
An Image-Based Multiresolution Model for
Interactive Foliage Rendering

Javier Lluch

Sistemas Informáticos y
Computación

 Universidad Politécnica de
Valencia

46022 Valencia, Spain

jlluch@dsic.upv.es

Emilio Camahort
Sistemas Informáticos y

Computación
 Universidad Politécnica de

Valencia
46022 Valencia, Spain

camahort@dsic.upv.es

Roberto Vivó
Sistemas Informáticos y

Computación
 Universidad Politécnica de

Valencia
46022 Valencia, Spain

rvivo@dsic.upv.es

ABSTRACT
This paper presents a new method for realistic real-time rendering of tree foliage. Some approaches to this
problem have been presented before but the quality of their results was not maintainable with respect to changes
in view vector and observer distance. Our method is based on a hierarchy of images obtained from pre-
processing the botanical tree structure (an L-system) and storing the information in a texture data tree without
increasing rendering time. The texture tree is traversed for each frame and an appropriate set of images is
extracted and blended with the previous image set. The number of polygons is dramatically reduced – thus
enabling interactive visualization and smooth transition between levels of detail. Our method can be easily
applied to computer games and visual interactive applications containing vegetation.

Keywords
Plant and tree modeling and rendering, multiresolution modeling, image-based rendering.

1. INTRODUCTION
Tree modeling is a field that has lately received much
attention from the computer graphics community.
Techniques like L-systems [Prus90], modeling by
components [Lint99], and commercial applications
such as OnyxTREE [onyx03] and AMAP [deRe88]
suggest the possibility of interactive rendering scenes
made up of tens, or hundreds, of trees. Still, these
modeling methods produce too many polygons,
making them unfeasible for interactive rendering of
large scenes with many trees.

One way of modeling trees more efficiently is by
separating the model for the trunk and the branches
from the model for the leaves. In this paper we use
L-systems to model the trunk and branches. Given an
L-system we derive it using production rules and
obtain a string that can be graphically interpreted

[Prus90]. Interpretation produces a multiresolution
model that enables accelerated visualization of the
geometry of the trunk and branches.

For the tree foliage we propose a model that uses a
set of pre-computed images for rendering. These
images replace the leaves contained in a bounding
box representing a group of branches. The images
are organized in a hierarchical fashion representing
different levels of detail (LODs). The method that
computes this multiresolution representation is fully
automatic. We obtain the best results when the size
of the leaves is small compared to the size of the
plant.

Our model supports tree rendering at different LODs
depending on viewer distance. The visual quality of
the renderings does not depend on camera orientation
or viewer distance. The coarsest LOD is represented
by a bounding box containing the leaves of the entire
tree. The finest LOD is made of a set of texture-
mapped polygons, one for each leaf.

This representation supports progressive
transmission by sending a stream of images
corresponding to the different LODs. For the trunk
and the branches a text file containing the L-system
can be sent with just a few bytes. The L-system can
then be interpreted at the destination. Also, we can

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

use other techniques to model them [Lluc01]
[Lluc03].

Using our multiresolution representation, we can
render several hundreds of trees at interactive rates.
A frame rate of 15 fps is achieved by carefully
choosing the LOD to be rendered for each tree. Our
method creates a complex model in less than a
minute. The model occupies less than 250Kbytes in
compressed format. A tree can be as leafy as desired
because additional leaves do not increase the
rendering time.

This article is organized as follows: Section 2
reviews previous work in interactive tree rendering,
Section 3 introduces the method we use to obtain the
data structures and images used for rendering,
Section 4 describes our rendering algorithm, and
Section 5 presents the results obtained with our
method. Conclusions and future work are discussed
in the last section of the paper.

2. BACKGROUND
There are many real-time and virtual reality graphics
applications that attempt to immerse the user in an
outdoor scene. The scene can be made up of
numerous natural elements such as plants and trees.
For a more realistic effect, the scene usually includes
a lot of detail. For example, it is important that the
leaves of the trees be represented realistically – just
in case the viewer gets closer.

The most common acceleration technique for tree
rendering uses impostors. An impostor replaces the
tree, or part of it, with one or more textured
polygons. There are two types of impostors. A
billboard is an image texture mapped onto a polygon
that is always facing the viewer. Alternatively, we
can use two perpendicular polygons texture-mapped
with a transparent texture. The main problem with
these two approaches is that they lose realism as the
user gets closer to the tree.

