
Real-time Terrain Rendering using Smooth Hardware Optimized Level of

Detail

Bent Dalgaard Larsen Niels Jørgen Christensen

Technical University of Denmark

ABSTRACT

We present a method for real-time level of detail reduction that is able to display high-complexity polygonal

surface data. A compact and efficient regular grid representation is used. The method is optimized for

modern, low-end consumer 3D graphics cards. We avoid sudden changes of the geometry - also known as

’popping’, when reducing the geometry by exploiting the low-level hardware programmability in order to

maintain interactive framerates. Terrain models are repolygonized in order to minimizing the visible error.

Furthermore, the method minimizes CPU usage during rendering and requires minimal pre-processing. We

believe that this is the first time that a smooth level of detail has been implemented in commodity hardware.

Keywords: terrain, viewing algorithms, frame-to-frame coherence, multiresolution modelling, continuous

level of detail

1 Introduction

Height field terrain rendering and editing is an impor-

tant aspect of GIS, outdoor virtual reality applications

such as flight simulators and 3D-games. Such scenes

may contain thousands of polygons and although mod-

ern graphics cards allow the display of many thousands

of polygons at real-time framerates, many applications

have models with geometric complexities that, by far,

exceed the real-time capabilities. In the future, graphics

cards will be able to display more and more polygons

per second, but on the other hand the demand for us-

ing more complex models will also rise, and this gap

between the performance of graphics cards and the de-

sire for displaying more complex models is not likely to

disappear in the foreseeable future. In order to reduce

the number of polygons to be rendered and thus achieve

real-time framerate many research papers have dealt

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1, ISSN 1213-6972

WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

with different level of detail (LOD) algorithms and ag-

gressive frustum culling. The main focus has been to

minimize the total number of polygons displayed on the

screen at any point in time. Famous methods for ter-

rain rendering are the ROAM method [Duchaineau97]

and the level of detail algorithm introduced by Lind-

strom et al. at SIGGRAPH ’96 [Lindstrom96]. This

method operates on a regularly spaced height-map and

merges triangles based on the visible error in screen-

space. The method cleverly avoids T-meshes and cracks

in the surface by propagating triangle splits and merges

in the height-map. In [Röttger98] the method origi-

nally developed in [Lindstrom96] was extended with a

rapid geomorphing algorithm in order to avoid vertex

popping. Hoppe also applied geomorphing to terrains

in [Hoppe98]. This geomorphing method was imple-

mented in software only.

Another method called Geometrical MipMapping that

is highly optimized for modern graphics cards was re-

cently introduced by de Boor [deBoor2000] which is

very similar to [Lindstrom95]. This method divides the

height-map into smaller tiles and creates a number of

detail levels for each tile. Based on an approximated

screen-space error, a switch between the different de-

tail levels is made. When switching between detail lev-

els a sudden change in the height-map (vertex popping)

will occur, which will be noticeable to the viewer. In

this article we will propose an algorithm for to solve

this problem, as the geomorphing method proposed in

[Röttger98] and [Hoppe98] does not apply to Geometri-

Triangle Rendering method Triangles per second

Individual triangles 3.5 M

Connected (strips and fans) 10.5 M

Connected in display lists 24.5 M

Table 1: Million triangles rendered per second on a GeForce

2 using different rendering methods. (with light and texture

disabled)

cal MipMapping.

Furthermore, we will address the problem of exploit-

ing the capabilities of 3D graphics cards. Because of

the architecture in modern graphics cards, it is not al-

ways optimal to send as few polygons as possible to the

hardware in the graphics cards. A far better approach

is to create fixed chunks of homogeneous geometry that

are rarely modified [El-Sana2000] (see Section 2.5 for

a more in-depth explanation of what a chunk is). Us-

ing this approach it is possible to render as many as 7

times the number of triangles per second, compared to

rendering individual polygons (see Table 1). Another

very important issue is that rendering chunks of geome-

try is likely to be handled asynchronously by the graph-

ics hardware thus removing the load from the CPU.

2 The Algorithm

A terrain can be defined in several ways. First of all it

can be defined as an ordinary mesh also known as tri-

angulated irregular networks (TINs). This method does

not put any restriction on the terrain, and has been used

by e.g. [Hoppe98] and [DeFloriani2000].

Another method is to define the terrain as a height field,

which is a grid that is equally spaced in the x and z di-

rections. The y value is used as the height information.

This method puts more restrictions on the definition of

the terrain. Nevertheless, it is often the method of choice

for several reasons. Some of these properties are:

• Easy generation of height-maps with many algo-

rithms already developed.

