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ABSTRACT

One challenge in applying standard marching isosurfacing methods to sparse rectilinear grid data is addressed. This

challenge, the problem of finding approximating gradients adjacent to locations with data dropouts, is addressed

here by a new approach that utilizes a tetrahedral spline fitting-based strategy for gradient approximation. The

new approach offers improved robustness in certain scenarios (compared to the current state-of-the-art approach

for sparse grid isosurfacing). Comparative studies of the new approach’s accuracy and computational performance

are also presented.
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1 INTRODUCTION

One common means for visualizing scalar volumetric

data is isosurfacing, which involves finding the set of

locations in space where the phenomenon recorded in

the dataset achieves a particular value, called the iso-

value, denoted herein as α . Isosurface visualization is a

powerful approach for observing and studying the be-

havior of volumetric data. Isosurfacing can promote

discovery in disparate applications areas, such as medi-

cal diagnosis, fluid flow studies, etc.

Well-known isosurfacing methods exist for volumetric

data organized on a number of grid types [10]. Fo-

cus here is on scalar data organized on rectilinear grids,

which is very common, and on isosurfacing methods

applied to such grids that produce triangle meshes ap-

proximating the isosurface and assume data values are

available at each grid point. However, in some applica-

tions, the data is sparse; there is not a data value avail-

able at every grid point. (Here, we will use the term

sparse grid to mean a 3D rectilinear grid dataset with

some missing values.) For example, data collected from

sensor arrays may have missing data values when data

cannot be collected at every grid point due to physi-

cal limitations. Popular isosurfacing methods for recti-

linear grid data, such as the standard, marching meth-
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ods of Marching Cubes and Marching Tetrahedra, re-

quire determination of a local gradient at each mesh

vertex to estimate the isosurface orientation, and then

use that in rendering to produce a shading that is har-

monious with local data trends. When data is sparse,

the schemes these methods use for estimating orienta-

tion can fail at certain locations. Thus, sparseness can

make well-known isosurfacing rendering methods un-

able to be applied. Here, we introduce a new solution

to the challenge of isosurfacing on sparse grids.

Sparse grids may be produced from a variety of sensing

modalities and volume data generation methods. Data

from sensor arrays, particularly ones that measure phys-

ical phenomena, has the potential to have missing data

values due to sensor faults. For example, wireless 3D

sensor arrays, such as those used to capture data un-

derground [1] and underwater [17], operate under harsh

conditions and can be particularly vulnerable to sensor

faults. Low batteries, bad calibration, high noise, or en-

vironmental hazards can all contribute to faults in sen-

sor arrays [11]. Conversion of 3D mesh geometry to

volume data via voxelization algorithms [16] can pro-

duce datasets with data values only at grid points neces-

sary to reproduce the original mesh. Additionally, vol-

ume data derived from point clouds or signed distance

functions may not contain sufficient data to estimate

data gradients at all isosurface locations, in particular

the mesh vertices [12].

One prior work has proposed a work-around to the gra-

dient (orientation) determination challenge in Marching

Cubes on sparse grids. The new approach we describe

here offers improved results in certain scenarios.

The paper is organized as follows. Section 2 discusses

background material and related work. Section 3 de-
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scribes the new approach for estimating isosurface ori-

entation on sparse grid datasets. Section 4 provides

details on rendering isosurfaces extracted from sparse

grids. Section 5 provides results from experiments and

comparisons to prior orientation (or normal) estimation

approaches. Section 6 contains the paper’s conclusion.

2 BACKGROUND AND RELATED WORK

The most common method [10] for isosurfacing on

scalar data on rectilinear grids is the Marching Cubes

(MC) algorithm. MC has been adapted by Nielson et

al. [12] to allow application to rectilinear grids with

missing data values (i.e., sparse grids). We describe

that adaptation in Section 3.2. First, though, we de-

scribe the basic steps of MC and illustrate its failings

for sparse grids.

Marching Cubes isosurfacing produces a triangle mesh

representation of the isosurface by advancing cell-by-

cell through the volume. In each cell, it follows three

major steps. In the first step, the general topological

arrangement of the isosurface mesh in the cell is deter-

mined. (Each general topological arrangement is called

a “case” in this paper, reflecting the typical nomencla-

ture of the MC literature.) Second, for topologies con-

taining isosurface mesh facets, the mesh vertex loca-

tions in the cell are found. Third, the triangle mesh

is formed by connecting vertex locations into the de-

termined topology. An orientation vector is also deter-

mined for each vertex location.

