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ABSTRACT
This paper presents a new approach for video completion of high-resolution video sequences. Current state-of-
the-art exemplar-based methods that use non-parametric patch sampling work well and provide good results for
low-resolution video sequences. Unfortunately, because of memory consumption problems and long computation
times, these methods handle only relatively low-resolution video sequences. This paper presents a video comple-
tion method that can handle much higher resolutions than previous ones. First, to address the problem of long
computation times, a dual inpainting-sampling filling-order completion method is proposed. The quality of our re-
sults is then significantly improved by a second innovation introducing a coherence-based matches refinement that
conducts intelligent and localized searches without relying on approximate searches or compressed data. Finally,
with respect to the computation times and memory problems that prevent high-resolution video completion, the
third innovation is a new localized search completion approach, which also uses uncompressed data and an exact
search. Combined together, these three innovations make it possible to complete high-resolution video sequences,
thus leading to a significant increase in resolution as compared to previous works.
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1 INTRODUCTION
Both image and video completion are important tasks
in many multimedia applications. Their goal is to au-
tomatically fill missing regions of an image/video in a
visually plausible manner. Two key factors differenti-
ate video completion from image completion. Firstly,
for video completion, it is important to maintain tem-
poral consistency since human vision is more sensitive
to temporal artifacts than to spatial artifacts. Using an
image completion technique individually on each frame
produces undesired temporal artifacts. Secondly, it is
more important for video completion to be time- and
memory-efficient since video contains much more data
than image.

In the past years, many new solutions have been
proposed for video completion. It has been shown
that exemplar-based methods, that use non-parametric
patch sampling, work well and provide good re-
sults. Unfortunately, they work only on relatively
low-resolution videos because larger ones require too
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much memory. Few methods [8, 12] present results for
640×480 or 540×432 resolutions, with most [6, 7, 9–
11, 15, 17, 20, 21] presenting results of 320× 240 or
lower resolutions. Since High Definition (HD) videos
with 1920× 1080 or higher resolutions are now com-
monplace, most of these methods cannot be applied di-
rectly or they require too long computation times.

To understand the proposed method, we must first
look at the non-parametric patch sampling approaches.
Those methods are based on an iteration through each
of the patches in the missing regions and a search in all
of the patches of the existing regions to find the most
similar patch. Without optimization, this search can be
excessively time consuming: O(m3M2F) with M repre-
senting the video width and height; m the patch width,
height and depth; and F the number of frames. Even
with optimization methods, the search time of the non-
parametric patch sampling approaches still remains ex-
cessive. Furthermore, the structures needed for theses
optimization methods require too much memory, mak-
ing them inappropriate for HD videos.

Rather than focusing on the acceleration of the near-
est neighbors search, the proposed method narrows the
search space at finer (higher) resolutions using infor-
mation obtained at coarser (lower) resolutions. First,
let us consider two patches at coarser resolutions:
patch w l

p from the missing region and its most simi-
lar patch w l

p′ from the existing region. The most sim-
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Figure 1: First row: coarser resolution video. Patch
(w l

p) in the missing region and its most similar patch
(w l

p′ ) in the existing region. Second row: finer resolu-
tion video. The corresponding patch (wh

p) of w l
p and its

most similar patch (wh
p′ ) in the existing region.

ilar patch of the corresponding patch wh
p at finer res-

olutions is likely to be found near wh
p′ , as illustrated

in Figure 1. The proposed approach begins by com-
pleting the video at coarser resolutions using a dual
inpainting-sampling filling-order completion approach
based on Wexler et al. [20]. Since efficient but approx-
imate search approaches are used to find the most simi-
lar patches, errors are introduced and several matches
are sub-optimal patches. To solve this problem, a
coherence-based matches refinement process is used to
search for better matches. The technique then stores
the space-time location of the most similar patch found
for each patch of the missing region in a matches list
ML. This ML is then used by a localized search com-
pletion approach to narrow the search space in higher
resolution, thus enabling the completion of HD video
sequences.

The contributions of the proposed method include a
dual inpainting-sampling filling-order completion ap-
proach based on Wexler et al. [20]; a new coherence-
based matches refinement process that improves the
quality of the matches when approximate search ap-
proaches are used; and a new localized search comple-
tion approach based on an exact search using uncom-
pressed data but restricted to a localized region. We
show that the proposed methods enable the completion
of HD video sequences and that they produce visually
plausible results within reasonable timeframes. More-

over, the approach requires very little memory at the
finest resolution except for the input video storage.

