
Dynamic Radiosity using Higher Order Functions
Bases and Temporal Coherence

Biri Venceslas Michelin Sylvain Arquès Didier
University of Marne­La­Vallée

6 cours du Danube

F­77700 Serris, France

biri@univ­mlv.fr michelin@univ­mlv.fr arques@univ­mlv.fr

ABSTRACT

The computation of global illumination in a dynamic scene constitutes a real challenge in computer graphics. In

radiosity algorithms, this problem is far from being easy, especially when light sources move in a complex scene.

This subject becoming more and more widespread, many algorithms have been presented to solve the dynamic

radiosity problem. Unfortunately, none uses intensive temporal coherence and few are efficient when dealing with

a moving light source. This paper introduces a new algorithm that computes animations with any moving surfaces

- even light sources. We take into account the temporal coherence between two frames to determine only the

luminous energy differences between the previous global illumination solution and the new one. A mathematical

development of the form factor for a translation or a rotation avoids unnecessary form factors computations. This

new approach leads to an efficient and simple algorithm, similar to the classical progressive refinement method.

Thus, it is able to compute the global illumination of animations at least twice faster than the classical approach.

Keywords
Dynamic Radiosity, Temporal Coherence

1. INTRODUCTION

According to the growing number of publications on

the subject, the determination of global illumination

in a dynamic scene appears to be the next challenge

of computer graphics. Indeed, people want more and

more realism in computer generated movies. For ex-

ample, digital effects require an invisible contribution

to the real video sequences and global illumination is

the key to achieve such quality. Thus, there is a need

for algorithms that can efficiently combine global il-

lumination and dynamic objects, because it “brings

life” into a scene. But this is a difficult task : in a com-

plex scene, any moving surface - and especially light

source - disturbs the whole illumination solution, mod-

ifying not only the luminous relationships between ob-

jects but also the occlusions.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers, or to redistribute
to lists requires prior specific permission and/or fee

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972
WSCG'2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNIONAgency - Science Press

Radiosity algorithms constitute a very popular method

to obtain a realistic illumination of a static scene.

J. Kajiya [15] showed that radiosity is a particular

approximation of the integral equation he called the

rendering equation. In this equation, the radiosity of

an object is defined as a function over its surfaces.

Initially in the traditional radiosity algorithm [11, 5],

this function is projected onto some piecewise con-

stant functions over each surface. A first animation

algorithm, the back buffer method [1], comes directly

from this classical approach and allows to manage any

known move with a static camera. Progressive meth-

ods [4, 21] are designed to solve the whole radiosity

solution step by step. They lead to new interactive al-

gorithms [3, 10] that propagate light modifications by

shooting positive and negative luminous energy. In this

approach, two steps have to be carried out for each sin-

gle move, one for withdrawing the object and one for

adding it, what is, of course, unsuitable for moving

light sources. A more involved data structure has been

proposed [18] for this progressive refinement strategy.

The number of relationships between surfaces has

been reduced, in the same time, by hierarchical and

adaptive methods [13, 17]. This approach is used to

handle dynamic scenes, with either a four-dimensional

radiosity including time [6] or a hierarchy of energy

links [8, 9]. Probabilistic methods [16] were also

presented to manage very complex scenes and they

involve other animation algorithms [2]. Other function

bases have finally been considered to represent the

radiosity over a surface. Algorithms using these bases

divide between the progressive approach [23] and

the hierarchical one [12, 22]. Finally other researchs

focus on light sources [7] and lead to algorithms able

to handle moving light source [19]

We present here a new radiosity algorithm that is able

to compute long animations using higher order func-

tions bases in a dynamic scene, where surfaces - and

even light sources - can move. We choose to use higher

order functions bases to avoid discretisation problems

but our method can apply to the classical progressive

algorithm. Indeed, this method takes advantage of

the continuity properties of these displacements and

of their temporal coherence to avoid the computation

of unnecessary form factors between two successive

frames. Then, for each new frame, the light energy

difference between any pair of surfaces is determined

leading to a new algorithm, similar to the classical pro-

gressive refinement algorithm, where form factors are

quickly updated. The use of temporal coherence al-

lows us to obtain the new global illumination solution

faster than the classical approach.

The next section of this paper briefly returns on the

theoretical background of radiosity algorithms using

higher order functions bases. In the third section, we

present a progressive radiosity approach for dynamic

scene and the mathematical developments we use to

handle the temporal coherence of the moves. The

fourth section set the resulting algorithm while the fifth

discusses results obtained.