A different model common in MMORPGs
(Massively Multiplayer On-line Playing Games)
compromises between the use of geometry and the
use of impostors. The method requires user
intervention to model the trunk and branches. For the
trunk it uses a few cylinders. For the branches it uses
a few textured polygons. For the leaves, it uses one
billboard for each branch.

Schmalstieg [Schm96] presents a method that
supports direct rendering of L-systems by
transforming the rewriting system into a directed
cyclic graph. The method does not use an
intermediate polygonal model making it very
memory efficient. Once the graph is generated, it can
be traversed from left to right to visualize the model.

Only one model is needed to create a set of different
individuals of the same species. It is enough to define
the main features of the species and use some
random values in the derivation process. Problems
with this method appear when obtaining the LODs.
LOD generation requires that a sub-graph
(representing a tree branch) be replaced by a single
primitive with an adequate color and shape. This is a
complicated task that has to be done manually.

Meyer and Neyret propose a method that renders
volumetric textures interactively [Meye98]. This
approximation is based on slicing a piece of 3D
geometry into a sequence of layers. A layer is a
rectangle containing the shaded geometry of a given
slice. These layers are later used as transparent
textures in the rendering process. An object is made
of a triangular mesh with texture coordinates and
height vectors associated to each vertex. It also uses
a volumetric pattern formed by a set of RGBA
textures representing very thin horizontal volume
slices. A problem occurs when the observer is
located in a place where the lines of sight with the
height vectors form an angle close to 90º. In this
case, holes appear between different slices and
realism is lost. The solution is to create a group of
slices for each of the main directions, tripling the
number of necessary textures.

Jakulin presents a technique that combines geometry
for trunk and branches with images for leaves
[Jaku00]. The crown is visualized by using a
multilevel representation, where each level is made
of a texture called a slice. For each tree, there are
several groups of levels used to simplify rendering
from different viewpoints. Transitions between
LODs are made by controlling the texture opacity as
a function of the angle formed with the look vector.
This makes LOD transitions smoother and reduces
the number of slices used by the model. Slices in the
same group are parallel and equidistant. A tree is
modeled using six slice groups forming a 60º angle
between them, and containing five slices each. A
total of 30 textures are thus used to model the leaves
of a tree. This method is only valid for an observer
located on the ground – and from ten to fifty meters
away. Therefore, it is impossible to render fly-by’s
without losing realism.

3. DATA STRUCTURES
We present a new model for efficient plant and tree
rendering. Given a tree represented by an L-system,
the multiresolution modeling process begins by
deriving a parametric chain. The chain is interpreted
and a data structure is created containing the relevant
information for rendering. In this Section we
describe this data structure and the algorithm that builds
it.

Description
The data structure is a tree made of nodes and edges.
Each node has a link to its parent node, its children
list and its sibling list. There is a special node, called
root, with no parent or siblings. Figure 1 shows an
example of this data structure for a simple tree. We
use it to model the trunk and branches of any plant or
tree.

Associated to each node we store a graphics
primitive: for instance, a cylinder, a sphere or a
polygon. Each node also contains information about
the bounding box of its sub-tree. Bounding boxes are
given by its two extreme points, min and max. They
bound the current branch and all of its children.

Figure 1. Tree hierarchical data structure.

Construction
We use stack-based turtle graphics [Prus90] to build
a tree. We add a node every time a new module of
the input string is interpreted. The module may have
a graphical meaning, like a cylinder representing a
branch, or it may encode a stack operation. There are
two stack operations: PUSH that saves the turtle state
in the stack and increases the tree level by one, and

POP that recovers the stack state and decreases the
tree level by one.

The bounding box hierarchy is built while building
the tree data structure. PUSH and POP modules
represent the beginning and end of a new branch and,
therefore, a new bounding box. At any time during
the interpretation, an open box is a box whose
dimensions are not final, because the children of its
associated branch have not yet been completely
traversed. The most recently created box is called
last box. Finally, level gives the current depth in the
graph.

3.2.1 Generating the Bounding Boxes
The following algorithm computes the bounding
boxes associated to a tree’s parametric string:

The algorithm runs as follows. When the interpreter
finds a PUSH module, a new open box is created and
initial values are assigned to its endpoints. From then
on, all open box dimensions are updated for every
module parsed, until a POP module is encountered.
Once the process is finished, each node has an
associated bounding box. Note that L-systems
produce well-formed parametric chains, with equal
numbers of PUSH and POP modules. Therefore, the
bounding box associated to a node includes all the
bounding boxes associated to its children,
grandchildren, etc.