2 PREVIOUS WORKS
In past years, many methods have been proposed to
replace missing regions of an image. Image inpaint-
ing techniques propose to fill the missing region by ex-
tending the surrounding existing region until the hole
vanishes. These techniques generally work only on
small and thin holes. Image completion techniques use
non-parametric patch sampling and are able to fill even
larger missing regions of an image. While video com-
pletion methods are based on image completion and
inpainting methods, video completion poses the addi-
tional challenge of maintaining spatio-temporal consis-
tency. Using image completion or image inpainting
methods on each frame independently produces tempo-
ral artifacts that are easily noticed by the viewer [3].

2.1 Video completion
Extending the image completion methods based on
Markov Random Fields (MRF) and non-parametric
patch sampling, Wexler et al. [19, 20] address the prob-
lem of video completion as a global optimization, and
thus obtain good results on relatively large missing re-
gions. Shiratori et al. [17] proposed a similar approach,
but find patches based on motion fields instead of color
values. Xiao et al. [21] extend these works by formu-
lating video completion as a new global optimization
problem defined over a 3D graph defined in the space-
time volume of the video. Liu et al. [10] later have
proposed an algorithm with two stages: motion fields
completion and color completion via global optimiza-
tion. The major drawback of all these approaches is
the amount of information that must be processed when
considering HD video sequences. While some meth-
ods use per-pixel searches [19–21], other approaches
use larger primitives instead of pixels: Shih et al. [16]
use fragments, while Cheung et al. [4] use “epitomes”.
Approaches using fragments or epitomes can reduce the
search time and improve overall coherence, but per-
pixel searches are more likely to correctly restore the
fine and subtle details found in HD video sequences.
Many methods segment the video sequence into fore-
ground and background parts [6–8, 11, 14] or into lay-
ers [22]. These methods create a static background mo-
saic of the entire sequence, and as a result, these tech-
niques are limited to video sequences with a static back-
ground using a fixed camera. Patwardhan et al. [12]
later proposed a framework for dealing with videos con-
taining simple camera motions, such as small parallax
and hand-held camera motions. The major drawback
with all these techniques is that the pixels replaced are
static across the video sequence, thus removing details
such as video noise, film grain, or slightly moving ob-
jects, such as tree leaves, from the background. At an
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HD resolution, this lack of detail is quickly noticed by
the viewer.

2.2 Coherence techniques
When Ashikhmin [2] introduced the concept of coher-
ence, he observed that the results of synthesis algo-
rithms often contain large contiguous regions of the
input texture/image when using non-parametric patch
sampling. Consequently, the independent search for
every patch in the input texture/image can be acceler-
ated by using information from previously computed
searches. Thus it limits the search space of a given
patch to the locations of the most similar patches of
its neighbors. We based our coherence-based matches
refinement on the same coherence observation and de-
veloped an novel approach that is efficient with respect
to both computation time and memory consumption.
Tong et al. [18] also proposed a coherence technique
called k-coherence. While this technique improved the
search time, the pre-processing time and the memory
consumption are major drawbacks for high-resolution
video completion methods.

This paper presents an approach for the completion of
video sequences that requires very low memory us-
age and reasonable computation time, making it us-
able for HD video sequences. Further, it presents a
new coherence-based match refinement approach that
increases the overall quality of the results by eliminat-
ing many noticeable artifacts. Unlike most of the pre-
vious works, this paper presents results on video se-
quences with non-stationary camera movements.

3 HIGH DEFINITION VIDEO COM-
PLETION

In this section, we present a new video completion
approach that is able to automatically fill missing re-
gions of HD video sequences. Section 3.1 presents
the approach overview, Section 3.2 explains the dual
inpainting-sampling filling-order completion approach,
Section 3.3 describes the coherence-based matches re-
finement process, and Section 3.4 details the new local-
ized search completion method.

