
Compression of Arbitrary Triangle Meshes With
Attributes For Selective Refinement

Markus Grabner
Computer Graphics and Vision
Graz University of Technology

grabner@icg.tu­graz.ac.at

ABSTRACT
We present a method for compact encoding of attributes such

as normal vectors defined on a triangle mesh of arbitrary

topology suitable in the context of view­dependent simpli­

fication. It is based on the recently introduced CAME data

structure (Compressed Adaptive Multiresolution Encoding).

In accordance with the vertex hierarchy defined by mesh sim­

plification, we define an attribute hierarchy to track attribute

values within the multiresolution representation. It is shown

that the corner subgraph describing the relations between

attributes in a mesh simplification step can be efficiently en­

coded if attributes are properly ordered.

Keywords
Mesh compression, multiresolution, mesh attributes, non­

manifold triangle meshes

1. INTRODUCTION
Due to significant improvements in data acquisition tech­

niques and increasing requirements in modeling there are

meshes available today that are far beyond the rendering ca­

pabilities even of high­end graphics workstations. However,

since those models contain much more data than can fit on

screen, we are often interested only in a small fraction of the

whole data set at any time. Moreover, for any viewing condi­

tions except a very close­up view the model can be replaced

by a simpler approximation without decreasing image qual­

ity. This principle is called view-dependent simplification.

There are at least two other concepts besides mesh simplifi­

cation that are useful in dealing with huge 3D objects. One is

based on the observation that geometry information stored in

a straightforward way contains a large amount of redundancy.

By carefully exploiting coherence within the data set the size

of the data can be reduced significantly (mesh compression).

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on

the first page. To copy otherwise, or republish, to post on servers

or to redistribute to lists, requires prior specific permission and/or

a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213­6972

WSCG’2003, February 3­7, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

And second, if the simplified and compressed model is still

too large to be displayed immediately after the user requested

it, progressive transmission can be used to give the user a fast

impression of how the model looks like.

A visualization method unifying view­dependent simplifi­

cation, compression, and progressive transmission has re­

cently been introduced (CAME [7]). Like most other view­

dependent visualization algorithms, CAME doesn’t take into

account attributes defined at the object’s surface. However,

geometry alone is not sufficient to accurately represent an

object. By tessellating a CAD model, information about

regions building functional elements (features, see [12, 2])

is lost. Nevertheless, the appearance of the object can be

preserved by explicitly providing surface attributes such as

normal vectors. Under proper lighting conditions, disconti­

nuities of the surface normals result in intensity discontinu­

ities in the rendered image. This makes it easy for a human

observer to distinguish individual features.

In this paper, we extend the CAME algorithm to support at­

tribute data within its adaptive multiresolution framework.

Our method cannot compete against optimized compression

algorithms (such as [13, 1]) in terms of compression ratio.

However, it is the first to take into account mesh attributes in

the context of compression and view­dependent simplifica­

tion of arbitrary triangle meshes. In Section 2, previous work

in related fields of research is reviewed. Section 3 explains

the new method in detail. The paper is finished by some

conclusions in Section 4.

2. RELATED WORK
2.1 Multiresolution
The representation of geometric objects at different levels of

detail has first been studied in [3] in the context of visible

surface algorithms. The Progressive Meshes representation

[10] allows a triangle mesh to be stored as a coarse base mesh

together with a sequence of detail records. By iteratively

applying edge collapse or vertex split operations (see Figure

1), the mesh can be retrieved at any desired level of detail.

The view-dependent refinement extension introduced in [11]

allows the user to “zoom in” into a particular region of the

mesh. This avoids having to refine the whole mesh to the

same level of detail as the region the user is interested in.

