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Abstract

In  this  paper,  a  new  approach  to  line  spectral  
frequencies  transformation  is  introduced  and  
employed  in  the  voice  conversion  framework.  This  
approach  stems  from  the  fact  that  LSFs  are  some 
specific  points  on  the  frequency  axis  and  their 
positions determine the shape of the spectral envelope.  
Thus, they could be transformed directly by frequency  
axis  warping.  Two warping  functions  were designed  
specially for LSFs and compared with the traditional  
GMM-based conversion function.  Listening tests and  
mathematical  evaluation  revealed  that  speech  
transformed by using proposed warping functions is of  
higher quality and does not suffer from oversmoothing  
which is common for GMM-based transformation. On 
the other hand, the speaker identity is slightly better  
transformed by GMM-based conversion. However, it is  
possible to combine these two approaches to obtain a  
compromise between quality and speaker identity. 

1. Introduction

In this paper, a new function for transformation of 
line spectral frequencies – LSFs [1] is introduced. It is 
also  employed  and  tested  in  our  voice  conversion 
system  [2].  Usually,  LSFs  are  transformed  by 
employing  vector  functions.  However,  we  proposed 
a new approach  flowing from the  fact  that  LSFs  are 
some  specific  points  on  the  (normalised)  frequency 
axis; they are mostly located near formant frequencies. 
The  transformation  of  LSFs  can  be  interpreted  as 
a shift  of  particular  frequencies.  Thus,  it  should  be 
possible to transform LSFs directly by frequency axis 
warping. The main idea is depicted in Fig. 1.

Two different warping functions proposed specially 
for LSF transformation were compared with traditional 
GMM-based conversion function [3].

This paper is organized as follows. In Section 2, our 
baseline conversion system is briefly described.  Two 
warping functions for LSF transformation are proposed 
in Section 3. Experiments and results are presented in 
Section 4. Finally, Section 5 concludes this paper.

Fig 1. LSF transformation by using a warping 
function.

2. Baseline conversion system

Our  voice  conversion  system  employs  parallel 
training  data.  Voiced  speech  is  analysed  pitch 
synchronously;  each  segment  is  three  pitch  periods 
long  and  the  shift  of  analysis  window  is  one  pitch 
period.  Unvoiced  segments are  10  msec long with 5 
msec overlap. The spectral envelope of each frame is 
obtained by using true envelope  estimator  [4].  Then, 
the envelope is approximated with spectrum of an all-
pole  model  which is  represented  by its  line  spectral 
frequencies.  Experimentally,  35  was  selected  as  an 
optimal  parameter  order  for  sufficient  spectral 
envelope  approximation.  Moreover,  the  residual 
(excitation)  signal  for  each  speech  segment  can  be 
obtained  by inverse  filtration with the corresponding 
all-pole model. Frames of particular pairs of utterances 
are time-aligned by using DTW algorithm.
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In our baseline system, LSF features are converted 
by  employing  traditional  GMM-based  transformation 
function  [3];  fundamental  frequency  is  converted  by 
using Gaussian (mean/variance) normalization. And the 
suitable target residual signal is estimated by so-called 
residual prediction [5]. For more detailed information 
on our baseline system, see [2].

3. LSF warping functions

Transformation  by  using  warping  functions  is  a 
popular  approach  within  the  voice  conversion 
framework.  Recently,  Erro  at  al.  [6]  proposed  a 
combination  of  statistical  methods  and  warping 
function.  Usually,  warping  functions  are  used  for 
transformation  of  amplitude  spectrum  (or  spectral 
envelope).  In  our approach,  warping function is used 
for  shifting  the  position  of  particular  line  spectral 
frequencies. Thus, such a warping function is a scalar 
function f which transforms all the components x[i] (for 
i = 1,... P) of source LSF vector x

y [i ]= f  x[ i ] (1)

Similarly as in [6],  the joint  LSF feature space is 
divided into K classes and each class has its respective 
warping function. Aligned training data z = [xT, yT]T can 
be described with a GMM with  K components where 
each component corresponds to one class. However for 
larger  number  of  classes  or  less  amount  of  training 
data,  a  non-probabilistic  clustering  (e.g.  by using k-
means algorithm) is better to use instead. Then, each 
class is described by its centroid

z
k=[x

k [1 ] , ...x
k [P ] ,y

k [1 ] , ...y
k [P ]]T

and diagonal covariance matrix

z
k=diag [ x

k [1 ] , ...x
k [P ] ,y

k [1 ] , ...y
k [P ]] .