• Easy collision detection because the intersection

between a ray and a height-map can be done in

O(1).

• Fast and easy view-frustum culling because the

height-map is suited for generating a quad-tree

structure that is relatively simple to cull using a

view-frustum.

Thus, we will define our terrain as a uniformly grid-

ded height field and use a quad-tree structure. Many

others have used that approach, e.g. [Lindstrom96],

Figure 1: A terrain of 9x9 height values (left) and the 3D

representation(right)

[Duchaineau97] and [Röttger98].

The initial height field is a surface that consists of N

by M regularly spaced grid points. Each of these grid

points has a height assigned to it. First we define a level

of subdivision which describes how many elements the

height field should be divided into. Each of these ele-

ments we hereafter refer to as a tile. The tiles are located

as leaves in the quad-tree data structure. This structure

is built as a preprocess. This approach is also used by

[Reddy99], [Lindstrom96] and [Röttger98]. The tiles

must be regularly distributed over the entire height field

and must contain 2w + 1 by 2w + 1 vertices. The tiles

have to share vertices with neighbouring tiles in all di-

rections in order to avoid gaps in the terrain. A height

field of 9 by 9 will thus produce 4 tiles if the tile size

is chosen to be 5 by 5 (see Figure 1). For optimal per-

formance these tiles could be inserted into a quad tree

for fast culling and spatial queries. In Figure 2 triangles

have been created from the height field both in the ini-

tial resolution and a lower resolution tile which is one

level higher. The difference in the number of polygons

between two levels is a factor of 4. We define the level

with the highest level of detail to be level 0 and the next

level with 4 times fewer polygons to be level 1. The

number of polygons in a level consequently sums up to

22(w−l)+1 where the tile size is 2w + 1 by 2w + 1, and l

is the level.

The basic idea for the reduction of the complexity of the

Figure 2: Level 0 (left) and Level 1(right)

height field is to display all tiles at an appropriate level.

Calculating the visible difference between the current

level of the tile and a lower resolution tile generates a

screen space error. If this error is smaller than a certain

threshold, then the algorithm will render the scene with

the lower resolution.

This is the basic idea but there are certain problems that

need to be addressed when using this approach. The

problems are:

• Choosing the level of detail. The level of detail

has to be chosen in an appropriate way in order to

minimize the visible error introduced by render-

ing the tile at a lower resolution. The visible error

as seen on the screen should be calculated.

• Avoiding T-vertices and cracks. If two different

levels are rendered next to each other, T-vertices

and cracks in the polygonal mesh will occur.

• Making a smooth transition between different lev-

els of detail. When switching directly from one

level to another an artefact known as ’popping’

will occur. This has to be avoided.

Solutions to each of these problems will be described in

the following sections.

A height field made up of evenly distributed grid

points can be triangulated in several ways. The rea-

son for this is that a quad can be triangulated in two

ways. Our triangulation scheme uses the binary right-

angled triangle method, sometimes referred to as RTIN,

bintree, or longest edge bisection [Lindstrom2001]

[Duchaineau97].

It is noted that our triangulation is different from the

method proposed in [deBoor2000]. We have chosen to

triangulate the surface differently because we want to

avoid long and thin triangles when connecting tiles of

different levels. Furthermore the proposed structure in

[deBoor2000] also needs modification when more than

one out of four neighbouring tiles are rendered using a

different resolution. An issue that is not described in the

paper.

2.1 Choosing the level of detail

Perspective projection causes distant polygons to be ren-

dered smaller than polygons close to the viewer. As the

distance becomes greater the difference in pixels when

rendering the tile at two successive levels becomes one

pixel. Therefore it will be safe to switch to a higher level

when a certain distance is reached. Although unsafe,

it is desirable to switch to higher levels of detail, even

when the difference in pixels is larger than one in order

to minimize the number of polygons rendered. Several

options for measuring the visual difference between two

levels are natural choices. Two obvious choices would

Level Reduction percentage (%)

0 0.00 %

1 75.00 %

2 93.75 %

3 98.44 %

4 99.61 %

Table 2: Reduction in number of polygons rendered cal-

culated for different level of details.

be either a certain number of pixels or a fixed percent-

age of the screen size.

[Lindstrom95] explains that their experience is that a

threshold of up to 4 pixels can be used without signifi-

cant loss of image quality. In [deBoor2000] a threshold

value of 6 pixels is suggested. These values are not di-

rectly comparable to our solution since we are morphing

smoothly between successive levels of detail and it is

therefore likely that we can use a larger threshold value

without loosing significant image quality because the vi-

sually disturbing artefact known as popping is avoided.

