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ABSTRACT

An effective 3D motion compensated extension of WienerChop model [Gha97a, Cho98a] for image
sequences is presented. The proposed framework is based on a suitable combination of Wiener
filter and wavelet transform and it can be shown to outperform the currently available techniques.
Effectiveness combined with a low computational effort makes this approach very attractive and
then it can be successfully employed in restoration of old movies.
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1 INTRODUCTION
In the last few years a great interest has been de-
voted by many researchers to restoration of digi-
tized old movies which represent a cultural trea-
sure to be preserved. Even though various events
give rise to film degradation, in this paper we
will deal with reduction of noise mainly due to
degradation of the original film material or bad
transmission — a good review can be found in
[Kok98a]. Fastness and user’s independence play
a fundamental role in designing models for Noise
Reduction of Old Movies (NROM) since a large
number of degraded frames has to be processed
(86400 for one hour of film). Standard 3D denois-
ing problem can be represented as follows:
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gk(i, j) = fk(i, j) + nk(i, j) (1)

i = 1, .., N1; j = 1, .., N2; k = 1, .., J

where {gk} is the observed image sequence com-
posed of J frames of size N1 × N2, {fk} is the
original one while {nk} is a zero-mean gaussian
noise with variance σ2 ([Kok98a, Boo98a, Fan99a,
Bra95a]). As a matter of fact old movies are also
affected by film grain noise which is signal depen-
dent [Boo98a]. Nevertheless, using an orthogonal
operator and some arrangements, it can be pro-
cessed like the gaussian one.
With regard to NROM, in chap. 10 of [Kok98a]
Kokaram proposed a motion compensated 3D FIR

Wiener filter, showing better performances than
existing Wiener filtering based approaches. As
a matter of fact, Wiener filter has been strongly
employed in image noise reduction, thanks to its
both theoretical and practical effectiveness. In
fact, if on one hand it can be rigorously proved
that ideal attenuation outperforms ideal selection
(see [Mal98a] p. 437), on the other hand empir-



ical attenuation based models achieve very in-
teresting results [Bru02a]. Since its original for-
mulation [Mal98a], Wiener filter achieves better
performances in the Karhunen-Loève basis. Un-
fortunately, its high complexity along with the
non-gaussian property of real images lead to an
approximation of that basis. Therefore differ-
ent schools of thought appear in literature but
wavelet based approaches seem to be the most fol-
lowed thanks to the signal compaction properties
of a wavelet representation. Recently, in [Bru02a,
Bru03a] several hybrid methods using Wiener fil-
ter in a wavelet domain have been compared show-
ing that WienerChop approach [Gha97a, Cho98a]
represents the best combination between wavelet
representation and Wiener filtering. In fact, it is
at the same time effective (in terms of Signal to

Noise Ratio (SNR) values), fast and completely
automatic, requiring a very low computing time.
All these properties make this approach very at-
tractive for being used in the restoration of old
movies.
The contribution of this paper consists of present-
ing: i) a 3D motion compensated generalization of
WienerChop framework, ii) some theoretical re-
sults about criteria concerning the choice of the
involved wavelet bases and iii) its great robustness
to erroneous motion estimation.
The outline of the paper is the following. Section
2 focuses on a short description of WienerChop

approach along with its 3D generalization. Some
experimental results with some comparisons are
presented in Section 3 while Section 4 draws the
conclusions.

2 3D EXTENSION OF Wiener-

Chop
As previously mentioned, the main features of an
ideal NROM model are user’s independence, effec-
tiveness, fastness and robustness to motion esti-
mation errors. Therefore, as claimed in the Intro-
duction, a suitable 3D extension of WienerChop

model can result a good proposal for reducing
noise in old movies.

2.1 WienerChop
WienerChop is a scheme for designing an empir-
ical Wiener filter in a wavelet domain [Gha97a,
Cho98a]. Let g be a noisy image, i.e.

g(i, j) = f(i, j) + n(i, j),

i = 1, ..., N1, j = 1, ..., N2 (2)

where f is the original image and n is a zero-mean
gaussian noise. Let fh be the hard thresholded

estimate of the signal f in a wavelet basis W1. If
the wavelet transform W2 is performed in eq.(2),
for a fixed scale s we have

y(i, j, s) = x(i, j, s) + z(i, j, s) (3)

where y = W2g, x = W2f and z = W2n. Hence,
the empirical Wiener filter can be designed as

hw(i, j, s) =
x̂2(i, j, s)

x̂2(i, j, s) + σ2
(4)

where σ2 is the noise variance while x̂ = W2f
h.