After running this algorithm we are left with a
bounding box hierarchy containing the tree’s
geometry. Now we calculate a set of images
representing the geometry located inside of each
suitable box.

3.2.2 Generating the Pre-Computed Textures
We use images (textures) to replace the geometry of
a tree’s leaves. When a bounding box is closed, its
dimensions define a volume containing a branch of
the tree and its children branches. So, we use the
bounding box to generate a set of images that

Process the modules of a parametric string
In case module is:

PUSH Create a new box
Give initial values to min, max

 Mark the box as last and open
Increment level

POP Close the last box
Save the box

CYLINDER, FORM
Update min, max of all open boxes

FORWARD Modify (advance) the turtle position
TURN Modify (rotate) the turtle orientation

node11→parent

node1→parent

root

node11 node12

root→child

node11→sibling

node11→child node12→child

NILNIL

node12→father

node1

node1→child

root

node1

node12 node11

Represented Tree

node→parent
node→child
node→sibling

represent the geometry of the leaves located inside
the box. At rendering time, we replace the leaves’
geometry with images.

We generate an orthographic projection for each side
of a box. We place the camera at the center of the
target face, with the look vector facing the center of
the box. Then, we project the leaves inside the box
onto the target face, and store the resulting image as
a texture map. At the end of the process, we have
generated six images per bounding box. This may
require a large amount of storage, especially if we
generate one set of images per branch. The size of
the images is also relevant. Most graphics cards have
a texture memory of 32Mbytes – 64Mbytes for high-
end cards. Hence, we need to find a compromise
between texture size and model quality. Figure 2
shows an example.

3.2.3 Texture Size
Graphics cards typically impose two conditions on
the selection of a texture’s size. First, both the
horizontal and the vertical dimensions must be the
same. Second, they have to be powers of two. We
avoid textures that have dimensions larger than 128,
since they are too big and require too much texture
memory. We also avoid textures smaller than 64,
since they are too small and introduce distortions
when projecting the foliage. Consequently, we use
textures of 64 and 128 square pixels. 64-pixel
textures are used to represent four times more trees at
a lower resolution. 128-pixel textures are used to
represent higher-quality trees.

Figure 2. Generating a pre-computed texture to
replace the leaves of a tree branch

Bounding boxes at the same tree level correspond to
the same LOD. Boxes at higher levels include the
boxes at lower levels. If the textures of a bounding
box are rendered, the boxes inside of it are not
rendered. If the observer is located far enough, the
leaves will be rendered using the textures computed
for the box bounding the whole tree. As the observer

approaches the tree, smaller bounding box textures
representing different branches are rendered.

We choose a constant texture size for all levels. A
texture does not depend on the size of the box it
represents. Using 128x128 textures, we can store an
entire binary tree of depth ten in roughly 96 Mbytes
of memory. Now we focus on the task of reducing
the number of levels whose textures need to be
calculated.

3.2.4 Number of Levels
We limit the number of levels using an adjustable
strategy that takes into account the tree’s topology.
We compute the ratio between the volume of a
node’s box and the volume of its parent’s box. If the
ratio is smaller than a threshold, we do not generate
textures for the node’s box. We use this threshold to
adjust the number of LODs and the number of
textures for a given tree. The choice of threshold is a
tradeoff between realism and the amount of storage
used for textures.

4. RENDERING ALGORITHM
Interactive tree rendering is an expensive task due to
the geometric complexity of tree models. Our
algorithm solves this problem by using images to
replace a tree’s leaves. In this section, we discuss our
rendering algorithm and comment on some
acceleration and visual improvement techniques.

Figure 3. Rendering the textures associated to a
bounding box.

Consider the case when the viewer is relatively far
from the tree. In that case, we replace the geometry
of all the leaves by six texture-mapped polygons. The
textures correspond to the bounding box of the root
of the tree. The polygons are arranged in a cross, as
illustrated in Figure 3. Only three polygons are
actually visible to the viewer; the other three are
back-face culled.

Figure 4. Leaf rendering algorithm.