The idea of a simplification hierarchy derived from the mesh

simplification sequence has been independently presented in

[15, 11].

vs

vu

vt

fn1

fn0

fn3

fn2

fn1

fn0

fn3

fn2

fl fr

vsplit

ecol

vl vr

vl vr

Figure 1: Basic operations for mesh simplification (edge

collapse) and refinement (vertex split), the more gen-

eral case of simplification doesn’t require the vertices to

be connected by an edge (pair contraction, indicated by

dashed line)

For extremely large meshes it is not possible to load all

mesh data into main memory for preprocessing and render­

ing. Therefore external memory techniques such as [5] have

been developed. The considerable memory overhead in­

troduced by this method has been addressed in the CAME

framework [7]. Mesh vertices are referenced such that tri­

angle adjacency relations are maintained implicitly. Each

vertex is identified by the path to be taken in the simplifica­

tion hierarchy from the root to the corresponding node.

2.2 Mesh compression
The field of mesh compression has been pioneered by Michael

Deering [4]. He introduced the generalized triangle mesh,

which allows explicit storage of vertices in a so­called mesh

buffer and retrieval of these vertices for later use. Moreover,

vertex locations and normal vectors are quantized and delta

encoded.

A more efficient compression algorithm is the edgebreaker

algorithm by Rossignac [13]. Starting at an arbitrary edge,

the mesh is traversed in a spiral­like way. The topological

relation of each triangle to previously processed parts of the

mesh is encoded by less than two bits on average. For geome­

try compression, Taubin and Rossignac use a vertex predictor

that takes into account the K most recently encoded vertices

[14]. Instead of storing absolute vertex coordinates, only

the correction vector between the predicted and the actual

position of a vertex is encoded. Predictor parameters are

estimated to minimize the least square error of all correction

vectors. A valence­driven approach to mesh compression

has been presented in [1].

2.3 Attribute maintenance
Feature boundaries, playing an important role in recognizing

an object’s structure, need to be preserved during mesh sim­

plification. See for example Figure 2. While the model with

simplified geometry (Figure 2(b)) still looks very much like

the original (Figure 2(a), this is not the case for improperly

simplified attributes (Figure 2(c)).

The Progressive Meshes method [10] supports this feature

preservation requirement. However, it is restricted to a linear

sequence between the original mesh and its coarsest approx­

imation, inhibiting the use of view­dependent simplification.

It has been shown in [8] how the feature preservation methods

can be applied to view­dependent simplification.

The following definitions used in this paper are taken from

[10, Section 2]. A corner is a (vertex, face) tuple. Discrete

and scalar attributes are properties associated with faces and

corners of the mesh, respectively. Curves on the surface

across which the scalar attribute field is discontinuous are

called surface creases.

3. OUR METHOD
The sequence of mesh simplification steps (i.e., pair contrac­

tion) provides a natural way to create a binary tree represent­

ing the simplification hierarchy of the vertices [15, 11]. By

explicitly storing the paths through this hierarchy, triangles

can easily update their vertices according to view­dependent

simplification [7]. If scalar attributes are defined for the

mesh, a similar procedure to update the attributes is required.

However, since there are generally more attribute values than

vertices (see Figure 2(a) for an example), the attribute hier-

archy is more complex and more difficult to traverse. In

this section a method is developed that creates the attribute

hierarchy which can be traversed in parallel to the vertex

hierarchy.

Although our current implementation only supports normal

vectors as attributes, the same considerations can also be

applied to different attribute types (e.g., texture coordinates

and color). We therefore refer to the more generic term

“attribute” instead of “normal vector” in the remainder of

this paper.

3.1 Edge types
In the following discussions we will frequently refer to at­

tribute continuity properties of edges. We call an edge

smooth, if the triangles adjacent to it share the same attributes

at both vertices of the edge (such as the edge between A and

B in Figure 2(a)). Similarly, we speak of a sharp edge if no

attribute is shared across the edge (C and D in Figure 2(a)).