2. HIGHER ORDER RADIOSITY
Higher order radiosity algorithms are the algorithms

that compute radiosity using a higher order functions

base. The radiosity of an object is considered, in this

approach, as a function defined on its surface instead

of being constant over small patches. It allows the rep-

resentation of the scene with a restricted number of

parametric surfaces, which could avoid any discretisa-

tion.

If the N surfaces representing the scene are Lamber-

tian diffuse, the rendering equation for a surface i can

be written [12], using notations of figure 1, as :

Bi(xi)=Ei(xi)+�i(xi)

NX
j=1

ZZ
Kij(s;t;u;v)Bj(u;v)du dv(1)

where Ei and �i are respectively the exitance and the

reflectivity of the surface. The kernel functionK is the

product of the well-known form factor, the differential

area A and a visibility term V :

Kij(s;t;u;v) = � (~ni:~r)(~nj :~r)

�~r4
Vij(s;t;u;v) Aj(u;v) (2)

where

Aj(u;v) =

@ ~xj@u
^ @ ~xj

@v

Surface i

Surface j
nj

ni

r

x j(u,v)

x i(s,t)

Figure 1. Notations for two parametric surfaces

Each function used in higher order algorithms - the ra-

diosity and the reflectivity - is projected onto a base of

N 0 orthonormal functions f�k(s; t); k = 1::N 0g de-

fined over each entire surface. Zatz [23] uses a base

of Legendre polynomials when Gortler et al.[12] use

wavelett bases. For instance, radiosity becomes :

B(s; t) �
N 0X
k=1

bk�k(s; t) (3)

where bk is the scalar coefficient associated to the kth

function of the base. Now, the goal is to obtain the co-

efficients bk of each surface to reconstruct their radios-

ity function. If we use an orthonormal base, it can be

done with the inner product of two functions defined

by :

hf jgi =
Z
f(s) g(s) ds (4)

We will consider the reflectivity constant over each ob-

ject. Then, for each surface i, bki coefficients will be

obtained by substituting (3), and the similar expres-

sion of exitance, in equation (1). The result is then

projected, using the classical inner product, on the kth

function of the base (in the following, we will omit

dependance on parameters s, t, u and v) :

bki = eki + �i

NX
j=1

N 0X
l=1

bljh
ZZ

Kij�lj�ki (5)

and finally :

bki = eki + �i
X
j;l

blj K
kl
ij (6)

with

Kkl
ij = h

ZZ
Kij�lj�ki (7)

This coefficient represents a kind of generalised form

factor expressing the energy exchanged between the

kth function associated with surface i and the lth

function associated with surface j. Methods for

computing the Kkl
ij terms can use either traditional

rules of quadratic integration [23], Monte Carlo tech-

niques [16], or closed form [20]. To avoid any singu-

larity problem in integration, we choose to use both

monte carlo and closed form techniques. Equation (6),

where the unknowns are the radiosity coefficients bki ,

can indifferently be solved by using a traditional direct

numerical method, e.g. Gauss Seidel, or via any pro-

gressive refinement technique. Indeed, since the sur-

face indices i,j and the function indices k,l are inde-

pendent, equation (6) is still a linear equation.

Occlusions are finally treated in several ways. For ex-

ample, H. Zatz chooses to compute them in shadow

masks weighting the radiosity function. Gortler et al.,

using ray tracing as in [13], compute directly visibility

coefficients which attenuate pure form factors.

3. OUR METHOD

We present, in this section, the mathematical foun-

dation of progressive temporal radiosity inspired by

George et al. [10]. The followed goal is to obtain

the global illumination solution of a frame using in-

tensively the illumination solution of the previous one.

We choose to use higher order functions algorithms be-

cause they allow to represent the scene with a restricted

number of parametric surfaces and avoid any discreti-

sation. This makes possible to store every kernel co-

efficient and to separate shadow computation from il-

lumination determination. Moreover, instead of com-

puting new form factors, we will compute only their

variations. An estimation of these variations can be

found allowing instant determination of the new form

factors for each frame and each surface. It leads to

an efficient algorithm managing any kind of surface -

even light source - in any complex move.

First, we analyse the differences of the radiosity so-

lution between two successive frames. Then, we fo-

cus on the form factor variations, which depend on the

object moves themselves. A method to obtain these

variations quickly is proposed for translations and ro-

tations.