Then the restored wavelet coefficients can be com-
puted as follows

W2f̂(i, j, s) = hw(i, j, s)y(i, j, s) (5)

and the restored image is obtained simply invert-
ing the operator W2. The block scheme of Wiener-

Chop is depicted in Fig. 1(left).
As cleverly suggested in [Cho98a], the error of
the estimation in eq.(5) can be written as Etot =
Eopt + Emis. Eopt is the optimal error and it is
tied to the ideal Wiener filter approximation error
and then to the ideal basis selection. This latter
is still an open problem and then it can be only
dealt with by empirical approaches [Mal98a]. On
the contrary, it is possible to reduce the mismatch

error Emis. In fact, it accounts for the mismatch
of the signal model fh to the true signal f , which,
in turn, is tied to the choice of the bases to be
adopted. Although this choice is empirically made
in [Cho98a], some theoretical criteria for this se-
lection are given in Appendix A.

2.2 The proposed 3D Extension
The simplest and thoughtful WienerChop 3D ex-
tension is depicted in Fig. 1(right). Roughly
speaking, an image sequence is split in subse-
quences: non overlapped Group of Frames (GOF)
[Boo98a]. This is performed according to the
motion vector (several frames for slow and reg-
ular motion sequences, few frames vice versa).
Each GOF is firstly motion compensated obtain-
ing GOF. Then its frames are processed by the
first wavelet basis W1, and correspondent band
coefficients are temporally averaged and spatially
hard thresholded (the choice of the wavelet bases
will be discussed later). Finally, the inverse
wavelet transform W−1

1 is performed on them, in
order to get a common clean frame which is en-
larged to the size of the global scene. The lat-
ter represents the signal model to be used in the
Wiener filtering of the second phase as sketched
in eq.(4). In fact, each frame of GOF is decom-
posed in the second wavelet basis W2 and atten-
uated by the aforementioned Wiener filter using



the common clean frame as signal model. An
undecimated wavelet decomposition [Mal98a] has
been adopted in both phases to ensure shift in-
variance and then reduce artefacts in the recov-
ered sequence. In addition, in the spatial hard-
thresholding step, Donoho’s universal threshold T
is employed (p. 438 of [Mal98a]). It is reduced
by a factor N (where N is the number of frames
of the considered GOF) since wavelet coefficients
have already been smoothed by the former tem-
poral averaging. The choice of universal threshold

would seem in contrast with the signal dependency
of the film grain noise, i.e. it is proportional to sig-
nal intensity (p. 288 of [Boo98a]). Nevertheless
in this case a simple arrangement of Wiener fil-
ter coefficients (hw(i, j)) in the second phase gives
satisfactory results. In fact, thanks to the orthog-
onality of the wavelet operator, film grain noise
is proportional to the local mean of the original
image that can be estimated from the wavelet ap-
proximation component.
We outline that the proposed model has a great ro-
bustness to erroneous motion estimation. To show
that, without loss of generality, let us consider
two frames showing a horizontally moving white
square on a dark background. Without motion
compensation, a simple averaging of the degraded
frames yields a blurred estimate in the leftmost
and rightmost regions of the square. A similar re-
sult is achieved by any linear transform combined
with a mean. On the contrary, in our model this
effect is attenuated using two bases. In fact, the
aforementioned blur only involves the output of
the first step of our model. Moreover this latter
only regulates the attenuation of high frequency
bands in the second filtering while leaving low fre-
quencies unchanged. Keep in mind that the sec-
ond wavelet decomposition is performed for each
frame at a time, so that low frequency band con-
tains a right information. Thus, this slighter at-
tenuation in the ”moving regions” leads to a re-
duced blur and then a better contrast. Hence,
higher SNR (Signal to Noise Ratio) ratios are
achieved as well as a better visual impact, in agree-
ment with the Weber’s law [Gon02a].

3 EXPERIMENTAL RESULTS
We have tested our model on many image se-
quences. Some results achieved in old movies
restoration will be shown. Nevertheless, for this
kind of sequences only subjective (visual) compar-
isons can be made because original sequences are
unknown. Therefore, in order to perform some ob-
jective comparisons, we will also show the results
achieved on two grey-level video test sequences:
400×512 ”Mobcal” sequence [Kok98a] (22 frames)

and 480×720 ”Calendar Train” sequence [Boo98a]
(40 frames).
With regard to the first one, we have used the
22 db degraded image sequence contained in
[Kok98a] which is corrupted with an additive zero-
mean gaussian noise. Results are presented in
terms of ISNR (Improved Signal to Noise Ratio),
defined as follows:

ISNR(k) = 10 log10

(

‖gk − fk‖2
2

‖f̂k − fk‖2
2

)

k = 1, . . . , J,

(6)
where ‖ · ‖2 is the Euclidean norm in <2 while

gk, fk and f̂k are respectively the degraded, the
original and the restored frame.
In all tests presented in this paper, a Daubechies
wavelet basis with two vanishing moments has
been used in the first phase and Haar basis for
the second phase. This is in agreement with the
results contained in Appendix A as well as the low
complexity constraint valid for old movies restora-
tion techniques. In fact, since the choice of the
optimal wavelet basis for representing a signal is
still an unsolved problem (chap. 9 of [Mal98a]),
one basis is previously fixed while the other is cho-
sen having its order close to the first one (see Ap-
pendix A). It means that some singularity points
are preferred to others and then well preserved.
Therefore if jump discontinuities are endowed,
Haar basis has to be chosen. In addition, in both
phases we use a five level decomposition, since it
can be shown that Wiener filtering is asymptoti-
cally optimal for increasing scale level [Bru03a].
Noise variance is estimated by means of a me-
dian measurement at the finest scale of the wavelet
decomposition of the degraded images [Mal98a].
Moreover GOFs are composed by 4 frames since
it is a good compromise between slow and fast
changing scenes assuring greater robustness to er-
roneous motion estimation of the proposed model
as shown in Fig. 3. In this figure a zoom of Mob-
cal sequence recovered using only its background
motion is depicted. Notice that the subtle circle of
the toy pendulum is well recovered, even though
its quite fast motion has not been considered at
all.
An original frame of Mobcal sequence as well as a
detail of the noisy and the recovered by the pro-
posed model are respectively shown in Fig 4a, 4b
and 4c.
We have compared our model with the 3D FIR

Wiener filter in chap. 10 of [Kok98a], since giv-
ing the best performances among 3D IIR Wiener

filter, Temporal Wiener filter, Recursive Frame

Averaging, Temporally Recursive filter and Frame

Averaging, as shown in Fig. 10.4 of [Kok98a]. In



order to make an objective comparison, a three
level multiresolution BBM (Boyce Block Match-
ing) motion estimation [Boy92a] has been em-
ployed, tuning the parameters as in [Kok98a] —
see p. 250 of chap. 10 for details. Fig. 2 (left)
shows that the proposed model on average gains
.7 db on it. The same Figure depicts ISNR behav-
ior achieved by the Oriented Pyramid based Model

(OPM) [Roo96a]. This model results strongly de-
pendent on the involved thresholds. In our imple-
mentation best performances have been achieved
by selecting T2a = σ (σ is expressed in percent-
age), T3a = 3σ and T4a = σ/2 using a soft thresh-
olding scheme. Even though better results can be
achieved using an additional threshold oriented to
preserve spatial discontinuities, this way guaran-
tees a slight gain in terms of db, resulting further
user-dependent.
The proposed model has also been compared with
the Discrete Cosine Transform-Adaptive Wiener

Filter on the Calendar Train sequence, as in
[Boo98a]. Again, the latter gives better results
than Hadamard Transform-Adaptive Wiener Fil-

ter, Adaptive Filter and Temporal Average Filter.
ISNR comparison is shown in Fig. 2 (right), where
in this case the proposed model gains about 1.2 db
on average, on a 20 db corrupted sequence with an
additive zero-mean gaussian noise.
Finally with regard to real degraded sequences of
old movies, signal dependent arrangements have
been done: visual quality seems to be particularly
satisfactory as shown in Figs 5 and 6 even when
motion has not been considered at all.
From previous results, it turns out that the pro-
posed model performs very well from both an ob-
jective and subjective point of view. It does not
require any threshold tuning as OPM does, allow-
ing us, at the same time, to avoid some unde-
sirable side effects like black borders in 3D FIR

Wiener filter. Finally, an interesting advantage of
the proposed model stems from its computational
effort. In fact, it is possible to show that even
though our model involves a wavelet decomposi-
tion, the total amount of required operations is
more advantageous than the 3D FIR Wiener fil-

ter alone. If we consider a sequence composed of
J frames of size N1 × N2, the Kokaram’s model

complexity is O(JN1N2(N
2
M2 + N log(NM2)))

bearing in mind that N is the number of frames
required in the 3D Wiener filter design and M×M
is the size of the blocks in which the frame is par-
titioned. On the contrary, the proposed model
requires O(JN1N2 max(S1, S2)), where S1 and S2

are respectively the order of the first and second
wavelet basis filter. It is obvious that a suit-
able choice of the wavelet bases, i.e. with few

vanishing moments, strongly reduces the compu-
tational effort, making the proposed model very
attractive. Moreover its performances could be
improved using the modified WienerChop pre-
sented in [Bru03a]. In fact it would better pre-
serve edges suitably combining signal expansions
in three wavelet bases but paying a higher compu-
tational effort. In particular, it would be able to
reduce some blurring effects around small image
components, such as some letters and numbers on
the calendar of Fig. 4c. These effects are mainly
due to the use of a universal threshold for all pro-
cessed frames. Moreover small errors in motion
estimation are unavoidably visible on such small
details. Therefore a further improvement can be
achieved by using a finer motion estimation algo-
rithm.