3.1.1 Semi­sharp edges
A situation deserving special considerations is illustrated in

Figure 3, showing a cone approximated by ten triangles (not

counting the base). If we want the surface to appear smooth,

adjacent triangles should share normal vectors across the

(smooth) edge by which they are connected. This can easily

be done for vertices at the base1 (see circle labeled “B” in

Figure 3). However, if we try to apply the same procedure

to the cone’s apex, we would end up with a single normal

vector shared by all triangles containing the apex. Therefore

each triangle is assigned a different normal vector at the apex

(circle “A” in Figure 3), resulting in edges that are sharp on

one end (apex) and smooth on the other end (base). We call

those edges semi-sharp edges.

1Note that the triangles of the cone’s base (not shown here
due to occlusion) are assigned a single down-facing normal
vector, defining the chain of edges surrounding the base as a
surface crease.

(a) original model (108 triangles, 56

vertices, 96 normal vectors)

C

A
B

D

(b) simplified geometry (12 tri-

angles, 8 vertices, 24 normal
vectors)

(c) simplified attributes (108 trian-

gles, 56 vertices, 56 normal vec-
tors)

Figure 2: Simplification of a cube-like object (with normal vectors indicated as arrows)

each triangle has

a different normal

vector at the apex

neighboring triangles

have the same normal

vector at the base

edges between apex

and base look sharp

at the apex and

smooth at the base

A

B

Figure 3: Semi-sharp edges appearing in an approxi-

mated cone

An important observation is that a non­boundary vertex in a

two­manifold surface patch cannot belong to exactly one

sharp edge while all other edges sharing this vertex are

smooth. To prove this, we consider a vertex v belonging

to n triangles t1 . . . tn (in clockwise or counter­clockwise

order) with attributes a1 . . . an at vertex v. Without loss of

generality we assume the single sharp edge to be shared by

the triangles t1 and tn, which implies a1 6= an by the defi­

nition of sharp edges. Since all other edges are smooth, we

find ai = ai+1 for all i = 1 . . . n − 1. This immediately

implies a1 = an, in contradiction to a1 6= an as required

above. The proof for a non­manifold surface patch is similar

(consider a “tree” of equality relations and a single inequal­

ity). Therefore a semi­sharp edge needs to be introduced if a

discontinuity curve begins or ends within the surface.

3.2 Corner graph
Processing of normal vectors for view­dependent simplifica­

tion has been studied in [8] for the special case of uncom­

pressed two­manifold meshes. In this section, we present a

Figure 4: Corner graph

method to encode attribute relations and discontinuity curves

for meshes of arbitrary topology.

We introduce the corner graph, which is a representation

of attribute discontinuities. The nodes of this graph are the

triangle corners (solid circles in Figure 4). Two nodes are

connected by an graph edge2 if a “smooth path” of continuous

attribute values (assuming proper interpolation, e.g. Phong’s

for normal vectors) on the surface exists between the corre­

sponding corners visiting at most two triangles. More formal

criteria for the existence of an edge are as follows:

• The corners represented by the two nodes belong to

different triangles, but refer to the same vertex and

the same attribute value (solid lines between circles in

Figure 4).

• The corners belong to the same triangle, but refer to

different vertices (dashed lines in Figure 4).

In a similar way as vertex references are stored with each

pair contraction (see [7] for details), the portion of the cor­

ner graph affected by the operation has to be encoded. Al­

though information­theoretically optimal encoding schemes

2Not to be confused with mesh edges!

F
r

t F
c F

r

u

A
r

t
A

c

t
A

c

u

A
r

u

Figure 5: Corner subgraph

for graphs exist [9], we use prior knowledge about the graph

to further reduce encoding size in most cases.

For clarity, we simplify the graph by replacing all nodes re­

ferring to the same vertex and attribute by a single node.

Moreover, during pair contraction we only consider the ac­

tually affected subgraph. The resulting graph can be drawn

with the nodes arranged in four columns (Figure 5) and will

be referred to as the corner subgraph in the following. De­

tails on the notation are given in Section 3.3.

