
A New Extension to Kernel Entropy Component Analysis for Image-based
Authentication Systems

Sepehr Damavandinejadmonfared
Advanced Cyber Security Research Centre Dept. of Computing, Macquarie University Sydney, Australia

sepehr.damavandinejadmonfared@mq.edu.au

Vijay Varadharajan
vijay.varadharajan@mq.edu.au

Abstract

We introduce Feature Dependent Kernel Entropy Com-
ponent Analysis (FDKECA) as a new extension to Kernel
Entropy Component Analysis (KECA) for data transforma-
tion and dimensionality reduction in Image-based recogni-
tion systems such as face and finger vein recognition. FD-
KECA reveals structure related to a new mapping space,
where the most optimized feature vectors are obtained and
used for feature extraction and dimensionality reduction.
Indeed, the proposed method uses a new space, which is fea-
ture wisely dependent and related to the input data space, to
obtain significant PCA axes. We show that FDKECA pro-
duces strikingly different transformed data sets compared to
KECA and PCA. Furthermore a new spectral clustering al-
gorithm utilizing FDKECA is developed which has positive
results compared to the previously used ones. More pre-
cisely, FDKECA clustering algorithm has both more time
efficiency and higher accuracy rate than previously used
methods. Finally, we compared our method with three
well-known data transformation methods, namely Principal
Component Analysis (PCA), Kernel Principal Component
Analysis (KPCA), and Kernel Entropy Component Analysis
(KECA) confirming that it outperforms all these direct com-
petitors and as a result, it is revealed that FDKECA can be
considered a useful alternative for PCA-based recognition
algorithms

1. Introduction
Fundamentally data transformation is of importance in

machine learning and pattern analysis. The goal is to, al-
ternatively, represent the high-dimensional data into a typi-
cally lower dimensional form revealing the underlying for-
mat and structure of the data. There is a large amount
of literature on data transformation algorithms and meth-
ods [1], [2]. A dominant research area in data transforma-

tion is known as the so-called spectral methods. In spec-
tral methods, the bottom or top eigenvalues (spectrum) and
their corresponding eigenvectors play the main role in fea-
ture extraction and dimensionality reduction especially in
constructed data matrixes. Some recent spectral methods
include locally linear embedding [3], isometric mapping
[4], and maximum variance unfolding [5], to name a few.
See the recent review papers [6], [7] for thorough reviews
of several spectral methods for dimensionality reduction.
One of the most powerful and well known methods in the
mentioned area is Principal Component Analysis (PCA) [8]
which has been used in numerous applications and algo-
rithms in data classification and machine learning[9],[10].
However, PCA [11] is a linear method which may not be
beneficial when there might exist non-linear patterns hid-
den in the data. Over the last few decades, there have
been a number of advanced improvements on PCA trying
to overcome the drawback of linearly transformation and
make PCA influential when dealing with nonlinear data.
A very well-known and influential method is Kernel Prin-
cipal Component Analysis (KPCA) [12]. In Kernel PCA
[13], PCA is performed in a kernel feature space which is
non-linearly related to the input data. It is enabled using a
positive semi-definite (psd) kernel function computing the
inner products within the new space (kernel feature space).
Therefore, constructing the so-called kernel matrix or the
inner product matrix is vital. Then, using the top eigenval-
ues and their corresponding eigenvectors to perform met-
ric MDS [14] will lead to kernel PCA data transformation
method. Kernel PCA has extensive use in many different
contexts. For instance, kernel PCA has been used in ma-
chine learning algorithms from data classification [15] to
data denoising [16][17][18]. In [19], kernel PCA is intro-
duced for face recognition systems. Kernel PCA also has
been used in finger vein recognition algorithms [20]. In
2010 [21], R. Jenssen proposed Kernel Entropy Component
Analysis KECA as a new extension to kernel PCA. Kernel
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ECA is fundamentally different from other spectral methods
in two ways explained as follows; (1): The data transforma-
tion reveals structure related to the Renyi entropy of the in-
put space data set and (2): The method does not necessarily
use the top eigenvalues and eigenvectors of the kernel ma-
trix. Shekar in 2012 [22], implemented KECA on face data
base claiming KECA outperforms KPCA for face recog-
nition purpose. In this paper, we develop a new spectral
data transformation method, which is fundamentally differ-
ent from Kernel ECA in the following important way:

• In FDKECA the dimension of the feature space is de-
pendent on the dimension of the input data, not the
number of input data. It means no matter how many
data to analyze, the dimension of kernel matrix (kernel
feature space) is fixed.