In MC, mesh vertices are located on grid lines, with

positions there found via linear interpolation. At each

vertex, an orientation vector is ultimately used in ren-

dering the produced mesh. These vectors are deter-

mined by linearly interpolating the gradients of the grid

point locations bounding the grid segment containing

each mesh vertex. These gradients are computed using

central differencing; for grid point (xi,yi,zi), MC finds

the gradient ∇ f as:

∇ f (xi,yi,zi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (xi+1,yi,zi)− f (xi−1,yi,zi)

2
f (xi,yi+1,zi)− f (xi,yi−1,zi)

2
f (xi,yi,zi+1)− f (xi,yi,zi−1)

2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

(1)

where f (xi,yi,zi) is the scalar value at (xi,yi,zi).

Since the central-difference gradient uses the values of

adjacent grid points, if there is a missing data value pre-

ceding or following a grid point in any axial direction,

central-differencing will be undefined. As a result, MC

is unable to estimate the orientation vector for any mesh

vertex on a grid segment whose endpoint has an unde-

fined gradient value. Data sets with missing or unde-

fined data thus require an alternative orientation esti-

mator. One option could be use of ad-hoc alternatives

for those grid points where central differencing is un-

defined. For example, a mix of methods could be used

(e.g., forward-differencing and reverse-differencing, as

suitable) at a cost of consistency.

Other works have considered the issue of estimating

orientation in volume data without relying on differenc-

ing techniques. For example, Möller et al. [15] have

used a two-step approach for shading raytraced isosur-

face renderings. Hossain et al. [8] have proposed re-

construction filters for gradient estimation derived from

methods using Taylor series and Hilbert spaces. They

evaluated the accuracy of their filters on both Carte-

sian and Body-Centered Cubic lattices. Correa et al.

[4] have studied averaging-based and regression-based

orientation estimation approaches for use in volume

raycasting on unstructured grids. Their study recom-

mended the use of a hybrid approach that selects the

gradient estimator to use based on local properties of

the unstructured grid. Neumann et al. [9] have es-

timated orientation by fitting a hyperplane on points

nearby to a grid point and then taking a linear regression

result on data points on the hyperplane. However, while

these orientation estimation approaches do not rely on

differencing, they assume that data is available at all

grid points and thus cannot be used with sparse grids.

Other methods for producing visualizations of sparse

grid volume data have also been described. For exam-

ple, Djurcilov and Pang [6] have described some tech-

niques for visualizing weather data when sample points

are missing due to sensor failures. Their techniques re-

quire resampling data to produce a fully populated grid

prior to isosurface extraction.

2.1 Quadratic and Quintic Splines

Rössl et al. [14] have proposed a technique for volume

reconstruction by fitting a spline model to regular, rec-

tilinear volumetric data. Their technique first partitions

the volume’s grid into uniform tetrahedra and then fits

super splines on each partition. Super splines are a class

of splines in which smoothness is preserved on vertices

between adjacent tetrahedra. Each fitting uses Bézier

splines with constants drawn from the values at the ver-

tices of each tetrahedron, ensuring that the super spline

condition is not violated. Details of their process are

described later, in Section 3. Awanou and Lai [2] have

presented an approach using quintic splines to interpo-

late a volume. Their approach is similar to that of Rössl

et al., but it does not require a regular grid and uses a

higher order spline to model the volume data.
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(a) Marching Cubes output (b) LSN virtual local mesh

Figure 1: LSN perp vector estimation

2.2 Locally Supported Normals (LSN)

One methodology for determining isosurface orienta-

tion in sparse rectilinear grid data is the Locally Sup-

ported Normal (LSN) approach described by Nielson et

al. [12]. It considers isosurfacing in a Marching Cubes

context, resolving the undefined orientation problem

by an estimation process that uses a virtual mesh con-

structed on the vertices of the MC isosurface. Orien-

tation vectors computed in this manner tend to exhibit

sharper shading color transitions at triangle edges than

if central-differencing could be used, resulting in a sur-

face with a more faceted appearance. However, central-

differencing cannot be applied where grid values are

missing or undefined.