3.3 Set definitions
Before we explain our method in detail, some definitions are

given. The sets of faces adjacent to the vertices vt and vu

(Figure 1) are denoted by Ft and Fu, respectively. The set of

faces F c being collapsed during pair contraction is defined

as F c = Ft ∩Fu. The faces adjacent to vt and vu remaining

after pair contraction are F r
t = Ft−F c and F r

u = Fu−F c,

respectively.

Similarly, we denote the set of attributes at corners refer­

ring to vt and vu by At and Au, respectively. Again, Ar
t

and Ar
u are subsets of At and Au, respectively, containing

only attributes at corners of triangles remaining after pair

contraction. Finally, Ac
t and Ac

u are subsets of At and Au,

respectively, containing only attributes at corners of trian­

gles being collapsed during pair contraction. We also define

A = At∪Au, Ac = Ac
t∪Ac

u, and Ar = Ar
t ∪Ar

u. Note that

Ar
t ∩Ac

t and Ar
u∩Ac

u are not necessarily empty sets since the

same attribute can be referred to by different corners. Actu­

ally, calculating these set intersections is an important part of

our method since it allows to identify smooth regions of the

mesh that need to be preserved during mesh simplification.

3.4 Attribute propagation
In this section, we describe a set of rules to propagate (and

eventually merge) attributes during pair contractions. In Fig­

ure 6, six examples of pair contractions are presented. A

completely smooth region is shown in Figure 6(a). Each of

Figure 7: Collapsing a non-manifold edge

the vertices vt an vu (refer to Figure 1 for labeling of the

vertices) is associated with exactly one attribute value (a1

and a2, respectively). After collapsing the edge, the new

vertex vs is assigned a new attribute a3, the value of which

is interpolated between the values of a1 and a2. The situ­

ation in Figure 6(b) is similar, however, there are two pairs

of attributes (a1, a3 and a2, a4) which result in two separate

attributes a5 and a6 at vertex vs. In Figure 6(c), a2 and a3

are merged into a5 similar to the previous examples. How­

ever, a1 has no corresponding attribute to be merged with

and is therefore simply copied to a4. Figure 6(d) is again

similar, but the triangles being collapsed are now completely

enclosed by sharp edges. Therefore a1 and a4 are copied to

a5 and a6, respectively, while a2 and a3 are removed from

the mesh.

Semi­sharp edges are considered in Figures 6(e) and 6(f).

First, we show how a semi­sharp edge is collapsed in Figure

6(e). All attributes a1, a2, and a3 have to be merged to a

single new attribute a4. The reason to do so is the fact that

an interior vertex cannot belong to a single sharp edge as

shown in Section 3.1.1. If we would demand the sharp edge

at vt to extend to vs after the pair contraction, a semi­sharp

edge had to be introduced at vs, continuing the discontinuity

curve to a neighbor of vs. Since such a neighbor might not

exist without changing the appearance of the discontinuity

curve, we cannot use this method, therefore vs needs to be

a smooth vertex with a single attribute a4. Finally, Figure

6(f) illustrates how a semi­sharp edge is created as a result

of contracting triangles only containing sharp and smooth

edges. Attributes a1 and a2 need to be merged to a5 for sim­

ilar reasons as in 6(e), while a3 and a4 remain unchanged

(since they are not in A), creating a semi­sharp edge. Merg­

ing more than two attributes into a single one imposes some

difficulties in our binary­tree based simplification hierarchy.

See Section 3.6 for a proposed solution.

Contractions of non­manifold edges (Figure 7) are also clas­

sified according to Figure 6. Since only the relations be­

tween the attribute sets Ar
t , Ac

t , Ac
u, and Ar

u are considered

for encoding as explained in Section 3.5, no additional case

distinctions are required for non­manifold situations. Note

that the cases discussed above are by far not all possible ones

since they can be combined in almost arbitrary ways.

