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{dtihelka,gruber,zhanzlic}@kky.zcu.cz

Abstract. The paper points to problematic and usually neglected as-
pects of using listening tests for TTS evaluation. It shows that simple
random selection of phrases to be listened to may not cover those cases
which are relevant to the evaluated TTS system. Also, it shows that
a reliable phrase set cannot be chosen without a deeper knowledge of
the distribution of differences in synthetic speech, which are obtained by
comparing the output generated by an evaluated TTS system to what
stands as a baseline system. Having such knowledge, the method able
to evaluate the reliability of listening tests, as related to the estimation
of possible invalidity of listening results-derived conclusion, is proposed
here and demonstrated on real examples.
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1 Introduction

During the development, enhancement, or experiments with text-to-speech (TTS)
system, researchers usually face the problem of reliable evaluation of the new or
enhanced system. Contrary to speech recognition (ASR, LVCSR) [?,?], which can
be evaluated by using an input signal to be recognised accompanied by the text
transcript of the signal expected to be recognised, and the use of mathematical
methods of text difference evaluation, the evaluation of a TTS system must still
rely on (rather a larger number of) subjective responses of listeners evaluating
the naturalness, or comparing two versions of a TTS system. Unfortunately, the
comparison of TTS outputs on the signal level, although being mathematically
rigorous, does not correspond very much to the listeners’ perception [?,?].

In addition, there is a problem with the absence of a unified methodology of
comparing various TTS systems. With the exception of the traditional Blizzard
Challenge evaluation event [?,?], there is no common public database (or a set
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of language-specific databases) from which synthetic speech could be created
and compared to speech generated by other synthesizers. The existence of such,
within TTS community generally agreed, database would allow the robust and
reliable comparison of TTS systems with results mutually comparable across
individual systems, whether evaluating the enhancement of a particular TTS
engine, or comparing one engine to another. Without this, the TTS researchers
will continue to face the problem of how to validly interpret non-self-repeatable
private-data-collected evaluations like “on our data, the performance was in-
creased significantly”, which we were faced with e.g. in [?].

However, the situation in the field of TTS evaluation is even worse. The usual
procedure is to randomly select [?,?,?,?,?] a number of sentences, synthesize
them by various synthesizers (or by various versions of the same synthesizer)
being compared, and let the listeners evaluate individual outputs independently
(using the MOS test), or confront one with the other (using the CCR test). The
overlooked side of such an approach is that it may not reveal very much about
the enhancement or the lowering of the quality, since the significant cases (see
the definitions of δ for what they mean) that may show different results have
not even been tested.

Therefore, the present paper aims to offer a rigorous methodology which
enables lining up and quantifying the possibility that the results drawn from
listeners’ evaluation may not be entirely trustworthy. We are convinced that
this information should be included in each listening test-based TTS evaluation.

2 Reliability of listening tests

When experimenting with enhancements of a TTS system, it is usually a rather
small part of the whole system which is actually changed. Therefore, when syn-
thesizing a set of test stimuli by the baseline and the enhanced version, some
parts of the generated speech and even whole phrases will remain identical for
both versions.

However, to be able to evaluate results, only a reasonable number of stimuli
is generated for the listening test, usually ranging from 10 to 30. Otherwise, i.e.
when having a larger number of listening stimuli, there is a risk of not finding a
sufficient number of listeners willing to participate in the test, or they will not
carry out the test as carefully as they should.

2.1 Suitability of phrases to be evaluated

Let us define a difference function δ(a, b) determining how much two variants
a and b of the same phrase (generated by different synthesizers or synthesizer
versions) differ from the point of view of the material used to build the phrases:

δ(a, b) ∈ 〈0, 1〉

with boundary value δ(a, b) = 0 ⇔ a = b and δ(a, b) = 1 ⇔ a ∩ b = ∅. For
example, in the case of unit selection TTS, the δ(a, b) = 1 is the case where no
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unit candidate occurring in a is also used in the same position in b. Nevertheless,
it is not strictly necessary to limit the range in any way; we have simply used it
for higher readability.

Having the difference function, we can build its probability mass function
P (δ) (shown in Figure 1) and distribution function F (δ). Note that we need
to work with probability space, since the set of phrases to be synthesized, and
to be possibly listened to, is countable but not finite1. And now it is simple to
compute

P (X ≥ δ) = 1− P (X < δ)

which represents the probability of synthesizing a phrase with the value δ higher
than a given value.