Both [Lindstrom95] and [deBoor2000] describe meth-

ods for selecting level of details given a certain error

bound. The error bounds are based on a maximum

height difference between two successive level of de-

tails as shown in Figure 3.

We have chosen to implement the method described in

[deBoor2000] and we will not describe that method fur-

ther in this paper. We have chosen that method for ease

of implementation. The number of polygons rendered

Figure 3: Error introduced when switching to a higher

level of detail

is reduced by a factor of 4 between two levels. The re-

duction at each level is therefore easily calculated (see

Table 2). An important property to note is that by far the

greatest reduction in the number of rendered polygons is

archived between levels 0,1 and 2.

2.2 Avoiding T-vertices and cracks

When two elements meet each other, the polygon edge

length of the adjacent lower resolution tile will be a

factor of 2p higher than the polygons of the higher

resolution, where p is the level difference between

adjacent tiles. This will cause both cracks and T-

vertices, that is a source of visual artefacts even when

the polygons are aligned. This would occur if the two

Figure 4: A tile that has a neighbouring tile of a lower

resolution to the right. The difference in level is one

(left) and two (right)

tiles in Figure 2 were joined together. In order to avoid

this, it is necessary to modify the geometry of one of

two adjacent tiles slightly when these are rendered

next to each other at a different level of detail. We

have chosen to always modify the tile with the lower

resolution of two neighbouring tiles of uneven level of

detail. This modification is illustrated in Figure 4 (left).

The method works by doubling the size of the triangles

that are adjacent to the larger tile. It is necessary to

extend the quad-tree with pointers to adjacent quad-tree

nodes in order to create the right triangulations of the

tiles. When this method is used, it is always possible to

connect two elements of different resolutions and at the

same time avoid cracks and T-vertices. We have chosen

only to allow the level of detail resolution to differ by

a value of one between neighbouring tiles although,

as indicated in Figure 4 (right), our method does not

demand this restriction.

2.3 Morphing between detail levels

We will now describe our method for removing popping

artifacts when switching between detail levels.

One solution for making the switch between two suc-

cessive levels of detail negligible, is to set the maximum

screen space error to one. But this will have the effect

that most of the tiles will be rendered using a very high

resolution and thus almost no polygon reduction will

take place. Choosing a higher maximum screen space

error will reduce the number of polygons much more

but on the other hand a sudden change will happen when

a tile is switched from one level to another. In the fol-

lowing, we will describe a method for making a smooth

morph between two different levels. We will use a tile

size of 3 x 3 for illustration purposes, but for any practi-

cal purposes it is advised to use a tile size of at least 9 x

9, 17 x 17 or 33 x 33 (see Section 2.5 for comments on

this issue).

When morphing from a higher resolution to a lower

resolution the values b, d, e, f , h are linearly interpo-

a b c

d e f

g h i

A B C

D E F

G H I

Figure 5: Before and after a morph

Morph calculations

A = a

B = v
(a+c)

2
+ (1− v)b

C = c

D = v
(a+g)

2
+ (1− v)d

E = v
(a+i)

2
+ (1− v)e

F = v
(c+i)

2
+ (1− v)f

G = g

H = v
(g+i)

2
+ (1− v)h

I = i

Table 3: Morph calculations where v is the morphing

variable in the interval [0;1]

lated between their original position and the values B,

D, E, F , H respectively. The calculation of the val-

ues in Figure 5 is shown in Table 3. When the linear

interpolation is complete, the higher resolution tile will

look exactly like the lower resolution tile and the simpli-

fied lower resolution tile may now replace the geometry.

Morphing from a lower resolution to a higher resolu-

tion is similar but the procedure must be inverted. The

very first thing that happens is that the tile is rendered at

the higher resolution, but geometrically it is identical to

the lower resolution tile. This is achieved by setting the

morph variable v in the equations in Table 3 to be 1.

When morphing between two levels of detail it is

not enough to morph one tile at a time since any tile

can share a number of edges with the neighbouring

tiles. Therefore, the border areas must be modified if

the neighbouring tiles are rendered at a different level.