The mentioned difference will make the following ad-
vantages FDKECA has over KECA:

• FDKECA is much less computationally expensive than
KECA as the dimension of the feature space, where the
optimal PCA axes are calculated, is just as high as the
dimension of the input data. This leads to a much faster
method than traditionally used KECA.

• FDKECA has lower error rate than KECA as the axes
obtained from our proposed feature space will con-
tribute to more efficiency and less dimension compared
to KECA.

The reminder of this paper is organized as follows: Sec-
tion 2 illustrates some examples of spectral data transfor-
mation methods of importance. Feature Dependent Kernel
Entropy Component Analysis (FDKECA) is developed in
Section 3. The image reconstruction method and eigen-
face analysis using FDKECA are developed in Section 4. A
spectral clustering algorithm using FDKECA is developed
in section 5. Experimental results are presented in section
6. Finally, section 7 concludes the paper.

2. Spectral Data Transformation

In this section, we explain the fundamentals of PCA,
KPCA, and KECA with examples to comprehend spectral
basic data transformation methods.

2.1. Principal Component Analysis (PCA)

A well-known spectral data transformation method is
PCA. Let X = [x1, ..., xn] , where xt ∈ Rd and t =
[1, ..., N ]. As PCA is a linear method, the following trans-
formation is sought assumingA is [d×d] such that yt ∈ Rd
and t = [1, ..., N ] : Ypca = AX where Ypca = [y1, ..., yn] .
Therefore, the sample correlation matrix of Ypca equals to:

1

N
YpcaY

T
pca =

1

N
AX(AX)T = A

1

N
XXTAT (1)

The sample correlation matrix of X is
1

N
XXT . Deter-

mining A such that
1

N
YpcaY

T
pca = I is the goal. Consider-

ing eigen-decomposition, we will have
1

N
XXT = V 4V T

,where 4 is a diagonal matrix of the eigenvalues δ1, ..., δn
in descending order having the corresponding eigenvectors
v1, ..., vn as the columns of V. Substituting into (1), it can
be clearly observed that A = 4−1/2V T leads to the goal
such that Ypca = 4−1/2V TX .

Performing a dimensionality reduction from d to l ≤ d
is often achieved by the projection of data onto a subspace
spanned by the eigenvectors (principal axes) corresponding
to the largest top l eigenvalues.

2.2. Kernel Principal Component Analysis (KPCA)

Scholkoft in 1998 proposed Kernel PCA which is a non-
linear version of PCA operating in a new feature space
called kernel feature space. This space is non-linearly re-
lated to the input space. The nonlinear mapping func-
tion (kernel function) is given Φ : Rd → F such that
xt = Φ(xt), t = 1, ..., N and Φ = [Φ(x1), ...,Φ(xN )].
After performing such mapping in input data, PCA if im-
plemented in F , we need an expression for the projection
of PUi

of Φ onto a subspace of feature space principal axes,
for example, top l principals. It can be given by a positive
semi-definite kernel function or Mercer kernel [23] [24],
kσ = Rd × Rd → R computes an inner product in the
Hilbert space F :

kσ(xt, x
′
t) = 〈φ(xt)φ(x′t)〉 (2)

The (N × N) kernel matrix K is defined such that ele-
ment (t, t′) of the kernel matrix equals to kσ(xt, x

′
t). There-

fore, K = ΦTΦ is the inner product matrix (Gram matrix)
in F . Then, Eigen-decomposing the kernel matrix we have
K = EDET where E is the eigenvectors e′1, ..., e

′
n col-

umn wise and their corresponding eigenvalues are in D -
λ1, ..., λn- . Williams in [25] discussed that the equivalence
between PCA and KPCA holds in KPCA as well (kernel
feature space). Hence, we have:

Φpca = PUi
Φ = D

1/2
l ETl (3)

Where Dl is the top large l eigenvalues of K andEl
is their corresponding eigenvectors stored in columns. It
means that projecting Φ onto spanned feature space (princi-
pal axes) is given by PUi

Φ =
√
λie

T
i .
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Considering the analogy in (3), Φpca = D
1/2
l ETl is the

solution to the following optimization problem:

Φpca = D
′1/2
l E′Tl : min

λ′
1,e

′
1,...,λ

′
N ,e

′
N

1T (K −Kpca)2.1. (4)

Where Kpca = ΦTpcaΦpca. Therefore, this procedure
minimizes the norm of K −Kpca.