The interpretation of this number is now rather straightforward and provides
important information usually neglected in the “classic” approach — how large
is the expected probability of the occurrence of a synthetic phrase not covered by
the listening tests, i.e. the probability of the occurrence of a phrase for which the
result of the listening test is not valid. Or alternatively, what is the probability of
the occurrence of the worst possible case covered by the tests (the δ of phrases
used for listening), while one can expect (or test) that all of the better cases
(lower δ) will not sound worse, simply due to their higher similarity to the
version of TTS system being compared to2.

2.2 Real example demonstration

To illustrate this on some real examples, let us use the statistics obtained during
the research into our TTS system optimization (described in [?]) as well as a
“dummy” experiment in which we changed a small part of concatenation cost
computation:

data size reduction, experiment 1. We have removed some phrases from
the full corpus to reduce it to approximately 66% of the original size, which
is a size acceptable for the joining with screen-reader programs used by blind
or semi-blind people on their home PCs. In this experiment, the synthesis
is actually forced to use different unit candidates than those used by the
baseline, since they are absent from the reduced dataset.

data size reduction, experiment 2. It is basically the same as the previous
experiment, except that the number of phrases removed was much larger –
the reduced data size is approximately 17% of the original data. Thus, the
ratio of different candidates is much higher here.

1 In general case. For pragmatic reasons, however, we limit the length of phrases for
listening tests to a certain length and to natural sentences only.

2 Of course, even a small change in a single place may decrease the quality of the
TTS speech, but it is still more probable that if this single change makes the speech
worse, more changes will make it even worse. Or to put it differently, it is very
unlikely that when synthetic speech with higher δ is evaluated consistently better,
synthetic speech with lower δ will sound consistently worse.
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unit selection feature change. It is a kind of artificial example of unit selec-
tion algorithm tuning, where we slightly changed concatenation cost compu-
tation – instead of Euclidean distance between 12 MFCC vectors, the average
absolute difference of first 2 MFCC is computed. Contrary to the previous
experiments, the number of units remain the same and the differences in the
output (if there are any) are caused by the different behaviour of the unit
selection algorithm.

The outputs of the modified system were always compared to the baseline of our
TTS. In the illustration, the following two schemes of δ computation were used:

1. the difference of unit candidates. For a and b variants of a phrase consist-
ing of N units with candidates in sequence a1, a2, . . . , aN and b1, b2, . . . , bN
respectively, the difference is computes as

δk(a, b) =

N∑
i=1

‖ai, bi‖

N

where ‖ai, bi‖ = 0⇔ ai = bi and ‖ai, bi‖ = 1 otherwise.
2. the difference in the number of concatenation points being defined for the

same sequences a and b as

δl(a, b) =

|
N−1∑
i=1

D(ai, ai+1)−D(bi, bi+1)|

N − 1

where D(ai, ai+1) = 0 ⇔ there is no discontinuous concatenation point be-
tween candidates ai and ai+1, meaning that ai is the natural and immediate
predecessor of ai+1 in natural speech, i.e. next(ai) = ai+1; D(ai, ai+1) = 1
otherwise.

The charts in Figure 1 represent the probability mass function P (δ) and its
distribution collected by the synthesis of more than 1 million phrases for all the
experiments. Of course, the definition of δ depends on the form of TTS tested
and on the expectation what may affect the resulting speech; e.g. there is no
straightforward way of unit candidates comparison in the case of HMM-based
synthesizer.

Let us now assume the “classic” evaluation test procedure without the knowl-
edge of this statistics. For the purpose of the listening test, let us imagine that
30 randomly selected phrases would be synthesized, which is quite an unusually
large number. And naturally, we hope (or claim in the results) that the eval-
uated phrases represent an typical overall behaviour pattern of the TTS work,
or rather that the synthesized versions of the selected phrases differ from the
baseline preferably more than less. However, according to the Bernoulli schema

P<x,y> =

y∑
i=x

(
y
i

)
P i(1− P )y−i
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Fig. 1. The visualization of δ(a, b) probability mass function (sampled to 100 equidis-
tant intervals) and the corresponding distribution function for speaker 1. The solid line
represents the estimated probability density function (see Section 2.3).