3.4.1 Lifetime of attributes
An attribute might need to be further traced in the hierarchy

even if it is no longer in use during mesh simplification. The

example in Figure 8 (taken from [8] and slightly modified)

a1

a2

a3

(a) smooth region

a1
a2

a5
a3

a4 a6

(b) edge to be collapsed lies on

surface crease

a1

a2

a5
a3

a4

(c) edge to be collapsed touches

surface crease

a1

a2

a5
a3

a4
a6

(d) triangles to be collapsed are

enclosed by surface crease

a1
a2

a3

a4

(e) collapsing a semi-sharp edge

a1

a2

a4

a3

a5

a3

a4

(f) creation of a semi-sharp edge

Figure 6: Different cases of pair contractions, gray triangles are removed during pair contraction, sharp edges are

drawn as thick lines, semi-sharp edges as thick lines extending only over one half of the edge

illustrates a case where an attribute a5 is required in MS due

to selective refinement (which is legal [6]) without having

ever occurred during simplification. Since a1 is no longer

present in the mesh after the edge between v1 and v2 has

been collapsed to v5, it is not immediately evident that a5 (a

copy of a1) will be needed in MS . However, simply leaving

a1 in the set of attributes associated with vertex v3 (although

it doesn’t belong to any triangle in the mesh) ensures that

a1 is considered in further simplification steps. Such blind

attributes are treated in the same way as members of Ar−Ac.

While the above procedure guarantees the existence of all

required attribute values during selective refinement, it tends

to accumulate attributes upwards the simplification hierarchy.

In the worst case, the number of attributes associated with

the root vertex of the hierarchy could be O(n), where n is

the number of vertices in the mesh. It is therefore necessary

to determine if an attribute a is no longer needed (i.e., cannot

play the role of a5 in MS of Figure 8). This is the case for

each attribute a satisfying one of the following conditions:

• a ∈ Ac − Ar (belonging to collapsed triangles but

not to remaining ones, such as a2 and a3 in Figure

6(d)) since such an attribute disappears from the mesh

after contracting the associated vertex pair (vt, vu)
and remains inactive until the reverse vertex split is

performed. Unlike a1 in Figure 8, a cannot reappear

at a vertex different from the one it belonged to before

it was removed (vt or vu). Note that a1 in Figure 8

is not a member of the set A of attributes considered

during contraction of the pair (v1, v2).

• All vertices of all triangles initially containing a have

collapsed to a single vertex. Unless this vertex is

split again, no triangle in the mesh can contain a (or

require an ancestor of a such as a5 in MS of Figure

8). This condition is easily checked by maintaining

the set Va of vertices of all triangles containing a and

replacing the vertices in Va by their parents after each

pair contraction. If |Va| = 1 (without duplicates), a
can safely be removed from the mesh and doesn’t need

to be further considered.

3.5 Encoding
The corner subgraph (Section 3.2) and the fixed set of rules

(Section 3.4) exactly represent the topology of discontinuity

curves in a surface patch before and after pair contraction.

Encoding this graph is therefore sufficient to be able to restore

the relations between triangle corners and attributes. Once

the corner subgraph is known, it can immediately be used to

create the corresponding nodes of the attribute hierarchy.

3.5.1 Attribute permutation
Encoding the graph as it is introduces some redundancy since

the permutation of the attributes would also get encoded.

However, a permutation of attribute indices doesn’t change

the object’s appearance as long as attribute values are per­

muted accordingly. We therefore try to reorder attributes

such that no two edges cross each other in the corner subgraph

(drawn with increasing attribute indices from top to bottom

according to Figure 5). As we will see in Section 3.5.2, this

allows encoding the graph with two bits per attribute instead

of O(log |A|) if the permutation of the attributes in A is also

a1

a2

a3

a2

a3

a4 a4

a5

ecol1 ecol0 vsplit1

v3

v4

v3

v4

v6 v6

v1 v2
v5 v5 v1 v2

M
2

M
1

M
0

M
S

Figure 8: Propagation of attributes

encoded3 .