2.3. Kernel Entropy Component Analysis

Selection of the subspace where the data is projected
onto is of importance in spectral methods, which is achieved
based on the top or bottom eigenvectors in PCA and KPCA.
In KECA, however, this stage is based on entropy estimate.
Using entropy estimate, the data transformation from higher
dimension to lower dimension is obtained by projecting the
input data onto the axes, which contribute to the entropy es-
timate of input space. The procedure of entropy estimate in
KECA is given as follows: The Renyi entropy function is
defined by

H(P ) = − lg

∫
p2(x)d(x) (5)

Where p is probability density of the input data. Consider-
ing the monotonic nature of logarithmic function, (12) can
be replaced by the following equation:

V (P ) =

∫
p2(x)d(x) (6)

Estimating V (p), (14) is given:

p̂(x) = 1/N
∑
xtεS

kσ(x, xt) (7)

k(x, xt) is the kernel centred matrix, then:
V̂ (p) = 1/N

∑p
xtεS

(xt)

1/N
∑
xtεS

1/N
∑
xtεS

kσ(x, xt) = 1/N21TK1 (8)

where K is kσ(x, xt) and 1 is an (N × 1) vector which
contains all ones. The Renyi entropy estimating can be cal-
culated for eigenvalues and eigenvectors of the Kernel ma-
trix. It is defined as K = EDET , where D includes the
eigenvectors, λ1, λ2, ..., λN , and E consists of eigenvalues,
α1, α2, ..., αN . Finally, rewriting (15), we have:

(p) = 1/N2
N∑
1

(
√
λiα

T
i 1)2 (9)

3. Feature Dependent Kernel Entropy Compo-
nent Analysis (FDKECA)

In this section, we will go through PCA and KECA fea-
ture space in details and clarify our motivation to propose
the new transformation method, and then FDKECA is in-
troduced.

3.1. Defining the Feature Dependent Kernel En-
tropy transformation

Generally, in spectral data transformation methods, find-
ing the most valuable principal axes (appropriate directions
in the feature space) is of greatest importance. In PCA,
for example, it is extracted linearly from the principal fea-
ture space. In KECA, however, these axes are extracted
from kernel Entropy feature space as discussed in previous
subsection. We define Feature Dependent Kernel Entropy
Component Analysis as a k-dimensional data transforma-
tion method obtained by projecting input data onto a sub-
space spanned by principal kernel axis contributing to the
feature dependent kernel Entropy space. Feature dependent
kernel Entropy space is defined as follows:

Let X = [x1, ..., xN ], where xt ∈ Rd and t = [1, ..., N ].
The nonlinear mapping function is given Φ : Rd → F d

such that x′t = Φ(x′t), t = 1, ..., d where x′t is an N dimen-
sional vector including all of the tth features from N in-
put data. Explaining this, we have Φ = [φ(x′1), ..., φ(x′d)].
The use of a positive semi-definite kernel function or Mer-
cer kernel computes an inner product in the new space F d:

kσ(x′t, x
′
t′) = 〈φ(x′t)φ(x′t′)〉 (10)

The (N×N) kernel matrix-we define that asKFDKECA

-is now defined such that element (t, t′) of the kernel matrix
is kσ(x′t, x

′
t′). Therefore,KFDKECA is the Gram matrix or

the inner product matrix in F d. The next stage in FDKECA
is to perform PCA on KFDKECA. Note that the kernel
matrix taken in FDKECA feature space (KFDKECA ) is
totally different from that of KPCA.

Fig. 1. illustrates a brief flow diagram of reaching kernel
Entropy feature space from scratch. As it is shown in Fig.
1, N input data are first mapped into kernel space by φ and
then the Gram matrix (kernel matrix) is calculated using in-
ner product. Note that the dimension of kernel matrix is
equal to the number of input data- N . Eigen-decomposition
is the next step where all eigenvalues and their correspond-
ing eigenvectors are extracted and reordered in a descending
manner from the greatest to the smallest value. After find-
ing the kernel axes in this space, the kernel matrix, which
represents the input data, is projected onto the kernel fea-
ture vectors (eigenvectors). The drawback to KECA is that
the dimension of feature space and kernel matrix could be-
come too high and as a result data transformation could be
computationally expensive. In addition, finding the most
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Figure 1. Flow diagram of reaching Kernel Entropy Feature Space

Figure 3. Top 63 eigenvectors obtained by PCA

optimized sub-space in kernel feature space could be chal-
lenging and sometimes inefficient.