3.1. Progressive radiosity between two frames

We are looking for radiosity variations between two

successive frames at time T and T+�T . Time depen-

dent values at time T +�T will be marked by a quote

(0). Writing equation (6) for the two frames gives :�
bki = eki + �i

P
j;l b

l
j K

kl
ij

b
0k
i = e

0k
i + �i

P
j;l b

0l
j K

0kl
ij

(8)

And using notations K
0kl
ij = Kkl

ij + �Kkl
ij , b

0k
i =

bki +�bki and e
0k
i =eki+�eki , and subtracting previous

equations gives :

�bki = �eki +
P

j;l b
l
j�Kkl

ij

+
P

j;l�blj(K
kl
ij +�Kkl

ij)
(9)

with

�Kkl
ij =

*ZZ
u;v

(K 0
ij �Kij)�l j �k

+
(10)

Equation (9) is a generalisation for higher order algo-

rithms of the radiosity redistribution equation defined

by Georges et al. [10]. This equation is similar to the

equation (6) but with two differences :

� Instead of bi, the unknown variables are the �bi.

� The emission term has been replaced by a possi-

ble change of exitance�eki , plus a sum, blj�Kkl
ij ,

that is the radiosity variations induced by the

move.

3.2. Determination of coefficients �K

Henceforth, the main problem is to determine for each

frame the coefficients �K, which remain the only pa-

rameters we do not know. Our idea is to use tempo-

ral coherence between two frames to avoid the costly

computations of new form factors concerning dynamic

objects. Therefore, instead of computing these form

factors, we try to approximate their variations using

the surface moves. Our main contribution is to have

obtained a precise expression of the form factors vari-

ations depending on the translation or on the rotation

of the dynamic surfaces.

3.2.1 Computation of �K for a translation

Let us consider, to simplify, the contribution of the

moving surface j to the surface i without occlusion

(V = 1). If the surface j follows a translatory move-

ment in a direction �!p0 as shown in figure 2, we can

obtain a polynomial expression of the expression �K
like :

�Kij =
X
n�1

pn'n
ij (11)

where 'n do not depend on p. At each frame, only

p changes. So if we know the coefficients 'n in

a reference position, this formulation allows us to

compute the form factors variations in a constant time.

We start with the expression of K 0 of equation (2) :

K 0
ij=�

(~nd:~r0)(~n0s:~r
0)

�~r0
4 Aj (12)

And let us consider the expression of r04 :

~r0
4
= (~r + ~p)

4
= ~r 4

�
1 + 2

~p:~r

r2
+

~p 2

r2

�2

If we denote � = ~p0:~r and � = ~p0
2
, the Taylor expan-

sion of the inverse of previous expression gives :

1

r04
=

1

r4

X
n�0

(�1)n(n+ 1)

�
2�

r2
p+

�

r2
p2
�n

(13)

and is defined if and only if :

r > (1 +
p
2)p (14)

Substituting equation (13) in equation (12), and un-

der the previous condition, we can obtain (cf. ap-

pendix 7.1) :

K 0
ij �Kij =

X
n�1

pn'ij
n (~p0) (15)

with 8n > 0 :

'ij
n = � 1

�r4
Aj [(~ni:~r)(~nj :~r)�n

+ [(~ni: ~p0)(~nj :~r) + (~ni:~r)(~nj : ~p0)] �n�1

+(~ni: ~p0)(~nj : ~p0)�n�2]

and8<
:

��1 = 0; �0 = 1;

�n =
Pn

q=dn
2
e(q+1)

�
q

n�q

��
�4�2

�r2

�q�
�
2�

�n

Surface i

nj

ni

r

xj

xi

nj

x'j

r’

p=p.p
0

Figure 2. Notations for a translation

We can finally obtain :

�Kkl
ij =

X
n�1

pn

*ZZ
u;v

'ij
n (~p0)�l j �k

+
(16)

Equation (16) can compute coefficients �K in con-

stant time since n is very small (we choose n = 6).

Indeed, coefficients ' are recursively defined and de-

pend only on the direction �!p0, on the degree of ap-

proximation n, and on both surfaces i,j and their func-

tion k,l. So coefficients ' could be computed once for

any elementary directions, as the predefined axes in-

troduced in the next section, and used for any move p
in these directions.