The estimation used in LSN is integrated into MC-style

isosurfacing; it produces orientation estimates as vertex

locations are calculated. The LSN approach relies on

a temporary virtual local mesh that it defines about the

point for which an orientation vector is needed. This

virtual mesh is not the Marching Cubes output mesh;

Figure 1 demonstrates the difference between a mesh

produced by MC and the virtual mesh used by LSN for

a point V . The LSN approach first computes perpen-

dicular (perp) vectors for each face in the virtual mesh;

these vertex perp operations are done independent of

the MC topology determination. Each perp vector is

found as the cross-product of edge vectors of the vir-

tual mesh face. For each of the MC internal vertices

shared by multiple triangles, all perp vectors of faces

incident to it are averaged to form a master perp vec-

tor at the vertex. The master perp vector becomes the

LSN’s estimate of the isosurface orientation at that ver-

tex. Figure 1(b) shows the LSN’s estimation of the ori-

entation for a location V in a volume. Four perp vectors,
�N1,�N2,�N3, and �N4, are shown. The average of these is

the master perp vector �N ; here, �N is 1
4 ∑4

i=1
�Ni.

The LSN’s estimation can produce erroneous results

when certain data characteristics are encountered. The

first, and most pronounced, of these errors occurs when

degenerate triangles are encountered during orientation

estimation. A degenerate triangle with two or more co-

incident vertices will yield a cross-product of zero, re-

sulting in a zero vector (because the triangle does not lie

on a unique plane in space). MC produces degenerate

triangles when the isovalue is identical to a grid point

value [13]. If a vertex is associated with only degen-

erate triangles, the orientation vector computed using

(a) Non-degenerate

mesh

(b) Degenerate mesh

used by LSN

Figure 2: LSN summed average estimation

LSN at that vertex has length zero. The rendered iso-

surface can contain artifacts at pixel locations affected

by the zero length orientation vector.

In Figure 2(a), a mesh containing no degenerate trian-

gles is shown. In contrast, Figure 2(b) displays an LSN

mesh corresponding to the same topology, but with ver-

tex V located at a cube corner, resulting in four degen-

erate triangles (one triangle degenerating to a point and

three to a line). The result from LSN is a zero length

orientation vector.

Additionally, the LSN approach makes assumptions

about what have been called ambiguous faces [10] of

cells. These assumptions can lead to inaccurate orien-

tation vectors. One example cube where this incorrect

assumption is a problem is shown in Figure 3. The cube

has the Case 13 base topology of the MC [12], shown in

Figure 3(a). However, the LSN estimation uses the vir-

tual mesh shown in Figure 3(b) to compute orientation

vectors in corners of the cube opposite to those defined

by MC. We refer to triangles used in the LSN virtual

mesh that do not appear in the MC mesh as illusory

triangles. The normals (i.e., perp vectors) associated

with these triangles may differ greatly from the orien-

tation vectors that would result if the actual MC iso-

surface facets had been used. In particular, each vector

found using an illusory triangle will contribute errors to

the orientation vector estimation at vertices of illusory

triangles. For such situations, the orientations can be

estimated incorrectly and yield incorrectly shaded ren-

derings.

The illusory triangle problem in LSN is not just lim-

ited to cubes with ambiguous faces. For example, in

Marching Cubes Case 5 LSN uses an illusory triangle

to compute a perp vector. The topology used by MC

for the Case 5 topology is shown at the top of Figure 4

(labeled “C5”). The five virtual mesh triangles used by

LSN are shown in the rest of the figure. While most

of the virtual mesh triangles should produce reasonable

results, the one used for V4 is illusory and its orienta-

tion is not consistent with the actual mesh properties

at V4. Other MC cases also exhibit illusory triangles

yielding orientations that differ markedly from that of

the MC isosurface mesh. An example of the incorrect

orientation from illusory triangles is provided later in

this work.
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(a) Topology of

cell as defined by

Marching Cubes

(b) Topology

of cell assumed

by the LSN

approach

Figure 3: Comparison of cell topologies used by MC

and LSN

��

Figure 4: Case 5 MC and LSN topologies

3 NEW GRADIENT ESTIMATION AP-

PROACH FOR SPARSE GRIDS

Next, we describe our new approach for determining

orientation vectors in MC for sparse grids. The ap-

proach is guaranteed to produce orientation vectors at

any location for which it is possible to find a Marching

Cubes isosurface vertex. That is, the scheme introduced

here can handle any rectilinear sparse grid configuration

satisfying the condition that the isosurface vertices can

be computed. (I.e., like LSN, our approach assumes

there is local support for the isosurface.) For some sce-

narios, it also offers improved performance over prior

approaches for computing MC isosurface orientation

vectors on sparse grids.