As the viewer gets closer to the tree, we render
texture-mapped polygons associated to finer LODs
of the tree. The polygons replace the leaves
stemming from a branch and its children branches
located inside of the LOD’s bounding box. Figure 4
shows this leaf rendering algorithm. Note that we

have a distance associated to each LOD. That
distance determines when that LOD is to be
rendered.

Computing the Distance Associated to an
LOD
Box textures have an optimal display distance that
depends on their projected area in the final image.
That area is maximized when the projection happens
along the look vector. We can determine the distance
between the viewer and the box so that the projected
area is 128 or 64 pixels. That way, if the image is
located at that distance, we do not have to scale it
before projecting it. The distance that switches from
one LOD to the next one can be obtained from the
distance that maximizes the projected area of the
texture. The projected area will be reduced if the
object is closer to the viewer or the projection is not
perpendicular to the viewing direction (see Figure 5).
Distances that produce changes in the LODs are pre-
computed and stored for each bounding box. That
way no extra computation is necessary at rendering
time.

⇒
⋅

=→=
)2/tan(2

p
2/

)2/tan(
fov

vy
z

zp

vy
fov

)2/tan(128322

322/

fov

vyyzpy
z

zpz

y

⋅

⋅
=

⋅

⋅
=→=

Figure 5. LOD distance computation

Improvements on the Algorithm
Our algorithm produces two types of artifacts.
‘Popping’ occurs across textures in a box and when
transitioning from one LOD to another. Additionally,
our renderings look much like billboards with no
sense of volume inside the bounding boxes. One
option to solve these problems uses volumetric

Leaf drawing algorithm
// Using geometry: cylinders, cones, and/or polygonal
meshes
root_node := read tree root
child_node := left child of root_node
While (child_node <> NIL) ∧
 (level of child_node ≤ top detail level) Do
 obtain distance from viewer to child_node box
 If distance > lod distance Then
 draw child_node box
// Using texture-mapped polygons
// We have rendered a box for this branch, so we are
// done
// Now we continue with its next sibling, if it exists
 While (child_node <> NIL) ∧
 (right sibling of child_node = NIL) Do
 child_node := parent of child_node
 End While
 If (child_node <> NIL) ∧
 (child_node <> root_node) Then
 child_node := right sibling of child_node
 End If
 Else
// We continue rendering children
 If (left child of child_node <> NIL)
 child_node := right child of child_node
 Else
 While (child_node <> NIL) ∧
 (right sibling of child_node = NIL) Do
 child_node := parent of child_node
 End While
 If (child_node <> NIL) ∧
 (child_node <> root_node) Then
 child_node := right sibling of child_node
 End If
 End If
 End If
End While

α
fov

vy y

PV

zp

z

32

Textured
polygon

Projected
polygon

PP

textures, as proposed by Meyer and Neyret
[Meye98]. Their solution divides the volume of a box
into parallel slices, each with an associated texture. It
requires, however, a much larger amount of texture
memory, thus reducing the number of trees that can
be represented.

Instead we propose using six diagonally aligned
textures per box. The textures are arranged as
illustrated in Figure 6. Our approach improves the
sense of volume inside the boxes without requiring
additional storage. We also reduce the popping
artefacts by alpha-blending the texture-mapped
polygons associated to a box. Alpha blending is also
used to achieve smooth transitions between LODs.

Figure 6. Diagonally aligned textures.

5. RESULTS
We developed two applications to test our method.
The first application supports modeling plants and
trees using L-systems. It also generates the sets of
images that represent the leaves of the trees at
different LODs. The second application is an
interactive renderer of our tree models.

We run our tests on a Pentium III at 500 MHz with
256 Mbytes of RAM and a GeForce 2 MX graphics
card. Generating all the images associated to a tree
takes less than one minute. The images occupy
between 4 and 6 Mbytes of storage. If we use a 32
Mbyte graphics card, we can store up to 8 complete
tree models. Note that this is not necessary as we
only need to store the LODs currently in use at any
time. A model can be progressively transmitted by
sending the definition file of the L-system followed
by the images compressed and sorted by LOD.

Figure 7 shows a tree model rendered using
geometry and the three image-based approaches
discussed in this paper. Note that there are barely any
visual differences between the first and the last
image. Still, the leaves in the first image require
20000 texture-mapped polygons, while the last image
only requires 50 polygons.

Figure 8 contains a close view of a tree. The leaves
closest to the viewer are represented by one polygon
each. All the other leaves are rendered using pre-
calculated images. Figure 9 illustrates another feature
of our method, namely, that the models can be
rendered from any direction without loss of realism.