it can be computed that the probability P = P (X >= δ) for at least 15 of the
30 synthesized phrases (i.e. x = 16, y = 30) is not very high, especially for ex-
periments with lower amount of δ changes in the synthesized speech. In Table 1,
we have chosen X >= 0.6 for δk as representing the case with 60% or more of
changed units, and X >= 0.1 for δl meaning 10% or higher change of concatena-
tion points. And, preferably, those would be the cases which the listening tests
should focus on, since those cases are more likely to manifest benefits or harms of
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Fig. 2. The visualization of δ(a, b) probability mass function and the corresponding
distribution function for speaker 2. The structure is the same as in Figure 1.

the evaluated TTS (for vindication see Footnote 2). We hope that this example
clearly shows the need of knowledge (or at least an awareness) of the synthe-
sized data behaviour, as well as the estimation of incorrect evaluation results
probability, analogous to significance level in hypothesis testing. Otherwise, the
evaluation results (and thus conclusion claims) may not be very representative.
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δk(a, b)
speaker 1 speaker 2

P (X >= 0.6) at least 15× P (X >= 0.6) at least 15×
experiment 1 0.194 0.00 0.201 0.00
experiment 2 0.887 1.00 0.882 1.00
experiment MFCC 0.409 0.09 0.421 0.11

δl(a, b)
P (X >= 0.1) at least 15× P (X >= 0.1) at least 15×

experiment 1 0.075 0.00 0.061 0.00
experiment 2 0.408 0.08 0.386 0.05
experiment MFCC 0.572 0.66 0.545 0.55

Table 1. The illustration of probability of the selection of at least 15 out of 30 phrases
with P (X >= 0.6) for δk(a, b) and P (X >= 0.1) for δl(a, b) for all the experiments.
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Fig. 3. The visualization Pi for all the cases where at least i = 1, 2. . . . , 30 out of 30
phrases match the required P (X); left for speaker 1, right for speaker 2.

2.3 Use of the probability with smaller dataset

For the computation, we have directly used the relative occurrence values of δ
collected from the 1 million synthesis output. Let us note that the synthesis ran
more than 17 hours on MPI-parallelized 32 Intel Xeon X5680 3.33GHz cores,
which would take approximately 23 days on the single core. Of course, it is not
usually necessary nor meaningful to collect such an extensive amount of data,
since standard kernel density estimation technique [?] can be used to model the
probability distribution function from a much lower δ dataset. To prove it, we
have randomly selected 5, 000 δ values, for which we have done this estimate.
This case is illustrated in Figure 1 by the solid line and the values of P<16,30>

are shown in Table 2.
Simple comparison of the estimated values in Table 2 with data-computed

values in Table 1 shows that the estimate is sufficiently precise.

3 Conclusion

We aimed to show that there is a non-negligible (and even computable) possibil-
ity of drawing unreliable results from listening test evaluation, when phrases to
be evaluated are chosen at random, which is, however, the usual manner of their
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δk(a, b)
speaker 1 speaker 2

P (X >= 0.6) at least 15× P (X >= 0.6) at least 15×
experiment 1 0.192 0.00 0.204 0.00
experiment 2 0.890 0.99 0.882 1.00
experiment MFCC 0.410 0.09 0.450 0.18

δl(a, b)
P (X >= 0.1) at least 15× P (X >= 0.1) at least 15×

experiment 1 0.073 0.00 0.061 0.00
experiment 2 0.431 0.13 0.418 0.10
experiment MFCC 0.590 0.68 0.568 0.65

Table 2. The illustration of the same values as in Table 1, but here computed from
distribution functions F (x) get by the kernel density estimation technique.

selection. Moreover, without some knowledge of differences between the outputs
from the baseline and the tested TTS, no-one can be sure which of the cases is
actually evaluated by the listening tests — frequent cases with slight differences
(i.e. X < δ for smaller δ), or cases with larger changes and thus with higher
informative capability (see Footnote 2)?

The point is that the knowledge of F (X) is important for the estimation
of the expected listening tests validity. Having the selected set of phrases to be
listened to, the minimum, maximum and average δ can be obtained for them and
used to compute P (X ≥ δ). This value estimates, among others, the probability
of the occurrence of a phrase for which the result of the listening test is not valid
(see the interpretation in Section 2.1).

With all this information, the results of various TTS comparisons will gain
higher level of reliability and will become more trustworthy for their readers.

The access to computing and storage facilities belonging to the National
Grid Infrastructure MetaCentrum was provided under the program LM2010005
“Projects of Large Infrastructure for Research, Development, and Innovations”.