3.1 Using Quadratic Splines

Our work is motivated by Rössl et al.’s modeling of vol-

umetric data variation using quadratic Bézier-Bernstein

super splines (2BBSS) in tetrahedral regions. A tetra-

hedron allows for the use of an interpolating volumet-

ric spline using a barycentric coordinate system given

a sufficient number of data points on the tetrahedron.

Specifically, given four points v0,v1,v2,v3 defining the

four vertices of a tetrahedron, a quadratic trivariate

spline p is composed in the Bézier-Bernstein form:

p(λ) = ∑
i+ j+k+l=2

ai jklBi jkl(λ ), (2)

where the parameter λ is the location within the spline

(in barycentric coordinates with λ = (λ0,λ1,λ2,λ3)),
the coefficients ai jkl are the control points of the spline,

Figure 5: Spline control points

and the Bi jkl’s are Bernstein polynomials. The control

points are calculated as linear combinations of the ver-

tices of the tetrahedron:

ai jkl =
i

2
v0 +

j

2
v1 +

k

2
v2 +

l

2
v3, (3)

as depicted in Figure 5. The Bernstein polynomials

Bi jkl are defined as

Bi jkl(λ ) =
2!

i! j!k!l!
λ i

0λ
j

1 λ k
2 λ l

3, i+ j+ k+ l = 2, (4)

where each λ = (λ0,λ1,λ2,λ3) is a barycentric coordi-

nate with respect to the tetrahedron.

Numerous schemes exist for partitioning rectilinear grids

into collections of tetrahedra. We employ one such

scheme here to enable the use of tetrahedral splines in

the estimation of orientation vectors. Tetrahedral parti-

tions also alleviate the problem of missing data because

only 4 grid values are needed to model isosurface be-

havior within a tetrahedral partition, as opposed to the

6 necessary for a central differencing. By partitioning

rectilinear dataset cells into tetrahedra, we can calculate

an orientation in any cell intersected by the isosurface.

In the 2BBSS model, each tetrahedron must have as-

sociated data values at each tetrahedral vertex. Given

such, a spline is formulated that approximates the sur-

face within the tetrahedron.

Our approach finds the approximating spline in cells in-

tersected by the isosurface by partitioning the cell into

tetrahedra and then evaluating the spline constructed on

those tetrahedra to determine orientation vectors (i.e.,

spline normals) at any barycentric coordinate (λ0,λ1,λ2,λ3)
within each tetrahedron of interest. For each of them,

our approach uses de Casteljau’s algorithm [3] [5] to

determine the spline’s partial derivative [14] by apply-

ing the algorithm in the direction of tetrahedron edges.

The usage of de Casteljau’s algorithm to compute the

derivative of a curve is well understood [7].

For any point on a spline, the formulation of de Castel-

jau’s algorithm enables finding the directional deriva-

tives at q as follows. First, given a spline with con-

trol points of the form a0
i jkl , for a point q having the

Journal of WSCG

Volume 23, 2015 76 ISSN 1213-6972

No.1



Figure 6: Tetrahedral partitions

barycentric coordinate λq =(λ0q ,λ1q ,λ2q ,λ3q), new con-

trol points denoted by a1
i jkl are computed as:

a1
i jkl = λ0qa0

i+1, j,k,l +λ1qa0
i, j+1,k,l+ (5)

λ2qa0
i, j,k+1,l +λ3qa0

i, j,k,l+1,

which define a subdivision of the original spline. (An-

other application of the formula would produce the

value at q, however we need just the control points

a1
i jkl of the spline subdivision because they define par-

tial derivatives for the spline.) Since the normal at any

point on a surface s(x,y,z) can be defined as

∇s(x,y,z) = (
∂ s

∂x
,

∂ s

∂y
,

∂ s

∂ z
), (6)

we compute the orientation by finding the partial deriva-

tives in the directions parallel to the coordinate system

axes. The formulation of this partial derivative is given

in Section 4.

4 ISOSURFACE RENDERING WITH

SPARSE GRIDS

Our approach defines 2BBSS splines for tetrahedral

subregions of each active cell. We consider eight can-

didate tetrahedral partitions of each cell (shown in Fig-

ure 6) and choose from these the one that enables the

most accurate estimate of the orientation vector. The

choice is described shortly. This orientation estima-

tion is based on a 2BBSS approximation of the vol-

ume within that tetrahedron. The eight tetrahedra were

chosen because they share the property that three tetre-

hdron faces are coplanar with faces of the cell which

helped simplify the construction of the spline.