To get a non­crossing corner subgraph, attribute indices must

be sorted in a consistent way at both vertices involved in a pair

contraction. This is achieved by partitioning the input mesh

into smooth regions and sorting attribute values according to

their associated smooth region index. A smooth region of the

mesh M is defined as a set R of triangles with the following

properties:

• R is connected (or, more precisely, the graph contain­

ing a node for each triangle t ∈ R and an edge for each

pair of triangles ti, tj ∈ R sharing a common mesh

edge is connected).

• For any two triangles ti, tj ∈ R that share a common

edge ek, t1 and t2 also share the same attribute values

at both vertices of ek.

• No triangle t ∈ M−R exists such that R∪{t} satisfies

the above criteria.

Consider the example in Figure 9, which illustrates a surface

patch extending over two regions R1 and R2 separated by a

chain of sharp edges (thick lines). If the attribute ordering is

consistent with the region index ordering as in Figure 9(a),

the corresponding corner graph in Figure 9(c) has no crossing

edges. The inconsistent case is demonstrated in Figures 9(b)

and 9(d). After pair contraction, the newly created attribute

values are again sorted to satisfy the ordering constraint.

Is it always possible to find a consistent attribute ordering?

Unfortunately the answer is no. A simple counter­example

is the well­known Moebius strip. Figure 10 shows such an

object with a slightly modified profile to introduce a surface

crease, splitting the strip into two smooth regions. No matter

how we try to fill the gap, we will always end up with an

inconsistent setting as in Figure 9(b). However, the CAME

algorithm [7] relies on simplifying the whole scene down to

a single vertex, therefore we must also be able to handle this

inconsistent situation. Since such a situation is very unlikely

to occur, we employ a brute­force solution and explicitly

3This can easily be shown by using Sterling’s formula

(n − 1)! ≈
√

2π/n · e−nnn.

Figure 10: Moebius strip

store the uncompressed corner graph if no consistent ordering

exists.

3.5.2 Attribute encoding/decoding
During pair contraction, one of the following operations has

to be performed on each attribute a ∈ A:

R: Remove the attribute from the mesh (such as a2 and

a3 in Figure 6(d)) for one of the two reasons given in

Section 3.4.1.

C: Copy the attribute to its parent node (such as a1 in Figure

6(c), only for a ∈ Ar − Ac).

M: Merge the attribute with another one (such as a1 and a2

in Figure 6(a)).

X: Merge more than two attributes (such as a1, a2, and a3

in Figure 6(e), only for semi­sharp edges).

If a consistent attribute ordering as described in Section 3.5.1

can be found, the corner graph can be encoded simply by stor­

ing the type of operation to be performed on each attribute.

This creates a stream of symbols, each two bits long to iden­

tify one of the four cases above. To restore the edge subgraph

(and the attribute hierarchy), we simultaneously process the

streams for At and Au. Starting at either of the streams,

we process case “R” by not assigning a parent node to the

attribute and case “C” by assigning a parent node with the

a1
a2

a3 a4

R1 R2

(a) consistent

a1
a2

a3
a4

R1 R2

(b) inconsistent

a1 a1

a2 a2

a3 a3

a4 a4

R1

R2

(c) corner graph of 9(a)

a1 a1

a2 a2

a3 a3

a4 a4

R1

R2

(d) corner graph of 9(b)

Figure 9: Consistent and inconsistent attribute ordering (a1 < a2 and a3 < a4 holds in both cases) and the correspond-

ing corner graphs

a2

a1

a4

a3

a5

a6

a7

(a) surface patch (containing

creases) being simplified

a1

a2

a3

a4 a4

a5

a2

(b) corner sub-

graph of Figure
11(a)

a1:R

a5:C

a4:M

a3:R

a2:M

At Au

(c) encoding

of Figure
11(b)

a1 a2 a3 a4 a5

a6 a7

(d) attribute hierarchy recon-

structed from the streams in
Figure 11(c)

Figure 11: Corner subgraph encoding and decoding

current attribute as its only child. If an “M” is encountered,

we also create a parent node, but then switch to the other

stream and process it until we again receive and “M”. Since

the corner subgraph is free of edge crossings, both “M”­

attributes correspond to each other (i.e., are connected by

an edge in the subgraph). Both attributes are assigned the

previously created node as a parent.