Both μz and Σz can be decomposed into parts which 
correspond to source and target speaker: μx, μy, Σx, Σy.

For each class k, an individual warping function fk is 
defined and the final position of  i-th LSF is given as 
a weighted average over all classes

y [ i ]=∑k=1

K
w k  x f k  x [ i ] . (2)

In the case of GMM-based LSF space description, 
the  weight  wk(x) of  the  k-th  class  is  given  as  the 
conditional  probability  p(k|x). Or in the case of non-
probabilistic clustering, the weight is defined as

w k x=
1 /d k x

∑ j=1

1
1 / d jx 

, (3)

where dk(x) is Mahalanobis distance

d kx =[x−x
kT  x

k−1x−x
k] (4)

Parameter γ controls the smoothing among results of 
particular  classes.  The  higher  is  the  value  of  γ,  the 
higher are the weights of closer classes in comparison 
with weights of remoter classes. Experimentally, we set 
γ = 4,  though  the  value  probably  depends  on  the 
number of classes too.

3.1. Piecewise linear warping function (WL)

First, the mean vectors of all classes are extended

x
k [0 ]=y

k [0 ]=0
x

k [P1 ]=y
k [P1 ]=

(5)

The warping function is divided into P + 1 intervals. 
For the j-th interval

x [ i ]∈〈x
k [ j−1 ] ,x

k [ j ] 〉 (6)

the warping function is defined as a linear function

y [i ]= f k
j x [ i ]=a k

j x [ i ]bk
j . (7)

All  the  unknown parameters  are  determined  from 
the requirements for the boundary points of particular 
intervals; e.g. for the j-th interval, we require

f k
j x

k [ j−1 ]=y
k [ j−1 ]

f k
j x

k [ j ]=y
k [ j ]

(8)

3.2 Piecewise cubic warping function (WC)

Gaussian (or mean-variance) normalization for two 
scalar Gaussian variables

1~N {1,1} 2~N {2,2} (9)

is given as

2=2
2

1
1−1 . (10)

The tangent of that transformation function is given 
as  σ2/σ1.  A similar  feature  will be demanded for  our 
warping function. First, we introduce

k [i ]= y
k [ i ] / x

k [ i ] i=1,2 , ... P
(11)

k [0 ]=k [P1 ]=1

Warping function in the j-th interval

x [ i ]∈〈x
k [ j−1 ] ,x

k [ j ] 〉 (12)

is defined as a cubic function



f k
j x [i ]=a k

j x3[ i ]b k
j x2[ i ]ck

j x [i ]d k
j (13)

and its derivation is given as

g k
j  x [ i ]=3 a k

j x2[ i ]2 b k
j x [i ]c k

j (14)

Again, all unknown parameters are determined from 
the requirements for the boundary points of particular 
intervals; for the warping function, we require

f k
j x

k [ j−1 ]=y
k [ j−1 ]

f k
j x

k [ j ]=y
k [ j ]

(15)

and for its derivation (in accordance with (10))

g k
j x

k [ j−1 ]=k [ j−1 ]
g k

jx
k [ j ]=k [ j ]

(16)

Comparison  of  piecewise  linear  and  piecewise  cubic 
warping function is presented in Fig. 2.

Fig. 2. Comparison between WC and WL function.

4. Experiments and results

In  all  experiments,  40  utterances  were  used  for 
training and another 15 utterances for assessment. All 
utterances were Czech sentences, about 6-7 words long. 
First, one female (reference) speaker recorded all the 
utterances.  Then  4  other  speakers  (2  males  and 
2 females,  denoted  M1,  M2,  F1  and  F2)  listened  to 
these reference  recordings and repeated  them. In  our 
experiments, conversion from reference speaker to all 
other speakers was performed.

4.1 Objective evaluation

For performance evaluation of our VC system,  so-
called performance index PLSF was employed

P LSF=1−
∑n=1

N
d  yn , yn

∑n=1

N
d xn , yn

. (17)

The  higher  is  the  PLSF value,  the  higher  is  the 
similarity between transformed and target utterances in 
comparison with the original similarity between source 
and target utterances.