3.1 Approach overview
Starting with an input video sequence V containing a
missing region or hole H (H ⊂ V ), our approach fills
H in a visually plausible manner by copying similar
patches found in the existing region E (E = V \ H ),
thus creating a completed video sequence V*. This pro-
cess is shown in Figure 2. In order to maintain spatio-
temporal consistency, we consider the input video as a
space-time volume, and thus a pixel located at (x, y)
in frame t can be represented by the space-time point
p = (x, y, t). Consenquently, a patch wp can be seen as

V - input video H - binary mask

Dual inpainting-sampling 

filling-order completion 

Matches list creation

Coherence-based matches refinement

Localized search completion

V* - (output video)

Stage 1 

Stage 2 

Stage 3 

+

Figure 2: Schematic overview of the proposed approach

V original video sequence
H missing region or hole of V, H ⊂ V
E existing region of V, E = V \ H
H* completed region
V* completed video sequence
pl point located at (x, y, t) at coarser resolution
w l

p patch centered at pl at coarser resolution
w l

p′ patch centered at p′l , most similar to patch w l
p

ph point located at (x, y, t) at finer resolution
wh

p patch centered at ph at finer resolution
wh

p′ patch centered at p′h, most similar to patch wh
p

ML matches list
c RGB color
S search region centered at p′h

Table 1: Symbols definitions

a spatio-temporal cube of pixels centered at p. Table 1
summarizes the symbols used in this paper.

The missing region H is indicated to the system by a
binary video sequence in which identified pixels are in
H. The binary video sequence can be constructed us-
ing object tracking in the video sequence. Many digi-
tal motion graphics and compositing softwares already
provide accurate and rapid tools to create such binary
video sequences. In our experimentations, we relied on
such tools to define H.

Figure 2 shows a schematic overview of our approach
while Figure 3 presents the detailed steps. First, the
input video is downsampled and completed by a dual
inpainting-sampling filling-order completion based on
the works of Wexler et al. [19, 20] using global opti-
mization and non-parametric patch sampling (see Sec-
tion 3.2). Completing the video at low-resolution with
the proposed approach is efficient and provides good re-
sults. When the dual inpainting-sampling filling-order
completion is finished, each patch w l

p (centered at pl ∈
H ) is associated with its best matching patch w l

p′ (cen-
tered at p′l ∈ E ) by creating a matches list containing
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space-time pairs pl-p′l for every pl ∈H. To complete the
search in a reasonable amount of time, the best match-
ing patches w l

p′ must be selected using approximate
search and data compression methods. Thus, the w l

p′
found might not be the best match. The second stage of
the proposed method consists of an iterative coherence-
based matches refinement process that improves the
search results for the worst matching patches w l

p′ (see
Section 3.3). This stage is efficient, and provides signif-
icant quality improvement. Finally, the matches list is
used by the localized search completion method to nar-
row the search space, thus enabling the completion of
HD video sequences (see Section 3.4). This final stage
of the method is also efficient, and it provides good re-
sults at HD resolution.

3.2 Dual inpainting-sampling filling-
order completion

A visually plausible completion of a video sequence re-
places the missing region H by a completed region H*
where pixels of H* fit well within the whole video V*.
To achieve this, a video completion approach must sat-
isfy two criteria: first, every local space-time patch of
the completed region H* must be similar to an existing
patch of E, and secondly, all patches that fill H* must
be coherent with each other. Consequently, we seek a
completed video V* that minimizes the objective func-
tion stated in Equation 1:

Coherence(H*|E) = ∏
pl ∈ H

min
p′l ∈ E

D(w l
p,w

l
p′), (1)

where D(w l
p, w l

p′) is a similarity metric between two
patches. The similarity value of two patches is eval-
uated with the Sum of Squared Differences (SSD) of
color information (in the RGB color space) for every
pair of space-time points contained in these patches.
Wexler et al. [20] added the spatial and temporal
derivatives to the RGB components to obtain a five-
dimensional representation for each space-time point.
In experimentations, RGB alone produced good results
for most videos. Problems occured when trying to re-
construct a hidden moving object. While the technique
of Wexler et al. [20] can solve these problems, it is how-
ever limited to objects with cyclic motion (i.e. like a
walking person). Moreover, it requires more memory
and computation time. For these reasons, we limited
our problem domain to videos without occluded mov-
ing objects and chosen to use only RGB components.

The first step of the dual inpainting-sampling filling-
order completion approach is to downsample V to a
coarse resolution (see Figure 3, Stage 1.1). Then, be-
fore starting the completion, the values of each space-
time point of H need to be initialized. Unlike Wexler
et al. [20] who used random values, the proposed ap-
proach fills H using an image inpainting technique [3]

1920 x 1080 x 100

480 x 270 x 100

270 x 135 x 100

Stage 1.2

Individual frame inpainting

Stage 1.3

Low resolution

filling-order

iterative

completion

Stage 2 

Matches list creation

and coherence-based

refinement

Stage 3 

Localized 

search 

completion

}

Stage 1.1

Down-

sampling

Figure 3: Steps of the proposed video completion ap-
proach

(see Figure 3, Stage 1.2). Our aim is to speed up the
convergence by using the existing information around
H. This initialization is done only once, prior to the
first iteration of the low resolution filling-order iterative
completion approach.