When the level of a tile is changed, all neighbouring

tiles are examined, as they may have to be modified in

order to avoid T-vertices and cracks. In our current im-

plementation, we have restricted neighbouring tiles to

differ by at most one level. In the following, we will ex-

plain the algorithm we have developed in order to avoid

T-vertices and cracks between two tiles. In Figure 6 it

is shown that under some circumstances the neighbour-

ing tile is affected, and in Figure 7 it is shown that under

other circumstances the neighbour is not affected:

All tiles have four neighbours, except when the tile is

located on the edge of the height field, in which case

Tile Y

a

b

c

d

Tile X Tile Y

a

b

c

d

Tile X

Figure 6: Initially: Both tile X and tile Y are rendered

at the same level. After: Tile Y is rendered one level

higher. Border morph description: The point b is lin-

early interpolated between its original value and
(a+c)

2 .

When the morph is completed, tile X is modified by re-

moving the triangles 4dab and 4dbc and adding the

triangle 4dac. The shaded area is the area affected by

the morphing.

Level X morph direction Should Y morph?

X = Y up yes

X = Y down no

X > Y down yes

X < Y up no

Table 4: Rules to determine whether the neighbouring

region of Y should morph when X is morphing

it has two or three neighbours. All neighbours have to

be examined individually in order to find out whether

their border region should be modified and morphed

along with the tile that is changing level. In Figure 8

two tiles are shown. The regions that can be affected

by a neighbour are marked by the numbers 0 − 3. The

modified region of a neighbouring tile is easily shown

to be (q + 2)mod4, where q is the label of the region.

The rules that determine whether the region should be

morphed are listed in Table 4.

All tiles are created using geometry chunks, as de-

scribed earlier, which implies that the geometry data

may be cached on the graphics card. As seen in Ta-

ble 1 this is much faster than rendering individual poly-

gons. The actual calculation of the morph can there-

Tile Ya

b

c

a

b

c

Tile X Tile Y

Tile X

Figure 7: Initially: Both tile X and tile Y are rendered at

the same level. After: Tile Y is rendered one level lower.

Border morph description: The morphing in tile Y will

take place without affecting Tile X. The shaded area is

the area affected by the morphing.

X0 Y2

X1

X2

X3

X YY0

Y1

Y3

Figure 8: Morph affected regions

fore be calculated on the graphics card. For that pur-

pose a vertex-program is used. A vertex-program is a

low level program which can be executed directly in the

graphics hardware. Vertex programs were introduced

by Lindholm et al. [Lindholm2001]. A vertex-program

has many uses, but here we exploit its capabilities for

modifying the position of a vertex. This vertex modi-

fication could just as well be made in software, but the

advantage of using the hardware in the graphics card

for this purpose is that it is optimized for the 3D math.

Furthermore, a vertex program does not put any load

on the CPU because it strictly runs on the graphics card

(on newer graphics cards such as GeForce3, ATI Radeon

8500 or better). Another advantage is that a vertex pro-

gram can modify the geometry located in the memory of

the graphics card, which in our case is very important,

as we want to have all geometry located on the graphics

card. Thus, software morphing will not be possible, and

vertex programs are essential for being able to morph

Variables:

v[OPOS] = vertex1 position

v[NRML] = vertex2 position

v[WGHT] = weight

#

The function:

R0 = weight*vertex1 + (1-weight)*vertex2

#

The actual code:

ADD R0.x, c[4].x, v[WGHT].x;

MUL R1, v[WGHT].x, v[OPOS];

MAD R0, R1, R0.x, v[NRML];

Table 5: OpenGL Vertex Program

the geometry.

The program used in our implementation is rather sim-

ple since the only functionality of the program is to in-

terpolate between two vertex coordinates. The code for

interpolating between two vertices is shown in Table 5.

When calculating the lighting it is also necessary to use

the normals and these have to be interpolated in a simi-

lar way. But when interpolating normals it may be nec-

essary to normalize after the interpolation, as a linear

interpolation between two vectors does not preserve the

length. A normalization on current hardware requires 3

instructions and therefore 3 clock cycles as all instruc-

tions are currently implemented so as to only require one

clock cycle. It is very likely that a normalization will

be implemented as a single instruction on the graphics

cards in the future.

As previously described the morphing is triggered ei-

ther when the screen error becomes too large and a

higher resolution needs to be rendered, or when it is safe

to switch to a lower resolution. The morph is basically

an animation and there are several methods for control-

ling the timing of the animation. The options we have

considered are:

• Time controlled. The animation is purely con-

trolled by timing and the duration of the anima-

tion is set to a certain number of milliseconds.

• Framerate controlled. The animation is set to last

a ceratin number of frames.

• User speed controlled. The speed of the anima-

tion is set to be a function of the movement of the

user.