Fig. 2. demonstrates FDKECA feature space where the
input data is projected onto a subspace spanned by princi-
pal kernel entropy axes contributing to the feature depen-
dent kernel entropy space. As it is illustrated in Fig.2, FD-
KECA considers all features having the same dimension
from all input data in separate vectors first and then maps
them into kernel space which is called FDKECA feature
space. Then it computes the kernel matrix (Gram matrix)
using inner products which is a d-dimensional space. Note
that the input data has the dimension of dwhich means there
is no growth of dimension while computing FDKECA fea-
ture space. Having d-dimensional FDKECA feature space,
the eigenvectors and their corresponding eigenvalues are de-
composed in this step using the estimation of entropy. The
original input data is projected onto a sub-space of FD-
KECA feature vectors for the purpose of transformation and
dimensionality reduction.

4. Eigenface Analysis on PCA and FDKECA

For more detailed comparison, we have performed PCA
and FDKECA on the first individuals samples and visu-
alized the first 63 feature vectors (eigenfaces) which are
shown in Fig. 4 and 5.

Figure 4. Top 63 eigenvectors obtained by FDKECA

In this analysis, we used 10 samples of the first subject of
SCface database in PCA and FDKECA. In PCA, all samples
were first converted into 1-D vectors. After calculating the
mean vector (the mean image), the co-variance matrix is ob-
tained and then, the Eigen-decomposition is performed on
the co-variance matrix. The eigenvectors (PCA eigenfaces)
were then reordered according to the greatness of their cor-
responding eigenvalues (in descending order). Fig. 4 shows
the top 63 eigenvectors obtained by PCA. As it was ex-
pected, the top eigenvector carries the most information and
the amount of information being carried by the feature vec-
tors reduces as the eigenvector gets farther from the top one
and closer to the bottom one. Another expectation is that
only the first 9 or 10 top eigenvectors have some valuable
information and the rest of the axes (eigenvectors) seem not
to be useful as almost no related information can be seen in
them. In terms of FDKECA, however, it is different.

In FDKECA, we used the polynomial kernel function
with the degree of two. Firstly, all samples were con-
verted into 1-D vectors. After calculating the mean vector
(the mean image), all samples were mapped by the poly-
nomial kernel function (as described in section III). Then,
the Eigen-decomposition was performed on KFDKECA to
achieve the feature vectors and finally the axes were re-
ordered based on entropy estimate. Fig. 5 illustrates the
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Figure 2. Flow diagram of reaching Feature Dependent Kernel Feature Space

top 63 eigenvectors obtained by FDKECA. Same as PCA,
it was expected that the top eigenvector carries the most in-
formation and the amount of information drops as the num-
ber of the eigenvector gets closer to the bottom one. How-
ever, there is a considerable discrepancy between the shown
eigenfaces obtained by PCA and FDKECA. In FDKECA,
all eigenfaces carry relevant information except for the last
12 while in PCA only the first 9 or 10 ones have informa-
tion related to the original face images. This analysis shows
that FDKECA finds more informative and valuable feature
vectors compared to PCA (as shown in Fig. 3 and4).

5. Spectral Clustring Algorithm Using FD-
KECA

In this section, a spectral clustering algorithm is devel-
oped using FDKECA transformation. The proposed algo-
rithm, actually, is suitable for image classification which
works in a supervised system as there are some samples to
train the system and then using different samples, the sys-
tem is tested. We first introduce the FDKECA clustering
algorithm and then compare it with other algorithms such
as PCA, KPCA and KECA in next section. As FDKECA
can be considered as an extension to 1-D PCA, in our clus-
tering algorithm all samples are converted into vectors. The
goal is to propose a clustering system which not only is fast
enough (not as computationally expensive as KECA), but
also outperforms PCA, KPCA and KECA in terms of clus-
tering image samples. Such an algorithm can be used in
recognition systems like face, finger print, finger vein, palm
vein etc.

Fig.5 indicates the flow diagram of the proposed cluster-
ing algorithm for image classification. We believe this al-
gorithm can be applied in image-based recognition systems
such as face and finger vein recognition. Moreover, this
algorithm is much faster than normal KECA as its dimen-
sion of feature vector is fixed and it does not become too
computationally expensive when analyzing a huge number
of data. In addition to having a high speed, this algorithm
is believed to be more appropriate than PCA, KPCA and
KECA as it was shown in previous section. We have con-
ducted different experiments on two different databases to
have a complete analysis on the proposed algorithm. Next

Figure 5. Flow diagram of the proposed clustring algorithm using
FDKECA

section gives experimental results on face and finger vein
database.