3.2.2 Decomposition of complex translations

3D

3 axes 13 axes

2 axes

4 axes

Figure 3. Decomposition of a 2D complex translation and

used predefined axes in 3D

The previous approximation is based on the fact that

the direction ~p0 is constant. Unfortunately, transla-

tions can have very complex shapes, involving fre-

quent changes in the direction ~p0. In order to avoid the

calculations of coefficients ' for each small change in

direction, we can decompose any complex translation

in a succession of small moves, one for each frame,

along predefined axes. And since we are dealing with

small period of time between each frame, this approx-

imation of the real move is acceptable. Then we will

just have to compute the coefficients ' for each used

predefined axes. We use a set of thirteen axes in 3D

visible in figure 3

3.2.3 Computation of �K for a rotation

We will use a far more coarse approximation for the

rotation. We start with the equation (2) :

Kij = � (~ni:~r)(~nj :~r)

�~r
Aj

But this time, we consider that ~r0 = ~r. This is often

true when dealing with small rotations and relatively

small surfaces. In this case, we can write :

K 0
ij =

~n0j :
~kij

with :

~kij = � (~ni:~r)~r

�~r4
Aj

Subtracting it with the previous form factors gives :

�Kij =
�
~n0
j � ~nj

�
:~kij = (R� I) ~nj :~kij (17)

where R is the rotation matrix. If the surface is planar,

we have simply :

�Kkl
ij =

�
~n0
j � ~nj

�
:'kl

ij (18)

with

'kl
ij =

~kklij =

*ZZ
u;v

� (~ni:~r)~r

�~r4
Aj�

k j �l
+

For more sophisticated surfaces, we have to decom-

pose the nine coefficients of the matrix (R � I), in

a nine coordinates vector M . Then, we can rewrite

equation (17) :

�Kkl
ij =

8X
m=0

M [m]:'kl
ij [m] (19)

where ~kklij is also a nine coordinate vector defined by :

'kl
ij [m] =

*ZZ
u;v

�
~nj [m%3]~kij [m=3]

�
�k j �l

+

These approximations are acceptable when (cf. ap-

pendix 7.2) :

8r < 1; sin(�)< rS
4a

8r > 1; sin(�)< S
2a

(20)

where a is the longest distance between the rotation

axe and a point of the surface and S a desired qual-

ity threshold. If we know the three or nine coefficients

'kl
ij , the equation (18) or (19) can compute the varia-

tion of form factors in constant time.

Surface i

ni

xj

xi

nj

n'j

p

r' = r'r'0
r = r r0

a

Figure 4. Notations for a rotation

4. IMPLEMENTATION

4.1. General overview

For each new frame of an animation, we start with the

previous global illumination solution of the previous

frame. We set the unshot radiosity to the two first terms

of equation (9) and then use the classical progressive

refinement technique. This unshot radiosity is com-

puted, when possible, using the previous approxima-

tions, allowing a fast update of the form factors modi-

fied. But this is not always possible. Our approxima-

tions depend on condition (14) or (20). When they are

no more fulfilled, a new form factor has to be com-

puted once again, and its variations deduced. When

doing this, all errors done by the previous computa-

tions and approximations are erased. We also compute

new coefficients '.

4.2. Dealing with occlusions

The determination of visibility is the central prob-

lem of radiosity algorithms. In order to obtain an

efficient algorithm, we need some approximations to

avoid costly computations of visibility factors. We de-

cide to consider light sources - surfaces with a positive

emissivity - apart from the other ones. Indeed, shad-

ows caused by these sources are more important visu-

ally than all other occlusion effects. So we decide to

use a separate shadow algorithm for all sources, even

dynamic ones and to erase visibility from the compu-

tation of the form factors and its variations.

Therefore, to handle all the occlusions, we use the fol-

lowing strategy :

� Between two static surfaces, visibility is com-

puted using ray tracing as in [13]

� Between a source and a surface, shadows are

computed with a shadow algorithm.

� Between a static surface and a dynamic one, and

if none is a source, the visibility factor is com-

puted like two static surfaces as in [13], each time

the form factor between them is evaluated.

So, we consider that change in visibility - surface leav-

ing or entering the area of visibility - is taken into

account by the form factors and their variations. We

also have to point out that the influence of the move

of dynamic surface on occlusions of two static sur-

faces is not considered, except if one of these is a

source. This is a coarse approximation and more so-

phisticated behavior can be achieved to avoid it, for

example by using visibility link hierarchy. We choose,

for the shadow algorithm of the light source, the one

defined by Heckbert and Herf [14]. It involves to store,

for each surface, the radiosity function created by each

light source.