After the initialization, the approach performs an itera-
tive process, improving the overall coherence of H (see
Figure 3, Stage 1.3). During each iteration, the ap-
proach seeks a replacement color value for every space-
time point in H in order to minimize Equation 1. Un-
like previous methods, which used scan-line ordering,
our approach fills H using a 3D hole-filling approach,
thus ensuring that each patch w l

p contains information
that is more reliable (space-time points in E or space-
time points already processed during the current itera-
tion). Consequently, it speeds-up the convergence and
reduces discontinuities near the boundaries of H. The
patches can have different sizes in the spatial and tem-
poral dimensions. Generally, we used 5×5×5 patches
or 7×7×5 patches and we based our choice on the el-
ement structure size that needs to be completed within
the video sequence.

To seek a replacement color c for a space-time point p,
the approach uses a single best-matching patch w l

p′ that
minimizes D(w l

p, w l
p′). When w l

p′ is found, the color
c ′ is copied from space-time point p′l to pl . Compared
to other methods that blend together several matches,
using the single best-matching patch does not result
in blurring artifacts and preserves film grain and noise
from the original video. For these reasons, our ap-
proach uses the single best-matching patch.

To enforce spatio-temporal consistency, this iterative
process is done on multiple scales using spatial pyra-
mids (see Figure 3, Stage 1.3). Each pyramid level con-
tains 1/2× 1/2 of the spatial resolution while maintain-
ing the temporal resolution. The iterative process starts
with the coarsest pyramid level and propagates its re-
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(a) 

(b) 

(c) 

58th frame  70th frame  

Figure 4: Comparison of the results obtained with the
low-resolution video completion approach: (a) Original
frames; (b) results from Wexler et al. [20]; (c) results
from the proposed method

sults to finer levels. Because it involves long computa-
tion times and a lot of memory for the search structure,
this iterative process is impractical at finer pyramid lev-
els for HD videos. Therefore, the proposed approach
stops the iterative process when it reaches a fixed reso-
lution (typically 480×270).

The proposed dual inpainting-sampling filling-order
completion approach produces results with a quality
equivalent to the results of Wexler et al. [20], but within
much less time. Figure 4 shows the completion results
of the “Jogging lady” sequence of Wexler et al. [20] and
ours. Wexler’s approach took one hour per iteration at
the finest resolution level while our approach took less
than four minutes per iteration.

3.3 Coherence-based matches refinement
When Stage 1 is over, each patch w l

p ∈ H* has a corre-
sponding patch w l

p′ . Each space-time point pl is asso-
ciated with its corresponding p′l and the pairs are stored
in a matches list ML. During the high-resolution com-
pletion iterative process, ML enables the approach to
narrow the search space to only sub-regions of E. As
a reminder, our key observation is that, for a patch w l

p

at coarser resolution with its most similar patch w l
p′ ,

the most similar patch of the corresponding patch wh
p at

finer resolution is likely to be found near p′h (see Fig-
ure 1).

For efficiency reasons, optimization methods such as
principal component analysis (PCA) and approximate
nearest neighbors search (ANN) [1] are used in Stage
1. While these methods are essential to achieving ac-
ceptable search times, they often provide matches w l

p′
that do not minimize Equation 1. Consequently, ML
needs to be refined during Stage 2 (see Figure 3, Stage
2) to have better matching patches w l

p′ .

 

(b) Completed HD

frame without 

ML refinement 

(c) Completed HD 

frame with 

ML refinement  

(a) Original 

frame

Figure 5: Impact of the ML refinement iterative process
on high-resolution video completion results: (a) Orig-
inal frame; (b) completed frame without ML refine-
ment; (c) completed frame with ML refinement. The
frames were cropped to better show the missing and
completed regions
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Figure 6: Coherence-based matches refinement process

The information contained in ML must be reliable in
order for visually plausible results to be possible with
the localized search completion iterative process. The
patches w l

p and w l
p′ must be highly similar for every

pair pl-p′l of ML, otherwise, the approach will narrow
the search space to a region where it is less likely to find
the best matching wh

p′ . Figure 5 (a, b) shows an example
where the information contained in ML is not reliable.
As can be seen, there are many visible artefacts such as
the centered window and the left building edge.

