filter kernel in texture maps byεh, and distinguish three
sources of error that contribute to it.

First, due to the necessary quantization of input values
to b bits, the following maximum error is introduced. If
the high-precision input value is simply truncated to fit
into the available number of bits, we get a quantization
errorεq(truncated) = 1

2b−1
. Note that this is not exactly

the usual one lsb (least significant bit, i.e.,2−b), due to
the special mapping described in the previous section. If
rounding is employed, we getεq(rounded) = 0.5

2b−1
. Fur-

ther, error introduced by the limited sampling resolution
(the discretization) and the reconstruction used for the
filter kernel (either point-sampling viaGL NEAREST, or
linear interpolation viaGL LINEAR) are two additional
sources of numerical error that contribute toεh and must
be considered.

Instead of actually considering these three sources of
error separately, we calculate an estimation of the over-
all numerical errorεh using a numerical simulation of the
conditions corresponding to the hardware-accelerated al-
gorithm. We sample the filter kernel at a specified reso-
lution and quantize the sampled values to the number of

bits that will be used in the actual texture maps. Us-
ing the reconstruction method that will be employed by
the hardware to retrieve weights from the filter textures
(point-sampling or linear interpolation), we derive ap-
proximately the same values that will be generated by
the hardware and compare them with the corresponding
reference values from the analytically represented filter.

In this way, we are able to estimate an error bound
subsuming all three sources mentioned above for a single
filter weight. In order to estimate the error introduced by
the filter kernel into the entire evaluation of the filter con-
volution sum, however, we need to account for the error
of all filter weights. For instance, filtering with a cubic
kernel in one dimension uses four different weights, re-
trieved from the kernel at locations spaced one unit apart.

For a given resampling locationi, the error incurred by
all weights can be calculated asεi

h =
∑

j |εi,j
h |, with εi,j

h

denoting the actual filter weights from the actual filter
kernel under consideration that correspond to the given
resampling locationi. In order to estimate the error for
all possible resampling locations, we calculate suchεi

h

at a high number of resampling locations and take the
maximum, thus:

εh = max
i

(εi
h =

∑

j

|εi,j
h |) (4)

Table 1 shows values ofεh for certain scenarios, where
εh subsumes the numerical errors due to quantization
(εq), discretization, and filter kernel reconstruction in
hardware. The corresponding filter functions are de-
picted in figure 1.

2.4 Computation error ( εm)

In this section, we consider the error incurred by the eval-
uation of the convolution sum itself. This evaluation em-
ploys only two different kinds of arithmetic operations,
namely addition and multiplication. We will see that the
entire error due to the computation itself is introduced by
the multiplication,εm.

Fixed-point arithmetic addition in hardware is usually
simply done as̄x + ȳ, since:

x̄⊕ ȳ = x(2b − 1) + y(2b − 1) = (x + y)(2b − 1) (5)

The addition of twob bit values yields at mostb + 1 bits
in the result and there is no new error being introduced
(assuming the result still fits into the available number of
bits, thus avoiding undesired clamping).

Fixed-point arithmetic multiplication in hardware is
usually done asb(x̄ȳ)/(2b − 1) + 0.5c, since:

x̄⊗ ȳ =
x(2b − 1) ∗ y(2b − 1)

2b − 1
= (x ∗ y)(2b − 1) (6)

The multiplication of twob bit values yields at most2b
bits in the result. Due to the division by(2b − 1) needed
to normalize the result, a new error is introduced by the
multiplication operation itself, even if the input values
were exact.



filter tile resolution 2D 3D
kernel type [1D samples/tile] 255 ∗ εh(box) 255 ∗ εh(lin) 255 ∗ εh(box) 255 ∗ εh(lin)

16 11.2351 5.5803 12.3400 7.2346
32 6.1619 3.9219 7.1811 5.4758

Cubic B-spline 64 3.8838 3.3165 5.0478 7.0751
(B = 1.0, C = 0.0) 128 2.8293 2.5841 4.4375 4.1687

256 2.3145 2.2676 n/a n/a
512 2.0867 2.0867 n/a n/a
16 25.3076 15.0835 32.6554 19.1470
32 14.4100 10.8905 17.8089 14.3186

Catmull-Rom 64 8.7091 8.3325 11.2476 11.9767
(B = 0.0, C = 0.5) 128 6.0308 7.1140 8.1039 10.5024

256 4.9057 6.7169 n/a n/a
512 4.3535 6.3613 n/a n/a
16 26.3035 15.4278 34.0124 20.0338
32 14.3229 10.7960 17.9082 14.7748