In [Hoppe98] the geomorphs are scheduled to last one

second.

We have chosen to make our morph animation user

speed controlled. The advantage of using this approach

is that the terrain does not animate when the user is not

moving, and when the user moves quickly it seems more

natural to let the terrain change more quickly. Further-

more, the triggering of a switch between different levels

of detail only occurs as the user moves a certain dis-

tance.

2.4 Tile Considerations

As mentioned earlier, the tile must be of size 2w + 1 by

2w + 1. The question is how to choose w in order to get

the optimal performance. Some arguments for using a

large value for w are:

• The larger the tiles, the fewer calls to the API are

necessary.

• Using larger tiles makes the quad-tree smaller and

thus faster to traverse.

Some of the arguments for using a smaller value for w

are:

• Tiles can be rendered at a higher level when using

a smaller tile size. Especially if the terrain is very

rough.

• It is faster to regenerate the triangulation of a

smaller tile, and the framerate will therefore not

differ much from frame to frame.

• Visually it is more pleasing that only a smaller

area of the terrain is morphing.

It is therefore clear that the choice of tile size depends

on both the structure of the terrain and the capabilities

of the CPU and graphics hardware. It is suggested by

[Corpes2001] that all mutations of the detail levels are

precalculated. We have tested how much memory we

could use in display lists before we experienced a per-

formance drop. As seen in Table 6, a performance drop

occurs when using between 3 and 4 Megabyte of display

lists (the number of vertex lists was shown to be irrele-

vant). This suggests that it is not appropriate to precal-

culate all mutations and pre-load these onto the memory

of the graphics card when visualizing large terrains.

We consider a tile to be made of a collection of geome-

try - a chunk. This chunk can be either a display-list or a

vertex-array in OpenGL. In DirectX a chunk would in-

stead be created using a locked Vertex Buffer. One dis-

advantage of using display lists is that it is not possible

to modify the geometry after the list has been created.

This is possible using vertex-arrays, but display lists are

currently faster. Our method requires that a neighbour-

ing tile may have to be slightly modified during a morph.

We have therefore chosen to divide our tile into several

display lists in order to avoid a complete regeneration

during a morph. In this way we achieve the fastest poly-

gon rendering with only minimal regeneration of display

lists.

Figure 9: A terrain rendered in wireframe seen from

above. The viewer is located at the center of the terrain.

Figure 10: A simple terrain with a background (left) and

rendered using wireframe

Memory used Triangles displayed

0.5 MB 24.5 M

1.0 MB 24.5 M

3.0 MB 24.5 M

4.0 MB 20.6 M

6.0 MB 16.0 M

12.0 MB 13.7 M

Table 6: Timings for memory used for display lists com-

pared to number of triangles displayed per second mea-

sured in millions.

3 Results

We have implemented our terrain-rendering algorithm

using the OpenGL API. Since vertex programs currently

Figure 11: A 1025 by 1025 terrain rendered using a tile

size of 17.

only exist as a vendor specific extension to OpenGL we

used the NVidia API. We have tested the system on a

Windows PC P3 800 Mhz with an NVidia GeForce 3

graphics card. We have chosen to create a predefined

path and to use this path for flying through the land-

scape while recording the framerates. Some results can

be seen in Table 7. It is noted that there is no signifi-

cant difference in the framerates with or without morph-

ing which indicates that the morphing feature does not

cause a performance penalty when vertex programs are

implemented in hardware. The same mesh was used in

different resolutions meaning that the small height-map

was very rough and the large one fairly smooth. It is

noted that when using the rough height-map it is bene-

ficial to use a small tile size, while the opposite is true

when using a smooth height-map.

One of the more costly operations is the creation of the

geometry chunks. This can be a problem if by coin-

cidence many geometry chunks have to be regenerated

in the same frame. Our solution was to make a queue,

and only allow one geometry chunk to be resubmitted

per frame. This is actually not very restrictive since the

expected number of initiated morphs per second is very

low when the observer moves with a moderate speed.

This is more an insurance in order to avoid worst case

behaviour, where by coincidence a very large number of

tiles initiate a morph at exactly the same frame.

4 Conclusion and Future Work

Though we find the approach very promising there is

space for improvements in the future. The error metric

is not so critical in our algorithm as in other algorithms,

but so far we have used a very crude one from the lit-

Terrain size Tile size With morph No morph

513x513 17x17 66.25 fps. 67.07 fps.

513x513 33x33 39.49 fps. 38.17 fps.

1025x1025 17x17 28.31 fps. 28.51 fps.