To find better matching patches w l
p′ , we take advantage

of the concept of coherence. First, the approach cal-
culates the distance (L2 norm of uncompressed data)
of patches w l

p and w l
p′ for each pair pl-p′l from ML.

Then an iterative process refines pairs with distances
higher than a given threshold. During the first iteration,
this threshold is set such that 15% of the pairs are re-
fined. After each iteration, this threshold is reduced by
20% of its initial value. For each pair pl-p′l above the
threshold, the approach seeks for a replacement p′l that
decreases D(w l

p, w l
p′). Instead of using a brute force

approach that searches the entire video sequence, the
search is restricted around the best matching patches of
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pl neighbors. An example is shown in Figure 6. The
four neighbors of pl are considered: top, right, bottom,
and left; respectively p1, p2, p3, and p4. For the top
neighbor (p1) the approach considers its previously cal-
culated best matching point p′1, then from p′1, its bottom
neighbor p′′1 is considered. The L2 norm is computed
between patches pl and p′′1 , and if the norm is lower
than the current value, p′l is replaced by p′′1 and the color
from p′′1 is copied to pl . This process is repeated for p2,
p3, and p4. If there is no good replacement, the pair
pl-p′l is left unchanged, and is considered in the next
iteration.

When considering the top neighbor p1, instead of
searching anywhere around its best matching point p′1,
only its bottom neighbor (p′′1) is considered. The ratio-
nale behind this is that several successful approaches
use large primitives such as fragments or epitomes.
When considering larger primitives, the bottom neigh-
bor (p′′1) is the one that would be copied on top of pl .
This effectively reduces the search to only four points
(p′′1 to p′′4). To even further reduce the number of points
to test, each neighbor p1 to p4 is considered only if the
L2 norm of a pair, for example, p1-p′1, is below the cur-
rent threshold. This is a very rapid test since the value is
already computed and stored in the ML. Since there is
a maximum of only four potential points to consider as
opposed to the millions from the whole video sequence,
this process is extremely fast. Figure 7 shows an ex-
ample of the ML coherence-based matches refinement
process that minimizes the distance of wp and wp′ for
each pair pl-p′l in ML. The ML refinement provides a
significant quality improvement (as shown in Figure 5)
within a few seconds.

3.4 Localized search completion
This section presents the proposed approach for com-
pleting missing regions of video sequences at HD reso-
lutions. As stated earlier, current exemplar-based meth-
ods are unpratical to complete HD video sequences be-
cause best match searches require excessive amount of
memory and computation time. Many attempts have
been made to accelerate this search with optimization
methods such as ANN and dimensionality reduction
methods such as PCA, but the structures needed for
these optimization methods require too much memory
for HD video sequences. Instead of accelerating the
best match search, the proposed method narrows the
search space at HD resolution using information from
coarser resolutions.

Before the localized search completion process starts,
the information contained in ML must to be scaled up
to the finer resolution (see Figure 8). For each space-
time point ph ∈ H at a finer resolution, its correspond-
ing low-resolution pl is found as well as the space-time
location p′l associated with it. The space-time location

(a) (b) 

(d) (c) 

Avgerage distance: 305 

Maximum distance: 1842 

After 2 iterations

Time needed: 2 s.

Average distance: 276 

Maximum distance: 856 

After 5 iterations

Time needed: 3.5 s.

Average distance: 189 

Maximum distance: 755 

Original frame Without ML refinement 

Figure 7: Impact of the ML coherence-based matches
refinement process: (a) original frame; (b) distance of
wp and wp′ for each pair pl-p′l after ML creation; (c)
distances after two iterations of the ML refinement pro-
cess; (d) distances after four iterations of the ML refine-
ment process. The frames were cropped to better show
the missing and completed regions

p′l is then scaled up to a finer resolution resulting in p′h.
The pair ph-p′h is then added in a new matches list MLH
which will be used by the localized search completion
process to narrow the search space.