Blackman sinc 64 8.8159 8.3062 11.4056 12.0028
(window width 4) 128 6.0954 7.2064 8.1723 10.6158

256 4.9426 6.6606 n/a n/a
512 4.3151 6.3229 n/a n/a

Table 1: Filter kernel error bounds (εh) for different scenarios. All kernel weights have been quantized to eight bits,
and the error bounds are absolute errors in a[0, 1] domain, multiplied by 255.εh(box) uses a box filter for kernel
reconstruction,εh(lin) linear interpolation. In the 2D case, the error has been estimated through10242 resampling
locations, whereas in the 3D case2563 resampling locations have been used (corresponding to the number of different
values fori in equation 4). For comparison, just taking quantization to eight bits into account, a maximum absolute
error of0.5 would be incurred per filter weight, yielding error bounds of8 = 0.5 ∗ 16 in two dimensions, and32 =
0.5 ∗ 64 in three dimensions, respectively. Thus, the numbers in this table show that the error incurred by filter kernel
representation in reality is much less than the overly conservative estimate of adding up the upper quantization error
bounds of individual filter weights, e.g.,2.82 instead of8 (bi-cubic B-spline, sampled with 128 samples per dimension
and tile). In our experience, absolute errors of about 3-5 achieve results of sufficient optical quality. Usually, we are
using 64 samples for a cubic B-spline, and 128 samples for Catmull-Rom splines and Blackman-windowed sincs, and
simple nearest-neighbor interpolation for kernel reconstruction.n/a entries have not been measured, since 3D kernels
of the corresponding sizes are infeasible, and the numerical simulation consumes a considerable amount of time.

The error that is introduced by the multiplication can
be bounded by (for either truncated, or rounded results,
respectively):

εm(truncated) =
2b − 2

(2b − 1)2
<

1
(2b − 1)

(7)

εm(rounded) = 0.5
2b − 2

(2b − 1)2
<

0.5
(2b − 1)

(8)

For example, two cases interesting to us are:

εm(rounded,8) = 0.0019608 (9)

εm(rounded,12) = 0.0001221 (10)

for eight and twelve bits of precision, respectively.
Note that, although a division by a non-power-of-two

value is theoretically necessary, the correct result – even
including rounding – can for instance be generated with-
out a division as follows (forb = 8, see [1]):

i = x*y + 128;
r = ( i + ( i >> 8 ) ) >> 8;

2.5 Accumulated error

Now that we have bounded the individual errors in-
volved, we can determine a worst-case bound for the
overall evaluation of the filter convolution sum.

In the following, we assume that the input sample val-
ues are exact, the errors of the weights retrieved from the
filter kernel are bounded byεh, and the error introduced
by each multiplication in the convolution sum is bounded
by εm.

The numerical errors introduced during evaluation of
the filter convolution sum can be estimated as follows
(denoting the number of rendering passes byN , and us-
ing −εm < ε′m < εm and−εh < ε′h < εh to denote ac-
tual errors corresponding to a given rendering pass as
opposed to error bounds):

∑

N

f ⊗ htexture =
∑

N

[f ∗ (h + ε′h) + ε′m] (11)

=
∑

N

f ∗ h +
∑

N

f ∗ ε′h +
∑

N

ε′m (12)

We now denote the overall error due to the numerical fil-
ter kernel representation, and the error introduced by the



-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

Cubic B-spline
Catmull-Rom spline

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

Blackman windowed sinc
Blackman window (width = 4)

(a) (b)

Figure 1: Filter kernels we have used: (a) Cubic B-spline and Catmull-Rom spline; (b) Blackman-windowed sinc
depicting also the window itself.

fixed-point multiplication byE2 andE3, respectively:
∑

N

f ⊗ htexture =
∑

N

f ∗ h + E2 + E3 (13)

That is, these errors directly depend on the number of
rendering passes needed for the evaluation of the convo-
lution sum (N ), and we get:

E3 < Nεm (14)

Assuming the function itself (f ) is bounded by1.0, we
get:

E2 < Nεh (15)

Further introducing the error due to the filter itself (even
if represented without numerical error, i.e., comparing
the actual filterh to the idealsincfilter) asE1, we get:

∑

N

f ⊗ htexture =
+∞∑
−∞

f ∗ sinc+ E1 + E2 + E3 (16)

The errorE1 depends on the filter itself (i.e., its deviation
from the behavior of a windowed sinc), and can be calcu-
lated using a Taylor series expansion of the convolution
sum [9].