For each moving surface
For each surface

Resolution of equation (8)

with a progressive refinment method

Stop when desired quality is obtained

First frame determination

Computation of coefficients K and j

Computation of shadows for light sources

For each new frame

move dynamic objects

Determination of first terms of equation (8)

and frame rendering

conditions

(13) or (19)

fullfilled ?

no

Computation of DK

using (9)
Computation of DK

using (15) or (17)

yes

Visibility update et computation of j

Figure 5. Overview of the algorithm

4.3. Resulting algorithm

The algorithm, depicted by figure 5, starts with the

computation of the first frame. Then, for each frame,

after having moved the dynamic objects, we determine

the two first terms of equation (9). For each pair of sur-

faces involving a dynamic surface, and depending on

the conditions (14) for a translation or (20) for a ro-

tation, variations of form factors could be computed

respectively using equations (16) or (18),(19). When

these conditions fail, we have to compute the new form

factors and the resulting variations using (10). When

all pair of such surfaces have been processed, we start

the progressive refinement algorithm using, for unshot

radiosity, the two first terms of equation (9). When a

desired quality is obtained for this frame, it can be ren-

dered using, for all light sources, a shadow algorithm

(e.g. the one of Heckbert and Herf [14]). The func-

tions base used is the legendre polynomial functions

base.

5. RESULTS
The main computation time in the radiosity algo-

rithms, except for visibility testing, is due to determi-

nation of pseudo form factors and it is espeacially true

when dealing with higher order functions algorithms.

Our algorithm avoids computing them for each frame

thanks to the computations of coefficients ', which

take into account the temporal coherence of the moves.

Moreover, only necessary energy differences needed to

obtain the new global illumination are computed since

we use a progressive method for each position (normal

progressive method) and also between each position

(our temporal progressive method). So we save time

in both improving convergence and avoiding form fac-

tors computations. Notice also that moves do not have

to be known in advance.

We present in this article some results and images from

animation sequences1 computed with a 500 MHz pro-

cessor and a common PC graphic card. Table 1 shows

computation times for global illumination determina-

tion and the benefits of our method compared to the

classical one (a progressive refinement algorithm for

higher order functions). This is done for three anima-

tions of three different scenes illustrated in figure 6.

The first animation (figure 6.a on the left) presents two

moving surfaces, with one light source. The second

animation (figure 6.b in the center) handles the case

of a light in rotation when the third and the forth one

(figure 6.c and d on the right) present moving light in

more complex scenes. Notice also that sharp shadow

lines come from the fact that light sources are planar.

Scenes 6.a 6.b 6.c 6.d

Classical time/frame 2.12 s 342 ms 639 ms 2 s

Our time/frame 1.1 s 45 ms 181 ms 870 ms

Benefits 48 % 87 % 72 % 56 %

Table 1. Results for scenes of figure 6

We also show in the figure 7 the relative errors be-

tween our animation frames and the correct frame for

the scene of figure 6.b. It can be seen that our method

does not affect the quality of the animation. In fact,

thanks to the erasing of errors done when approxima-

tion conditions are no more fulfilled, we can control

the overall errors. Our method takes effectively into

account the global illumination. For instance, in scene

of figure 6.a, when the blue panel pass in front of the

light, the wall is correctly rendered in blue. We point

outs also that this scene is a worst case because the

blue panel is very close of the light and it crosses its

area of visibility.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100 120 140 160

R
e

la
ti
v
e

 e
rr

o
r

(%
)

Frame

billard scene rotation scene

Figure 7. Errors of two animations

6. CONCLUSION
In this paper, we have presented a new algorithm able

to compute long radiosity animations with any mov-

1Available in http://www-igm.univ-mlv.fr/˜biri/indexCA.html

Figure 6. (from left to right) a) The simple scene b) Rotation scene c) Billard scene d) Cathedrale scene

ing surfaces - and even light sources. Timesaving is

obtained, in each frame of the sequence, by avoiding

the computations, for each moving object, of their new

form factors. Instead, this algorithm focuses on the

variations in illumination rather than computing the

new global illumination solution. The form factors

variations, depending on the moves, allow to handle

intensive temporal coherence.