The main steps of the localized search completion pro-
cess are similar to those of the low-resolution process:
using a 3D hole-filling approach, the method seeks a

pl (238, 118, 20) 

p’l

(260, 32, 36)

ph

(950, 470, 20)

S

(b) Space-time 

location p’l of

the most similar

patch based in ML

(a) Corresponding low resolution

space-time location of ph 

p’h

(1040, 128, 36)

(c) Corresponding high 

resolution space-time

location of p’l
(d) The pair ph-p’h is added to MLH 

Figure 8: Creation of MLH based on ML
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p’h

p’’h

p’’’h

Region S during iteration 1

Region S during iteration 2

Region S during iteration 3

Figure 9: Locations and sizes of search regions S for
the first three iterations of the localized search comple-
tion process

replacement color c′ for every ph ∈ H using a single
best-matching patch wh

p′ . However, instead of search-
ing through the entire video sequence using a brute
force algorithm or expensive search structures, the ap-
proach only searches in a small sub-region S, based on
the information from MLH. For each space-time point
ph ∈ H, the approach first looks in MLH and seeks for
its associated p′h. Then, a small region S centered at p′h
is selected. Next, the approach searches only in S for
the best-matching patch wh

p′′ (located at p′′h ∈ S ) and
the color ch is replaced by c′′h . If p′h and p′′h are dif-
ferent, the pair ph-p′h from MLH is replaced with the
pair ph-p′′h . In the next iteration of the localized search
completion process, the sub-region S will be recentered
around this updated space-time location. During the
first iteration of the localized search completion pro-
cess, the window size of sub-region S is 17×17 pixels.
This window size is then decreased after each iteration
(13× 13, 9× 9, 5× 5). Figure 9 shows an example of
the location changes and size decreases of a search re-
gion S for three iterations.

Obviously, the search time is dramatically reduced
when using MLH to narrow the search space, as com-
pared to using methods such as ANN and PCA. When
using the proposed MLH technique, less than a thou-
sand patches are searched for each ph compared to the
tens of millions of patches from the whole video. More-
over, the computation time for the creation and the re-
finement of ML and MLH is shorter than the time
needed for the creation of the structures used by ANN
and PCA. Another important advantage of the proposed
method is that MLH requires much less memory than
typical search structures, such as ANN. Finally, the pro-
posed MLH search does not rely on compressed data,
and thus can provide better matches.

4 RESULTS AND DISCUSSION
Figure 10 shows the completion of the “Station” se-
quence and Figure 11 shows the completion of the

“Race to Mars” sequence. The main challenge of these
sequences is the constant motion of the camera. The
“Station” sequence contains a constant zooming motion
while the “Race to Mars” sequence contains complex
rotating and panning motions. Video sequences with
such motions cannot be handled by video completion
techniques using a static background mosaic because
the size and orientation of the objects contained in the
background are not constant during the entire video se-
quence.

It can be seen in Figure 10 that the proposed method
works well with large missing regions. Figures 10
and 11 demonstrate that the proposed methods produce
good results for missing regions containing stochastic
texture as well as salient structure. Since state of
the art papers introduced in Section 2 show results with
resolutions ranging from 320× 240 to 640× 480, it is
not possible to compare the quality of our results with
other techniques. Therefore, we used a structural simi-
larity method (SSIM) [13], a full reference metric, to
measure the quality of our results at high-resolution.
Even though SSIM is generally used to evaluate video
compression methods, it can also be used to measure
the similarity between a reference sequence and a com-
pleted sequence. Figure 12 shows the completion of the
“Old town cross” sequence. Considering only the pix-
els in the missing region instead of all the pixels from
the full frames of the sequence, the average SSIM in-
dex is 90.63. Since the completed region does not need
to be exactly like the reference region, as long as the
region is completed in a visually plausible manner, this
SSIM index is good.

Table 2 shows a comparison of the proposed approach
with earlier works based on different criteria (some
were taken from Shih et al. [15]):

• Missing region specification: how the user inter-
acts with the method to specify the missing region;

• Exemplar-based approach: what type of comple-
tion method is used;

• Camera motion: video sequences with stationary
or nonstationary camera;

• Maximum resolution: the highest resolution of the
video sequences presented in the paper.

All completion methods use an exemplar-based tech-
nique with different variations. Most of the comple-
tion methods only use video sequences taken with a
stationary camera to test their algorithm. Patwardhan
et al. [12] present results with a non-static camera, but
the camera motion is always parallel to the projection
plane. Thus, Patwardhan et al. [12] do not deal with
changes in size, perspective, nor zooming. Only Shih
et al. [15] and the proposed method present results with
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Camera 

motion:

zooming

Resolution:

1920 x 1080

Missing 

region:

avg.: 17,624 

pixels / frame

Time:

~ 3 min. 