The most crucial restriction is the value ofE3, since
it is entirely determined by the hardware. The other two
errors can be chosen up to a certain extent. If possible,
we try to do this in the following way:

• Choose the filter kernel such thatE1 < E3, if pos-
sible.

• Choose the kernel texture resolution such thatE2 <
E3.

In practice, though, subjective visual judgment is the
single most important criterion for selecting parameters,
since eight to twelve bits of precision do not leave much
space for considerations with conservative error bounds.
In reality, visual results are still good where error esti-
mation would suggest that too little precision has been
used, and choosing the filter kernel sampling rate be-
comes most important.

3 Increasing precision for inter-
mediate results

This section summarizes two approaches for gaining
higher precision for the computation of intermediate re-
sults. The first approach strives to preserve higher inter-
nal precision supported by the graphics hardware across
rendering passes that have to store intermediate results
in the 8-bit frame buffer. It does not mandate any knowl-
edge about the numerical subrange that will actually be
used by a given set of rendering passes. The second
approach assumes no higher internal precision, but per-
forms summation in a hierarchical way that is also able
to achieve higher precision results. However, it requires
to know the numerical subrange that is actually used by a
given set of rendering passes. Another approach that can
be used to improve precision on lower-precision hard-
ware has also been suggested recently [14].

3.1 Preserving internal precision
across passes

Provided that internal computations are done by the
hardware in higher precision than the external precision
of the color buffer, a multi-pass approach can be used
in order to preserve this precision across passes to a cer-
tain extent, even if temporaries need to be stored in the
color buffer. In this context, we are exclusively dealing
with addition. Multiplication is always performed with
internal precision anyway, so we care about adding up
the individual terms with higher precision than the frame
buffer supports directly.

The basic idea is to perform the entire computation
(i.e., evaluation of the convolution sum) twice. We de-
note the number of bits for internal computations byb
and split it up into two bit-adjacent partsbi andbj , so
thatb = bi + bj . We also specify that thebi bits contain
the msb (most significant bit), and thebj bits contain the
lsb (least significant bit). If we denote the number of ex-
ternal bits (i.e., the precision of the frame buffer) bym,
we choosebi = m, and require thatbj ≤ m. Since the
resources of the frame buffer are more scarce than inter-



nal pixel paths, and calculating results in less precision
than available for storing them makes no sense,b ≥ m
of course also holds.

Now, we proceed by calculating two intermediate re-
sults and combining them afterwards. First, the desired
computation is done for the part withbi bits, storing
the result in an off-screen buffer (either by rendering di-
rectly into a texture, or rendering into the framebuffer
and copying it into a texture afterwards). Next, the same
computation is done again, but this time for the part with
bj bits, yielding a certain number of carry bits, which
we will be denoting bybk. Finally, a single combination
pass combines the two separate intermediate buffers, cor-
rectly taking the carry bits into account, and producing
the final result. Thus, if the computation usually needsN
rendering passes, we now need2N +1 passes if we want
to preserve the internal precision across passes. Note that
if rendering directly to a texture is not supported, we only
need to copy the frame buffer into a texture twice, inde-
pendent ofN . The reason for this is that we can do all
computations in the frame buffer, except for the two in-
put textures to the final combination pass, which need to
be acquired.

In practice, we are most of all restricted by the num-
ber of carry bits that are generated and need to be stored.
Over N passes, we createbk = blog2 Nc carry bits,
which have to fit intom bits together with thebj base
bits. Thus,m ≥ bj + blog2 Nc and if we want to pre-
serve all internal bits, we are able to do so over at most
N = 2m−bj+1 − 1 passes.

We now give two examples with actual hardware-
dependent numbers. First, on the GeForce 3 and 4, we
assume thatb = 9 andm = 8. Thus,bi = 8, bj = 1, and
we can preserve all internal bits over at mostN = 255
rendering passes, which would yieldbk = 7. How-
ever, we deem the associated performance impact for just
one additional bit of precision too high. Second, on the
Radeon 8500, we assume thatb = 12 andm = 8. Thus,
bi = 8, bj = 4, and we can preserve all internal bits over
at mostN = 31 rendering passes, which would yield
bk = 4. Further, for the interesting case ofN = 64
(tri-cubic reconstruction of volume data), we can still
preservem′ = 10 bits of internal precision (m′ ≤ m),
which we still deem well worth the additional effort.