Finally, Figure 10 compares the frame rate of our
approach with the frame rate of a geometry renderer.
Note that our approach can render scenes with a
couple of hundred trees at interactive rates.

6. CONCLUSIONS AND FUTURE WORK
In this paper we present an image-based
multiresolution approach to interactive tree
rendering. Our method builds the LODs of a tree by
grouping branches into a bounding box hierarchy.
Associated to each bounding box we store six images
representing the leaves contained in the box. The
amount of memory used by this image representation
is independent of the number of leaves of the tree.
Our method automatically builds these tree models in
less than one minute.

At rendering time we select and display the right
LODs and related images using a viewer distance
criterion. For the same tree model, leaves closer to
the viewer may be rendered at a higher LOD than
leaves located further from the viewer. Unlike
previous approaches, our tree models are view-
independent and we can render hundreds of them at
interactive rates. Our models can also be
progressively transmitted. The images that belong to
the different LODs can be sent separately, starting
with the coarsest LOD. In a low bandwidth scenario,
we can send an L-system definition file occupying a
just a few bytes. After that we can send the images or
we can generate them locally at their destination.

We are currently working on a multiresolution tree
model that combines our image-based representation
for the leaves with a procedural multiresolution
representation for the trunk and branches [Lluc03].
Our goal is to apply the resulting modeling
techniques to interactive computer graphics
applications like computer games, simulation,
interactive walkthroughs and fly-by’s, and virtual
and augmented reality.

7. ACKNOWLEDGEMENTS
This work was partially supported by grant TIC2002-
0416-C03-01 of the Spanish Ministry of Science and
Technology, and by a grant of the Programa de
Incentivo a la Investigación 2003 of the Universidad
Politécnica de Valencia.

8. REFERENCES
[Jaku00] A. Jakulin. Interactive Vegetation Rendering with

Slicing and Blending EUROGRAPHICS 2000
[Lint99] B. Lintermann and O. Deussen. Interactive

modelling of plants. IEEE Computer Graphics and
Applications,19(1), January/February 1999.

[Lluc01] J. Lluch, M. J. Vicent, S. Fernández, C.
Monserrat. The Modelling of branched structures

FRONT SIDE TOP

using a single polygonal mesh. Proceedings on
IASTED International Conference Visualization,
Imaging and Image Processing Conference,
September 2001

[Lluc03] J. Lluch, E. Camahort, R.Vivó, “Procedural
Multirresolution for Plant and Tree Rendering”, 2nd
International Conference on Virtual Reality,
ComputerGraphics, Visualization and Interaction in
Africa. AFRIGRAPH 2003. ACM SIGGRAPH, pp
31-38, 2003.

[Meye98] A. Meyer and F. Neyret. Interactive volumetric
textures. Eurographics Rendering Workshop 1998,
157–168, June 1998.

[Prus90] P. Prusinkiewicz, A. Lindenmayer, “The
algorithmic beauty of plants”, New York, Ed.
Springer-Verlag, 1990

[Schm97] D. Schmalstieg, M. Gervautz, Modeling and
Rendering of Outdoor Scenes for Distributed Virtual
Environments, Proceedings of ACM Symposium on
Virtual Reality Software and Technology 1997
(VRST'97), pp. 209-216,Lausanne, Switzerland, Sep.
15-17, 1997

[onyx03] www.onyxtree.com
[deRe88] P. de Reffye, C. Edelin, J. Françon, M. Jaeger

and C. Puech, Plant Models Faithful to Botanical
Structure and Development, in Computer Graphics
(SIGGRAPH '88 Proceedings), 22(4), pp. 151-158,
August 1988

Figure 7. A tree whose leaves are rendered using (a) geometry only - 20.000 polygons, (b) axis aligned
textures with 20 pol., (c) volumetric textures with 200 pol., and (d) diagonally aligned textures with 50 pol.

Figure 8. A close view of a tree

Figure 9. Trees rendered from different viewpoints.

fps as a function of model size

0
5

10
15
20
25
30
35
40
45

2x2 3x3 4x4 5x5 6x6 8x8 10x10 12x12 15x15

Number of trees

fp
s

Figure 10. Frame rate as a function of the number of trees when rendering using geometry only
(red) and using our image-based multiresolution approach (green).