/ frame

(a)

(b)

(c)

Figure 10: Results for the “Station” sequence : (a) Original frames; (b) missing regions; and (c) completed frames.
Frames from https://cs-nsl-wiki.cs.surrey.sfu.ca/wiki/Video_Library_and_Tools

Camera 

motion:

rotating, 

panning

Resolution:

1920 x 1080

Missing 

region:

avg.: 9,546

pixels / frame

Time:

~ 1.5 min. 

/ frame

(a)

(b)

(c)

Figure 11: Results for the “Race to Mars” sequence (frames were cropped to better see the regions): (a) Original
frames (with unwanted wires highlighted in red); (b) missing regions; and (c) completed frames. Frames from
“Race to Mars”, a courtesy of Galafilm and Discovery Channel Canada

different camera motions such as zooming, rotating,
and panning. Finally, the main advantage of the pro-
posed method over previous works is the maximum res-
olution it can handle. The proposed method handles HD
video sequences while the highest resolution of all pre-
vious works from Section 2 is only 640×480, which is
more than a six-fold improvement over state-of-the-art
exemplar-based methods.

5 CONCLUSION

We have presented a video completion method that
can handle much higher resolutions than previous
work. The proposed method is based on three new ap-
proaches: a dual inpainting-sampling filling-order com-
pletion, a new coherence-based matches refinement,
and a new localized search completion approach. To-
gether, these three approaches solve the memory con-
sumption and computation time problems for the com-
pletion of HD video sequences. Furthermore, the qual-
ity of the results generated by our method compares fa-
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Camera 

motion:

zooming

Resolution:

1920 x 1080

Missing 

region:

avg.: 8 456 

pixels / frame

Time:

~ 1.25 min. 

per frame

R-SSIM:

avg. 90.46

G-SSIM:

avg. 90.88

B-SSIM:

avg. 90.54

(a)

(b)

(c)

Figure 12: Results for the “Old town cross” sequence (frames were cropped to better see the regions): (a) Frames
with a synthetic object; (b) completed frames; and (c) clean frames. Frames from https://cs-nsl-wiki.
cs.surrey.sfu.ca/wiki/Video_Library_and_Tools

Criteria
Related works Missing region(s)

specification
Exemplar-based approach Camera

motions
Maximum
resolution

Kamel et al. [7] User provided mask Standard Static 80×110
Shih et al. [15] Bounding box given

by user, missing
region is tracked

Improved patch-matching Static, non-static 320×240

Liu et al. [10] User provided mask Motion fields and colors Static 320×240
Xiao et al. [21] User provided mask Motion similarity and colors Static 384×192
Shiratori et al. [17] User provided mask Motion fields Static 352×240
Wexler et al. [20] User provided mask Motion similarity and colors Static 360×288
Koochari and Soryani [8] User provided mask Standard Static 540×432
Patwardhan et al. [12] User provided mask Motion inpainting and

priority based texture
synthesis

Static, non-static 640×480

Herling and Broll [5] Rough selection by
user, missing region

is tracked

Combined pixel-based
approach

Static, non-static 640×480

The proposed approach User provided mask dual inpainting-sampling
filling-order completion,

coherent and localized search

Static, non-static 1920×1080

Table 2: Comparison of the proposed method with previous works

vorably to previous works and allows for a significant
increase of the resolutions that can be completed.

The proposed coherence-based match refinement is
promising as it could be applied at various steps of sev-
eral video completion approachs. Future work will in-
volve an investigation of when the coherence approach
provides the best improvements: between each iter-
ations; between each resolution levels; at coarser or
finer resolutions; etc. As they are used in the proposed
method, the coherence-based matches refinement and

localized search completion consider a fairly limited
number of patches. Therefore, the search could stop
in a local minimum while there are better matches else-
where in the video. Future work should look at appro-
priate techniques to expand the search to other locations
that are likely to contain good matches.

6 ACKNOWLEDGMENTS
We would like to thank the Fonds québécois de la
recherche sur la nature et les technologies (FQRNT),

Journal of WSCG

Volume 23, 2015 53 ISSN 1213-6972

No.1



Mokko Studio inc., and the École de technologie
supérieure for funding this project. We would also like
to thank all members of the Multimedia Lab for their
reviews. Finally, we would also want to thank Galafilm
and Discovery Channel Canada for the “Race to Mars”
video sequence.