Another very implementation-dependent issue of the
method outlined above, is how the internal results are ac-
tually split up into the two partsbi andbj , requiring bit
shifting and masking, and how the combination pass is
actually implemented, requiring bit shifting. We achieve
bit shifting by possibly multiple multiplications with a
scale factor, exploiting fixed scale and bias functional-
ity of the graphics hardware. Factors less than one can
also be achieved by multiplying with an arbitrary con-
stant color, but multiplication with factors larger than one
are not possible in this way, and require explicit support
for scaling. The supported scale factors are hardware-
dependent. Bit masking is usually not supported explic-
itly, and we achieve this by first shifting left, and then
shifting right again, exploiting the automatic clamping

to get rid of unwanted most significant bits. An alter-
native way would be to mask out the desired bits, and
subtracting the undesired bits from the original value.

In the combination pass, thebk carry bits produced in
the computation corresponding to thebj least significant
bits have to be added to the part containing the result
of the bi most significant bits. For this, bit shifting is
also required. That is, the carry bits have to be extracted
from the intermediate result, and shifted into the proper
position for addition.

3.2 Hierarchical summation

An approach for increasing the precision of intermediate
computations, even given a limited internal precision, is
to add results in a hierarchical manner.

Let b denote the number of bits available throughout
the entire computation (i.e., both internally and exter-
nally). If we know that the filter weights used in a set
of passes never exceed a certain threshold, we can pre-
multiply all of these values in order to maximize usage
of the available range, gaining “additional” bits of pre-
cision that would have been lost otherwise. The result
of each of such a set of passes is accumulated in a cor-
responding off-screen rendering buffer. Renormalization
to the actual range is then performed when compositing
these intermediate results to generate the final image.

This approach is especially simple to realize in the
case of 1:1 filtering (e.g., image processing), where there
is only a very small number of filter weights. For exam-
ple, the 16 passes associated with a 4x4 (2D) averaging
filter with equal weights can be split up in batches of four
passes, pre-multiplying the filter weights by4 (“gaining”
two bits of precision). There are four such batches, cor-
respondingly generating four intermediate results. These
have to be scaled by0.25 and composited in a final com-
bination pass.

Note that rendering to separate frame buffers for in-
termediate results can be achieved efficiently on many
current graphics hardware architectures by using the
WGLARBrender texture , WGLARBpbuffer ,
and WGLARBpixel format extensions, avoiding
the slowglCopyTexSubImage2D() call.

3.3 Logarithm addition

We would like to briefly mention an idea brought up by
Michael McCool [7] for gaining more range in multi-
plications. If we store the logarithm of input values to
multiplications, we can add these values instead of mul-
tiplying them, and use a texture as lookup table for ex-
ponentiation in order to convert back to the actual output
values when we need them.

Jim Blinn [2] also describes why floating point num-
bers are essentially a logarithmic representation.



4 Rendering pass order

The order of rendering passes is crucial to avoiding un-
intentional clamping of intermediate results against the
[0, 1] range of the frame buffer. We have therefore im-
plemented a numerical simulator for the range behavior
of a certain pass order. That is, we assume the worst-
case input data of1.0 everywhere, and accumulate the
values contained in filter tiles for each sample location
separately. The maximum and minimum values can be
observed during accumulation. Using this facility makes
it possible to ascertain beforehand whether a certain pass
order is able to avoid clamping errors or not. If the max-
imum and minimum values never go above1.0 or 0.0,
respectively, during accumulation, the pass order can be
used at run-time.

Additionally, if it is not possible to find a pass order
that avoids clamping, we split up filter tiles into two sub-
tiles, one of them containing the larger values of the tile,
the other one containing the smaller values. These two
separate tiles can be inserted into the pass order at arbi-
trary (and non-adjacent) locations, which allows to avoid
clamping, even if this would not have been possible oth-
erwise. Naturally, this increases the number of rendering
passes that are required.

5 Rendering pass bias

When we want to directly reconstruct gradients, instead
of original function values, bias values have to be added
in each pass. For example, the vector component values
in normalized gradients are between−1 and1. How-
ever, in hardware rendering, this is mapped to a[0.0, 1.0]
range by scaling by0.5, and adding a bias of0.5.

We add individual bias values in each rendering pass,
which altogether sum up to the required overall bias of
0.5. The reason for this is once again to avoid clamp-
ing errors between passes. A single addition of a single
0.5 bias allows no fine-control over when (during passes)
negative values can be avoided by adding a small bias,
but simultaneously not adding so much as to go over1.0.