Efforts should be paid now on efficient shadow algo-

rithms allowing fast and accurate soft shadows for area

sources in a dynamic environment. In order to speed

up computation time, we can also use clusterisation.

For example, 3DS model, consisting of many small tri-

angles and that can not be considered like one surface,

could be embedded in a cluster which can exchange

illumination with other surfaces. This will also speed

the shadow determination. We hope finally to combine

efficiently this progressive approach with hierarchical

algorithms that minimise the number of radiosity ex-

changes between surfaces.

References
[1] D. R. Baum, J. R. Wallace, M. F. Cohen, and D. P.

Greenberg. The Back Buffer Algorithm : An Exten-

sion of the Radiosity Method to Dynamic Environ-

ments. In Visual Computer, volume 2(5), pages 298–

308, 1986.
[2] G. Besuievsky and M. Sbert. The Multi-Frame Light-

ing Method : a Monte Carlo Based Solution for Ra-

diosity in Dynamic Environments. In 7th Eurograph-

ics Workshop on Rendering, pages 186–195, June

1996.
[3] S. Chen. Incremental Radiosity : an Extension of Pro-

gressive Radiosity to an Interactive Image Synhtesis

System. In Siggraph’90, Computer Graphics Confer-

ence Proceeding, volume 24(4), pages 135–144, Aug.

1988.
[4] M. Cohen, S. Chen, J. Wallace, and D. Greenberg. A

Progressive Refinement Approach for Fast Radiosity

Image Generation. In Siggraph’88, Computer Graph-

ics, volume 22(4), pages 74–84, 1988.

[5] M. F. Cohen and D. P. Greenberg. The Hemi-Cube : A

Radiosity Solution for Complex Environments. In Sig-

graph’85, Computer Graphics, volume 19(3), pages

31–40, 1985.

[6] C. Damez, N. Holzschuch, and F. Sillion. Space-time

hierarchical radiosity with clustering and higher-order

wavelets. In Eurographics 2001 Short Presentations,

pages 35–42, september 2001.

[7] J. Dorsay, F. Sillion, and D. Greenberg. Design and

simulation of opera lighting and projection effects. In

Computer Graphics (ACM SIGGRAPH ’91 Proceed-

ings), volume 25(4), pages 247–257, 1991.

[8] Y. Dupuy, F. Lavignotte, and M. Paulin. Visibilité et

Radiosité Interactive. In 12eme journée de l’AFIG.

AFIG’99 Conference Proceeding, pages 41–50, Nov.

1999.

[9] D. Forsyth, C. Yang, and K. Teo. Efficient Radiosity

in Dynamic Environments. In Proceeding of 5th Euro-

graphics on Rendering, June 1994.

[10] D. W. George, F. X. Sillion, and D. P. Greenberg. Ra-

diosity Redistribution for Dynamic Environment. In

IEEE Computer Graphics, volume 10(4), pages 26–

34, 1990.

[11] C. Goral, K. Torrance, D. Greenberg, and B. Battaile.

Modeling the interaction of light between diffuse sur-

faces. In Siggraph’84, Computer Graphics, volume

18(3), pages 213–222, 1984.

[12] S. J. Gortler, P. Schroder, M. F. Cohen, and P. Han-

rahan. Wavelet Radiosity. In Siggraph’93, Computer

Graphics Proceedings, Annual Conference Series, vol-

ume 27(4), pages 221–230, Aug. 1993.

[13] P. Hanrahan, D. Salzman, and L. Aupperle. A

Rapid Hierarchical Radiosity Algorithm. In Computer

Graphics (ACM SIGGRAPH ’91 Proceedings), vol-

ume 25(4), pages 197–206, July 1991.

[14] P. Heckbert and M. Herf. Simulating Soft Shad-

ows with Graphics Hardware. In Technical report TR

CMU-CS-97-104, Carnegie Mellon University, Jan.

1997.

[15] T. Kajiya. The Rendering Equation. In Computer

Graphics (ACM SIGGRAPH ’86 Proceedings), vol-

ume 20(4), pages 143–150, Aug. 1986.

[16] A. Keller. Quasi Monte Carlo Radiosity. In 7th Eu-

rographics Workshop on Rendering, pages 102–111,

June 1996.

[17] D. Lischinski, F. Tampieri, and D. P. Greenberg.