REFERENCES
[1] Arya, S., Mount, D.M.: A library for approximate

nearest neighbor searching (2010). URL http:
//www.cs.umd.edu/~mount/ANN/

[2] Ashikhmin, M.: Synthesizing natural textures. In:
2001 ACM symposium on Interactive 3D graph-
ics, pp. 217–226. ACM (2001)

[3] Bertalmio, M., Bertozzi, A., Sapiro, G.: Navier-
stokes, fluid dynamics, and image and video in-
painting. In: Proc. Conf. Comp. Vision Pattern
Rec., pp. 355–362 (2001)

[4] Cheung, V., Frey, B.J., Jojic, N.: Video epitomes.
In: Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition, vol. 1, pp. 42–49 (2005)

[5] Herling, J., Broll, W.: High-quality real-time
video inpaintingwith pixmix. IEEE Transactions
on Visualization and Computer Graphics 20(6),
866–879 (2014)

[6] Jia, J., Tai, Y.W., Wu, T.P., Tang, C.K.: Video
repairing under variable illumination using cyclic
motions. IEEE Transactions on Pattern Analysis
and Machine Intelligence 28(5), 832 –839 (2006)

[7] Kamel, S., Ebrahimnezhad, H., Ebrahimi, A.:
Moving object removal in video sequence and
background restoration using kalman filter. In:
Int. Symp. on Telecommunications 08, pp. 580–
585 (2008)

[8] Koochari, A., Soryani, M.: Exemplar-based video
inpainting with large patches. Journal of Zhejiang
University - Science C 11(4), 270–277 (2010)

[9] Ling, C., Lin, C., Su, C., Liao, H.Y., Chen, Y.:
Video object inpainting using posture mapping.
In: Proc. IEEE Int. Conf. on Image Processing,
pp. 2785–2788 (2009)

[10] Liu, M., Chen, S., Liu, J., Tang, X.: Video com-
pletion via motion guided spatial-temporal global
optimization. In: Proc. ACM Multimedia, pp.
537–540 (2009)

[11] Patwardhan, K., Sapiro, G., Bertalmio, M.: Video
inpainting of occluding and occluded objects. In:
Proc. IEEE Int. Conf. on Image Processing, vol. 2,
pp. 69–72 (2005)

[12] Patwardhan, K.A., Sapiro, G., Bertalmio, M.:
Video inpainting under constrained camera mo-
tion. IEEE Transactions on Image Processing
16(2), 545 –553 (2007)

[13] Sheikh, H., Sabir, M., Bovik, A.: A statistical
evaluation of recent full reference image quality
assessment algorithms. IEEE Transactions on Im-
age Processing, 15(11), 3440 –3451 (2006)

[14] Shen, Y., Lu, F., Cao, X., Foroosh, H.: Video com-
pletion for perspective camera under constrained
motion. In: Proc. of the 18th Int. Conf. on Pattern
Recognition, vol. 3, pp. 63–66 (2006)

[15] Shih, T., Tang, N., Hwang, J.N.: Exemplar-based
video inpainting without ghost shadow artifacts
by maintaining temporal continuity. IEEE Trans-
actions on Circuits and Systems for Video Tech-
nology 19(3), 347–360 (2009)

[16] Shih, T.K., Tang, N.C., Yeh, W.S., Chen, T.J.:
Video inpainting and implant via diversified tem-
poral continuations. In: Proc. of the 14th annual
ACM int. conf. on Multimedia, MULTIMEDIA
’06, pp. 965–966. ACM (2006)

[17] Shiratori, T., Matsushita, Y., Tang, X., Kang, S.B.:
Video completion by motion field transfer. In:
Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, vol. 1, pp. 411–418 (2006)

[18] Tong, X., Zhang, J., Liu, L., Wang, X., Guo,
B., Shum, H.Y.: Synthesis of bidirectional tex-
ture functions on arbitrary surfaces. ACM Trans.
Graph. 21, 665–672 (2002)

[19] Wexler, Y., Shechtman, E., Irani, M.: Space-time
video completion. In: Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition, vol. 1, pp.
120–127 (2004)

[20] Wexler, Y., Shechtman, E., Irani, M.: Space-time
completion of video. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 29(3), 463–
476 (2007)

[21] Xiao, C., Liu, S., Fu, H., Lin, C., Song, C., Huang,
Z., He, F., Peng, Q.: Video completion and syn-
thesis. Computer Anim. Virt. Worlds 19, 341–353
(2008)

[22] Zhang, Y., Xiao, J., Shah, M.: Motion layer based
object removal in videos. In: 17th IEEE Work-
shops on Application of Computer Vision, vol. 1,
pp. 516 –521 (2005)

Journal of WSCG

Volume 23, 2015 54 ISSN 1213-6972

No.1