This procedure is demonstrated in Figure 11. The surface

patch in Figure 11(a) contains both smooth and sharp edges

and has a corresponding corner subgraph shown in Figure

11(b). Since the subgraph has consistent attribute ordering

(no crossing edges), its attributes are classified as explained

above, giving the streams “RM” and “RMC” for At and Au,

respectively (Figure 11(c)). The attribute hierarchy recon­

structed from Figure 11(c) is given in 11(d). Note that Figure

11(d) is for illustration purposes only, in fact no absolute at­

tribute indices are stored (see Section 3.6 for details).

The “X”­code is used to indicate that more than two attributes

need to be merged. Due to the consistent attribute ordering

we simply collect all subsequent “X”­attributes in At and Au

and assign a singe parent node to them. After an “X”­code

appeared, the two­bit codes are replaced by a single bit per

attribute to indicate if the sequence is to be continued (if not,

the two­bit codes are used again).

The encoded corner subgraphs associated with each node of

the simplification hierarchy are embedded into the CAME

[7] data stream.

3.6 Attribute hierarchy traversal
Once the attribute hierarchy is reconstructed, it can be used to

update attributes associated with triangle corners. Similar to

updating vertices (see [7] for details), the attribute hierarchy

is traversed upwards (i.e., towards the root) during pair con­

tractions and downwards during vertex splits. In the latter

case, the left branch is chosen if the new attribute belongs

to vt, and the right branch for vu. However, in contrast to

vertex coordinates, more than one attribute value can be asso­

ciated with each vertex. Moreover, the number of attributes

per vertex varies throughout the hierarchy since attributes

are accumulated or become obsolete as explained in Section

3.4. Therefore the attribute hierarchy is used to guide the

traversal of different attribute paths in parallel to the unique

vertex paths.

Unlike indicated in Figure 11(d), there are no absolute indices

of vertices or attributes in the CAME decoder. Instead, the

set Ai of attribute values belonging to a vertex vi is stored

as a continuous array, being accessed by indices 0 . . . |Ai| −
1. These indices relative to the attribute storage of vi are

generally not valid within any other vertex than vi. The

correct mapping of indices between nodes up and down the

hierarchy is given by the attribute hierarchy stored with each

simplification node. To keep track of the correct attributes,

this relative attribute index is stored with each triangle corner

in addition to the current position on the vertex path [7].

Some additional encoding is required for semi­sharp edges

since they require merging of more than two attributes (see

Section 3.4), which cannot be represented in a binary tree.

Pair contractions are handled as before since many attributes

can refer to the same node as a parent. However, to un­

ambiguously identify the branch to descend during a vertex

split, an additional code of dlog2 me bits must be provided

for m attributes sharing the same parent (e.g., m = 2 for a1

and a2 in Figure 6(e)).

Up to now, only the topological relations between attributes

have been considered. The actual attribute values are also

stored in the CAME data stream, in our case using the quan­

tization method of [4] to encode normal vectors.

4. CONCLUSIONS AND FUTURE

WORK
We presented a method to carry information about mesh at­

tributes (e.g., normal vectors) and their relations to each other

through the simplification and adaptive refinement of trian­

gle meshes of arbitrary topology. It has been shown how the

graph describing smooth paths on the surface patch under

consideration can be transformed into nodes of the attribute

hierarchy which is used during traversal of the multiresolu­

tion data to update the triangles’ attributes. We also presented

an ordering scheme for attributes that prevents their permu­

tations from being encoded, thus reducing code size.