Combining Hierarchical Radiosity and Discontinuity

Meshing. In Siggraph’93, Computer Graphics Pro-

ceeding, pages 199–208, Aug. 1993.

[18] S. Muller and F. Schoffel. Fast Radiosity Repropa-

gation For Interactive Virtual Environments Using A

Shadow-Form-Factor-List. In 5th Eurographics Work-

shop on Rendering, 1994.

[19] K. Nielsen and N. Christensen. Real-Time Dynamic

Relighting of Virtual Environments. In Journal of

WSCG, volume 10(2), pages 325–331, Feb. 2002.

[20] P. Schoder. Numerical Integration for Radiosity in the

Presence of Singularities. In 4th Eurographics Work-

shop on Rendering, pages 177–184, 1993.

[21] J. Wallace, K. Elmquist, and E. Haines. A Ray Tracing

Algorithm for Progressive Radiosity. In Siggraph’89,

Computer Graphics, volume 23(3), pages 315–324,

1989.

[22] Y. Yizhou and P. Qunsheng. Multiresolution B-Spline

Radiosity. In Eurographics’95, volume 14(3), pages

285–298, 1995.

[23] H. R. Zatz. Galerkin Radiosity: A Higher Order Solu-

tion Method for Global Illumination. In Siggraph’93,

Computer Graphics Proceedings, Annual Conference

Series, pages 213–220, 1993.

7. APPENDIX

7.1. Computation of �K

Using the following notations :8<
:

a = (~ni:~r)(~nj :~r)
b = (~ni: ~p0)(~nj :~r) + (~ni:~r)(~nj : ~p0)
c = (~ni: ~p0)(~nj : ~p0)

we have

K 0
ij = � Aj

�r4

�
a+bp+cp2

�
P

n�0(�1)n(n+ 1)
�
2 �
r2
p+ �

r2
p2
�n

or

K 0
ij = Kij � Aj

�r4
(bp+cp2)� Aj

�r4
(a+ bp+ cp2)

X
n�1

(�1)n(n+ 1)

�
2
�

r2
p+

�

r2
p2
�n

We want to extract p of the last term :

P
n�1

(�1)n(n+1)
r2n

Pn
k=0

�
n
k

�
(2�p)n�k�kp2k

=
P

n�1
(�1)n(n+1)

r2n

Pn
k=0

�
n
k

�
(2�)n�k�kpk+n

=
P

n�1

P2n
l=n

(�1)n(n+1)
r2n

�
n

l�n
�
(2�)2n�l�l�npl

with l = n+ k

=
P

l�1 p
l
Pl

n=d l
2
e
(�1)n(n+1)

r2n

�
n

l�n
�
(2�)2n�l�l�n

=
P

l�1 p
l �l

Exchanging l and n, � have the expression :

8n>0; �n=

nX
l=dn

2
e

(l+1)

�
l

n�l
���4�2

�r2

�l�
�

2�

�n

and

(bp+cp2) + (a+ bp+ cp2)
X
n�1

pn�n

=
X
n�3

pn(a�n+b�n�1+c�n�2)

We have then

K 0
ij �Kij =

X
n�1

pn'ijn (~p0)

with 8n > 0 :8<
:

'ijn = � Aj

�r4
(a�n + b�n�1 + c�n�2)

��1 = 0
�0 = 1

7.2. Limit of the approximation for rotation

If we denote � the expression of (13), we have :

K 0
ij �Kij =

(~nj :~p)(~ni:~r)

�r4
+
(~nj :~r)(~ni:~p)

�r4

+
(~nj :~p)(~ni:~p)

�r4
+
(~nj :~r0)(~ni:~r0)

�
�

and

K 0
ij �Kij

 � 2p

�r3
+

p2

�r4
+
(r+p)(r+p)

�
�

We consider now that �=p
r
<1 and is very small so we

can neglect terms in �2. Then :

K 0
ij �Kij

 � 1

�r2

����2�+
�
1+

2�

r

��
�4�

r

�����+ o(�2)

and finally :

K 0
ij �Kij

 � 2�

�r2

����r � 2

r

����
when r>1, we have r�2

r
<1, the relative error � is :

� � 2� =
2p

r

and when r>1, we have 2�r
r

< 2
r

, the relative error is :

� � 4p

r2

With p < a sin(�) where a is the largest dimension

from the rotation axe and a surface point, both previous

equations lead to the conditions (20).