4 CONCLUSIONS
A proposal for a 3D extension of WienerChop

model for noise reduction in image sequences has
been presented. Its better performances than
currently available techniques have been shown.
Some of its key issues, such as optimality con-
straints for the choice of the wavelet bases, low
complexity and user’s independence, are also dis-
cussed and make it particularly effective for old
movies restoration.
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APPENDIX A: SELECTING

WAVELET BASES
The wavelet transform of a function f ∈ Cn is

Wf(u, s) =

∫ n
∑

k=m

f (k)(t0)(t − t0)
k

k!
ψ(

t − u

s
)dt,

where f(x) =
∑n

k=0
f(k)(x0)(x−x0)

k

k! is the Tay-
lor expansion of f and ψ is a wavelet having
m ≤ n vanishing moments. Let ψ1 and ψ2 be
two wavelet functions having m1 and m2 vanish-
ing moments (m1 ≤ m2 ≤ n) respectively, with
supports Ω1 and Ω2 (Ω1 ⊆ Ω2). If f2(x) =
∑

k>m1

f(k)(x0)(x−x0)
k

k! , then

|W2f(u, s) − W1f(u, s)| ≤

≤ 1√
s
|
∫

Ω2

f2(t)(ψ2(
t − u

s
) − ψ1(

t − u

s
))dt|



and from Holder inequality it follows

|W2f(u, s) − W1f(u, s)| ≤ ‖f2‖2 ‖ψ2 − ψ1‖2.

Hence

‖W2f − W1f‖2
2 ≤ ‖f2‖2

2 ‖ψ2 − ψ1‖2
2 |Ω2|. (7)

Considering that

‖ψ2 − ψ1‖2
2 =

∫

Ω2

|ψ2 − ψ1|2 =

=

∫

Ω2−Ω1

|ψ2|2 +

∫

Ω1

|ψ2 − ψ1|2 =

= ‖ψ2‖2
Ω2−Ω1

+ ‖ψ2 − ψ1‖Ω1

and |Ω2| = |Ω1| + |Ω2 − Ω1|, (7) can be trivially
rewritten as

‖W2f − W1f‖2
2 ≤

≤ ‖f2‖2
2 ( ‖ψ2‖2

Ω2−Ω1
|Ω2−Ω1|+ ‖ψ2−ψ1‖2

Ω1
|Ω1|)

+max
Ω2

(|f2|2) ( (‖ψ2‖2
Ω2−Ω1

− ‖ψ2−ψ1‖2
Ω1

)
|Ω1|
|Ω2|

+

+‖ψ2 − ψ1‖2
Ω1

).

It follows that the smaller |Ω2 − Ω1| and ‖ψ2 −
ψ1‖2, the smaller the error of the representation,
supposing that ψ2 is the best decomposition basis
for the signal f .
This result is in agreement with the following one
([Mal98a] Prop. 10.2): for a piecewise polyno-

mial with K breakpoints, a hard-thresholding es-

timator calculated with a Daubechies wavelet with

d+1 vanishing moments, satisfies E{‖f̂ −f‖2} ≤
σ2K(d + 1)C log2 N

N
(N is the signal length, C is

a constant and σ2 is the noise variance). In fact
m = d + 1 is the optimum number of vanishing
moments for that kind of signal. Different choices
of m yield an increasing approximation error.
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Figure 1: Block scheme of WienerChop model (left) and its 3D extension (right).
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Figure 2: ISNR comparison: left) versus 22 frames of Mobcal sequence (SNR = 22db),
right) versus 40 frames of Calendar Train sequence (SNR = 20db). Keep in mind that
[1] = [kok98a], [5] = Boo98a and [6] = Roo96a.

Figure 3: Mobcal sequence: zoom of recovered toy pendulum using only background
motion.



(a)

(b) (c)

Figure 4: Mobcal sequence: a) original frame, b) noisy detail, c) recovered detail by
the proposed model.



Figure 5: Knight sequence: left) 35th noisy frame; right) 35th restored frame. Notice
that the image has been only denoised and then it is still affected by other kinds of
degradation like scratches.

Figure 6: Sitdown sequence: left) 7th noisy frame; bottom) 7th restored frame. Notice
that the image has been only denoised and then it is still affected by other kinds of
degradation like scratches and blotches.