1025x1025 33x33 39.71 fps. 38.12 fps.

2049x2049 17x17 8.65 fps. 7.66 fps.

2049x2049 33x33 18.59 fps. 18.05 fps.

Table 7: Timings for terrain rendered.

erature and therefore the error metric should probably

be re-evaluated. Furthermore, as the viewer changes

position, the number of polygons rendered per frame

may fluctuate significantly. The number of polygons

is determined by the structure of the height field and

it is thus not possible to predict the number of poly-

gons to render. In real-time applications it is often very

important to have a fixed framerate which the applica-

tion is not allowed to drop below. This approach has

been implemented in many other terrain algorithms e.g.

[Duchaineau97] and [Röttger98]. In order to achieve

this, it is necessary to modify the algorithm for choos-

ing the level of detail so that the allowed pixel error is

dependent on the current number of rendered polygons.

Although graphics hardware is not very sensitive to ren-

dering a few thousand triangles more or less.

5 Acknowledgement

A special thank goes to Martin Reddy for his invalu-

able input and corrections to the paper. The authors

would also like to thank Kasper Høy Nielsen, Andreas

Bærentzen and Michael Arneborg Eriksen for helpful

comments and for proof-reading. This work was sup-

ported in part by the STVF project DMM and the Nor-

dunit2 project NETGL.

REFERENCES

[deBoor2000] de Boer, W. H. Fast Terrain Rendering

Using Geometrical MipMapping, unpublished and

only available at http://www.flipcode.com/ tutori-

als/geomipmaps.pdf

[Lindstrom2001] Lindstrom, P. and Pascucci, V. Visual-

ization of Large Terrains Made Easy, Proceedings

of Visualization 2001. pp. 363-370.

[Lindstrom96] Lindstrom, P. and Koller D. and Rib-

arsky, W. and Hodges, L. F. and Faust, N. and

Turner, G. A. Real-Time, Continuous Level of De-

tail Rendering of Height Fields, Proceedings of

ACM SIGGRAPH 96, August 1996, pp. 109-118.

[Lindstrom95] Lindstrom, P. and Koller, D. and

Hodges, L. F. and Ribarsky, W. and Faust, N. and

Turner, G. Level-of-Detail Management for Real-

time Rendering of Phototextured Terrain, Techni-

cal report GIT-GVU-95-06, January 1995.

[Lindholm2001] Lindholm, E and Kilgard, M. and

Turner, H. M. A User-Programmable Vertex En-

gine, Proceedings of ACM SIGGRAPH 2001, Au-

gust 2001, pp. 149-158.

[Röttger98] Röttger, S. and Heidrich, W. and Slusallek,

P. and Seidel, H. P. Real-Time Generation of Con-

tinuous Levels of Detail for Height Fields, V.

Skala, editor, Proceedings of WSCG ’98, pages

315-322, 1998

[Corpes2001] Corpes, G., Procedural Landscapes, pre-

sentation at GDC 2001

[El-Sana2000] El-Sana, J. and Evans, F. and Kalaiah,

A. and Varshney, A. and Skiena, S. and Azanli,

E. Efficiently Computing and Updating Triangle

Strips for Real-Time Rendering, Computer-Aided

Design Vol. 32, No. 13, Nov 2000, pp 753-772.

[Hoppe98] Hoppe, H. Smooth view-dependent level-of-

detail control and its application to terrain ren-

dering. IEEE Visualization 1998, October 1998,

pages 35-42.

[Reddy99] Reddy, M. and Leclerc, Y. G. and Iverson,

L. and Bletter, N. TerraVision II: Visualizing Mas-

sive Terrain Databases in VRML. IEEE Computer

Graphics and Applications. vol. 19(2). 1999. pp.

30-38.

[Leclerc94] Leclerc, Y. G. and Lau, S. Q. TerraVision:

A Terrain Visualization System. Technical Report

Technical Report 540. SRI International. Menlo

Park, CA. April 1994.

[Duchaineau97] Duchaineau, M. and Wolinsky, M. and

Sigeti, D. E. and Miller, M. C. and Aldrich, C.

and Mineev-Weinstein, M. B. ROAMing Terrain:

Real-time Optimally Adapting Meshes. Proceed-

ings of Visualization 1997. pp. 81-88.

[DeFloriani2000] DeFloriani, L. and Magillo, P. and

Puppo, E. VARIANT: A System for Terrain Mod-

eling at Variable Resolution. GeoInformatica. vol.

4(3). 2000. pp. 287-315.