6 The dot4 algorithm

This section describes a method that is able to fold
four theoretical rendering passes into a single actual
pass by interleaving a monochrome source texture four
times with itself in the RGBA components of a four-
component texture, matching it with analogously pre-
interleaved filter tile textures, and exploiting hardware
dot products for performing the corresponding multipli-
cations and additions.

In general, the major problem with evaluating the filter
convolution sum in hardware is getting at all the neces-
sary input data, and the associated bandwidth require-
ments. Remember that each rendering pass corresponds
to a specific offset of the input texture, which is point-
sampled in order to use the correct values in the multi-

plication with the corresponding filter weight. But usu-
ally we only have access to one such value per pixel
in a single rendering pass (assuming 2x multi-textured
texture mapping; the second texture is required for the
filter tile texture). However, if we restrict ourselves to
monochrome input textures, we can exploit the fact that
a single texel retrieved by the hardware actually consists
of four values, namely the R, G, B, and A components of
the texel.

We can leverage this fact by taking a monochrome in-
put texture, and turning it into an RGBA texture by pre-
applying four selected input offsets. We store the first
pre-offset texture into the R component, the second into
the G component, the third into the B component, and
the fourth into the A component. If we sample a sin-
gle texel of this texture at run-time, we get simultaneous
access to the input data usually associated with four dif-
ferent rendering passes. The respective part of the con-
volution sum is evaluated by exploiting the capability of
recent graphics cards to perform per-pixel dot products
on color vectors. Thus, we call this algorithm thedot4
algorithm, since it employs a four-vector dot product.
Note that the four-vector dot product might have to be
substituted by a three-vector dot product (RGB only),
and adding separately multiplied alpha values. This is
the case on the GeForce 3 and 4, for instance, where
the RGB dot product is calculated in the RGB portion
of a general combiner, the A product in the ALPHA por-
tion, and, unfortunately, an additional combiner stage is
needed for adding these two partial results. Furthermore,
in order to match the interleaved source texture with the
filter kernel, an analogous interleaving scheme must be
applied to the filter tile textures. This is not as trivial as
it might seem at first glance, and we will have a more
detailed look at this problem below.

The two major drawbacks of the dot4 algorithm are
that it is restricted to monochrome input data, and
that the pre-interleaved texture consumes four times the
memory of the original monochrome texture. However,
a colored texture of the same size would consume at
least0.75 times the amount of memory (RGB instead
of RGBA). However, it still has much to offer, in that it
is able to reduce not only the number of passes by a fac-
tor of four, but also the texture bandwidth on the graph-
ics card (compared to a colored texture), thus practically
quadrupling the performance. The texture bandwidth
reduction is an especially big advantage compared to
solely exploiting multi-texturing architectures support-
ing more than two simultaneous textures, since these can
only reduce the bandwidth to the frame buffer, but not
to the texture memory, which is much more crucial in
practice. Still, the fewer passes the better, and in practice
we of course use a combination of the highest number
of simultaneous textures possible, together with the dot4
approach. Apart from performance reasons, this is also
crucial to maximize utilization of the available internal
precision.

As mentioned above, as soon as an interleaved source
texture is used, the filter tile textures also have to be in-



terleaved in order to match the same values as in the
basic (non-interleaved) algorithm. The interleaving of
filter tiles is closely related to the choice of offsets that
have been applied to generate the interleaved input tex-
ture. Since only a single interleaved input texture is used,
it must be possible to generate all other offsets (corre-
sponding to one pass each) by simply adding another
offset to the interleaved input texture on-the-fly. That is,
each offset applied during rendering automatically gen-
erates four actual offsets, and all possible offsets must be
generated exactly once.

7 Conclusions and future work

In this paper, we have described the different sources of
numerical error that are relevant in hardware-accelerated
high-quality filtering with arbitrary filter kernels sam-
pled into multiple texture maps. The numerical simu-
lations that we have presented help to determine an or-
der of rendering passes that avoids unintentional clamp-
ing of intermediate results, and allow to estimate the in-
terdependence of filter kernel sampling resolution, filter
kernel type, and quantization. As was to be expected
from the frequencies contained in those filter kernels,
the cubic B-spline causes the least numerical problems,
followed by the Catmull-Rom spline and a Blackman-
windowed sinc, respectively. We have also estimated the
overall error incurred during evaluation of the filter con-
volution sum in hardware, taking the above-mentioned
error sources into account. Future work in this con-
text would include additional filter kernels, and compar-
isons of inherent filter kernel errors and their relation
to errors incurred by the algorithm itself. Please see
http://www.VRVis.at/vis/research/hq-hw-reco/ for more
information on this ongoing research project.
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