6. Experimental Results

In this section, the performance of FDKECA is evaluated
and compared with PCA, KPCA, and Kernel Entropy Com-
ponent Analysis (KECA) on two different databases- finger
vein and face. The experiments are conducted on Surveil-
lance Camera Face Database (SCface database) and Finger
vein database which are explained in two experimental se-
tups in the following part of this section.
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6.1. Experimental setup-1

The first part of the experiments is on finger vein
database. The finger vein samples are collected using our
own designed scanner. We will not go through the detailed
discussion on how the data is collected and prepared as it
might not be totally relevant to this work, See [27] for more
information on the database.

10 samples were used from each of 200 individuals
which results in a finger vein database consisting of 2000
samples. Region of Interest is detected and extracted from
each sample automatically. Fig. 6 shows an original and
cropped sample from the database. Two independent exper-
iments have been conducted on this database. Firstly, the
performance of FDKECA is compared with PCA, KPCA,
and KECA where 5 randomly selected samples were used
to train the algorithm and the remaining 5 to test. Then
we used leave-one-out strategy to have a better comparison.
Gaussian kernel is used in FDKECA, KPCA, and KECA
algorithms in this stage. As in PCA-based image analysis
the size of the samples is of importance, all finger vein sam-
ples have been normalized to the size of (10× 20) to have a
balance between speed and efficiency. In one-dimensional
PCA-based algorithms, the first step is to convert the data
from matrices into vectors which leads into vectors with the
dimension of (1 × 200). It means there could be 200 dif-
ferent implementations of FDKECA on the data using 200
different feature vectors to project the data onto. However,
it is totally different in KPCA and KECA as it is depen-
dent on the number of input data being transferred into ker-
nel space. For the sake of comparison, the first 200 ker-
nel feature vectors were used in our implementations. In
each single experiment, the implementation is repeated 200
times and the maximum accuracies and their corresponding
dimension of feature vector are gathered and shown in Ta-
ble 1. As it is observed from this table, KPCA and KECA
achieve their maximum accuracy in a much higher dimen-
sion of feature vector in comparison with PCA. It is because
feature space in KPCA and KECA is very high dimensional.
more precisely, if 9 image from each category is used to
train, it leads to a total number of 1800 train samples as
there are 200 individuals. Having 1800 input samples in
KPCA and/or KECA will result in a feature space with the
dimension of (1800× 1800) , while in PCA the dimension
is fixed and equal to 200 in this experiment. The FDKECA,
however, results in having the highest accuracy rate while
its dimension of feature vector is almost as high as PCA,
which means this method is not computationally as expen-
sive as KPCA and KECA. Moreover, there is a dramatic
gap between FDKECA and KECA which is more than 10
percent in the first experiment.

Table 1. Comparison of FDKECA with Other Methods Using the
finger vein Database

Strategy Method Max Acc % Dimension
5 for training KPCA 85.9 200

KECA 86 175
PCA 95.3 68
FDKECA 97.2 46

Leave-one-out KPCA 92.5 173
KECA 93.5 86
PCA 98.5 35
FDKECA 99.4 85

Figure 6. Original and ROI extracted finger vein sample

Figure 7. SCface classification using images of 4 cameras for train-
ing and 1 to test

6.2. Experimental setup-2

In the second experimental setup, we chose SCface
database which is already explained in section 4. There are
five different cameras located in three different distances
from the individuals to collect the face data. In this part,
we conducted the experiment using the images of 4 ran-
domly selected cameras for training and the remaining 1
camera for testing. For each algorithm, the experience was
repeated 100 times using the first 100 different eigenvectors
to project the data onto and the results were gathered and
visualized in Fig. 7. It is observed that Like the previous
setup, FDKECA outperforms PCA, KPCA, and KECA in
all experiments. As Fig.7 indicates, FDKECA reaches the
highest accuracy of almost %98 while PCA, KPCA, and
KECA get the accuracy of %89, %79 and %81 respectively.

7. Conclusion
We introduced a new data transformation method in this

research work for dimensionality reduction in image-based
recognition systems. Feature Dependent Kernel Entropy
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Component Analysis (FDKECA) is an extension to both
1D-PCA and 1D-KECA. In FDKECA, all data is mapped
into kernel space feature-wisely which results in having a
constant dimension of data as well as being able to extract
more valuable feature vectors in FDKECA feature space.
Eigenface analysis showed that the feature vectors in FD-
KECA feature space are more informative than PCA. To
examine FDKECA in practical clustering and classification
methods and to be able to have a complete comparison with
PCA, KPCA, and KECA, we proposed a clustering algo-
rithm using FDKECA which was examined in two differ-
ent areas- face recognition and finger vein recognition. Ex-
perimental results showed that FDKECA outperforms PCA,
KPCA, and KECA which shows the reliability of FDKECA
to be applied in image classification and recognition sys-
tems.
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