Currently normal vectors are encoded with 17 bits according

to the method of [4]. However, spatial and hierarchical co­

herence could be used to improve compression of attribute

values. Even the roughly known surface orientation (eigen­

vectors of each meta­node’s edge vector covariance matrix

[7]) might be useful for normal vector encoding.

5. ACKNOWLEDGMENTS
This work has in part been funded by the European Union un­

der contract no. IST­1999­20273. Thanks to Konrad Schindler

for fruitful discussions.

6. REFERENCES
[1] P. Alliez and M. Desbrun. Valence­driven connectivity

encoding for 3D meshes. In A. Chalmers and T.­M.

Rhyne, editors, Proceedings Eurographics, volume 20

of Computer Graphics Forum. Blackwell Publishers,

Sept. 2001. ISSN 1067­7055.

[2] W. F. Bronsvoort and F. W. Jansen. Feature modelling

and conversion – key concepts to concurrent

engineering. Computers in Industry, 21(1):61–86,

1993.

[3] J. H. Clark. Hierarchical geometric models for visible

surface algorithms. Communications of the ACM,

19(10):547–554, Oct. 1976. ISSN 0001­0782.

[4] M. F. Deering. Geometry compression. In R. Cook,

editor, SIGGRAPH 95 Conference Proceedings,

Annual Conference Series, pages 13–20. ACM

SIGGRAPH, Addison Wesley, Aug. 1995.

[5] J. El­Sana and Y.­J. Chiang. External memory

view­dependent simplification. In Proceedings

Eurographics, volume 19 of Computer Graphics

Forum, pages 139–150. Blackwell Publishers, Aug.

2000. ISSN 1067­7055.

[6] M. Grabner. Consistency of the VDPM framework. In

B. Falcidieno, editor, Proceedings of SCCG 2000,

pages 147–155. Comenius University, Bratislava, May

2000. ISBN 80­223­1486­2.

[7] M. Grabner. Compressed adaptive multiresolution

encoding. Journal of WSCG, 10(1):195–202, Feb.

2002. ISSN 1213­6972.

[8] M. Grabner. Feature preservation in view­dependent

multiresolution meshes. In A. Chalmers, editor,

Proceedings of SCCG 2002, pages 153–162.

Comenius University, Bratislava, Apr. 2002. ISBN

80­223­1730­6.

[9] X. He, M.­Y. Kao, and H.­I. Lu. A fast general

methodology for information­theoretically optimal

encodings of graphs. SIAM Journal on Computing,

30(3):838–846, June 2001.

[10] H. Hoppe. Progressive meshes. In H. Rushmeier,

editor, SIGGRAPH 96 Conference Proceedings,

Annual Conference Series, pages 99–108. ACM

SIGGRAPH, Addison Wesley, Aug. 1996. ISSN

0097­8930.

[11] H. Hoppe. View­dependent refinement of progressive

meshes. In T. Whitted, editor, SIGGRAPH 97

Conference Proceedings, Annual Conference Series,

pages 189–198. ACM SIGGRAPH, Addison Wesley,

Aug. 1997. ISBN 0­89791­896­7.

[12] C. McMahon and J. Browne. CAD/CAM: principles,

practice and manufacturing management. Addison

Wesley, second edition, 1998. ISBN 0­201­17819­2.

[13] J. Rossignac. Edgebreaker: Connectivity compression

for triangle meshes. IEEE Transactions on

Visualization and Computer Graphics, 5(1), 1999.

[14] G. Taubin and J. Rossignac. Geometric compression

through topological surgery. ACM Transactions on

Graphics, 17(2):84–115, Apr. 1998.

[15] J. C. Xia and A. Varshney. Dynamic view­dependent

simplification for polygonal models. In IEEE

Visualization ’96. IEEE, Oct. 1996. ISBN

0­89791­864­9.