Comparison between WL and WC transformation is 
presented in Fig. 3. Obviously,  for a lower parameter 
order,  WC slightly outperforms WL.  However,  for  a 
higher parameter order, warping functions for WL and 
WC are defined by more points and their shapes differ 
insignificantly. Thus WL and WC perform practically 
the same.

Fig. 3. Dependency between number of classes and 
PLSF for particular speakers. Parameter order was 

set to 10 and 35.

The  direct  comparison  between  GMM-based  and 
warping transformation is quite difficult. GMM-based 
function performs best for a low number of mixtures 
(about 10). For a higher number of mixtures, the value 
of  PLSF decreases;  probably  more  training  data  are 
necessary  for  a  superior  estimation  of  GMM 
parameters.  On the  other  hand  WC or  WL graduate 
their performance for a high number of classes (above 
100). The comparison is presented in Tab. 1.

Tab. 1. Comparison of PLSF.

Function Number of 
classes

Target speaker

M1 M2 F1 F2

GMM

5 0.424 0.326 0.303 0.346

10 0.425 0.328 0.301 0.345
20 0.421 0.317 0.296 0.336

WC

5 0.235 0.149 0.135 0.184
10 0.264 0.172 0.153 0.203

20 0.279 0.188 0.172 0.221
150 0.314 0.219 0.189 0.240
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The  degree  of  parameter  oversmoothing  can  be 
scored by average global variance ratio

RGV=
1
P ∑p=1

P GV  y [ p ]
GV  y [ p ] (18)

where  GV(y[p])  is  the  (global)  variance  of  the  p-th 
component  of  parameter  vector  y over  the  whole 
utterance.  The desired value of  RGV is about 1; lower 
values signify oversmoothed parameters.

The results for GMM-based and WC transformation 
are  compared  in  Tab. 2.  Obviously,  RGV for  WC  is 
significantly better.  However,  for a higher number of 
classes,  RGV value decreases. Probably, the smoothing 
parameter  γ in (4)  should be selected  with regard  to 
number of classes.

Tab. 2. Comparison of RGV.

Function Number of 
classes

Target speaker
M1 M2 F1 F2

GMM
5 0.642 0.676 0.670 0.686
10 0.655 0.691 0.700 0.683

20 0.667 0.705 0.703 0.706

WC

5 1.081 0.968 1.005 0.960

10 1.038 0.953 1.004 0.958
20 0.997 0.939 0.984 0.946

150 0.935 0.912 0.955 0.912

4.2 Listening tests

The  proposed  transformation  methods  were  also 
evaluated in listening tests. 10 participants took part  in 
those tests; each of them listened to 20 quintuples of 
utterances:  from  source  and  target  speakers  and  3 
converted utterances (in random order): transformed by 
using GMM-based transformation, WC function and a 
compromise between them given by

yGW= yGMM1− yWC (19)

where β was set to 0.5.
Listeners  should  order  the  converted  utterances 

descending  according  to  their  quality  and  also 
(independently) according to the voice similarity with 
the target  voice.  Then, average quality and similarity 
rankings were calculated for each method. The lower 
value means the better quality or similarity. Results are 
presented in Tab. 3.

Results of listening tests were analysed by using the 
paired  t-test.  The  system  utilizing  the  WC  function 
produces  speech  of  higher  quality  (but  of  less 
similarity)  than the baseline system with P-value less 
than 0.0001, which is extremely statistically significant. 

Tab. 3. Average rankings of particular methods.

GMM GW WC
Similarity 1.83 ± 0.56 1.94 ± 0.31 2.23 ± 0.59

Quality 2.34 ± 0.55 2.02 ± 0.45 1.65 ± 0.62

5. Conclusion

In  this  paper,  a  new  approach  to  line  spectral 
frequencies  transformation,  based  on  frequency  axes 
warping was introduced.  Two special  functions  were 
proposed  –  piecewise  linear  and  piecewise  cubic 
warping function. 

Both  objective  and  subjective  comparison  with 
traditional  GMM-based  transformation  revealed  that 
speech  transformed  by  using  warping  function  is  of 
higher quality and does not suffer from oversmoothing. 
On  the  other  hand,  the  speaker  identity  is  better 
transformed by GMM-based conversion. However, it is 
possible to combine these two approaches and obtain 
a compromise between quality and speaker identity.
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