For each isosurface mesh vertex, there are two candi-

date tetrahedra from which the orientation at that vertex

could be computed. Next, how our approach decides

on the one to use is described. An example situation

is shown in Figure 7. In it, the vertex shown in red is

located on the rear edge of the cell. One candidate tetra-

hedron is shown in Figure 7(a) and the other is shown

in Figure 7(b). For the case where the vertex lies on

an isosurface mesh triangle completely located within a

(a) Tetrahedral parti-

tion 1

(b) Tetrahedral par-

tition 2

Figure 7: Two choices of tetrahedral partition of the cell

tetrahedron, that tetrahedron is chosen. However, a tri-

angle’s surface may span both possible choices of tetra-

hedra. For such cases, tetrahedron selection is done

instead by considering the total number of isosurface

mesh triangle edges; we select the tetrahedron contain-

ing the greatest number of triangle edges. We have

found that selection using this criterion provides more

accurate orientation vectors than using a static tetrahe-

dral partition that is ignorant of the triangles’s location

in the cell. Our approach uses an adaptation of the MC

topological case lookup table to record the tetrahedral

selections, allowing fast determination of the tetrahe-

dron as well as supporting orientation vector determi-

nation coincident with mesh determination (i.e., within

an extended MC context).

Next, we describe the orientation determination proce-

dure. The partial derivative of the spline p(λ ) in the

direction ξφ of a tetrahedron edge vφ − v is given by

∂ p

∂ξφ
= 2 ∑

i+ j+k+l=1

(ai, j+b,k+c,l+d −ai+1, j,k,l)λ
i
0λ j

1 λ k
2 λ l

3,

(7)

where (λ0,λ1,λ2,λ3) are the barycentric coordinate vari-

ables of the spline equation and (b,c,d) is used to de-

fine an offset to a tetrahedral vertex in direction ξφ .

Figure 8 illustrates the vector calculations when finding

the partial derivative in the x direction. The arrows on

tetrahedron edges indicate a forward difference calcu-

lation using the tetrahedron vertices of that edge. The

partial derivative is a linear combination of the differ-

ences, with weights for each component dependent on

the particular tetrahedral partition being used within the

cell. Similar vectors are computed for partial deriva-

tives in the y and z directions.

h0

h1 h2
h3

h4
h5

v0 v1

v2

v3

Figure 8: Computing the orientation from sample

points
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Since cell vertices are located on grid edges, each mesh

vertex is guaranteed to have at least two zero-valued

components of its barycentric coordinate. By determin-

ing which edge type the vertex is located on, we can

choose the most appropriate equation to minimize the

number of calculations required. For instance, for the

tetrahedron shown in Figure 8, the gradient for a vertex

on any edge parallel to the base is given by:

∇F =

⎧⎨
⎩

γ0 ∑i+ j=1(ai, j+1,0,0 − ai+1, j,0,0)λ
i
0λ

j
1 ,

γ1 ∑i+k=1(ai,0,k+1,0− ai+1,0,k,0)λ
i
0λ k

2 ,

γ2 ∑i+l=1(ai,0,0,l+1 − ai+1,0,0,l)λ
i
0λ l

3

⎫⎬
⎭ ,

(8)

where γν , ν = 0,1,2,γ =±1, is an orienting coefficient.

For the example in Figure 8, formulation of the spline

assumes a tetrahedron oriented as in Figure 8, how-

ever the tetrahedral partition used may be a reflection

or rotation (or combination of both) of this orientation.

The γ coefficient, which corrects for reflected or rotated

instances, allows correcting the directions the compo-

nents of the orientation vector.

For each tetrahedron the mesh vertex is located in, a

gradient vector is produced by evaluating Equation 9.

Vertices will be shared among up to four tetrahedra, re-

sulting in as many as four separate vectors per vertex.

The orientation vector ultimately assigned to the vertex

is the mean of these four gradient vectors.

5 RESULTS

In this section we present results of experiments to eval-

uate our approach versus LSN. These experiments con-

sider accuracy of orientation vectors and the run times

to compute them. We also report a qualitative evalua-

tion of rendered images to determine the impact of de-

generate triangles on each approach.

Accuracy was tested by comparing orientation vectors

computed using our spline-derived orientations against

the orientations using the LSN approach, then compar-

ing these against orientations computed using central-

differencing. Eight well-known real (sensed) volume

datasets and five mathematically-defined datasets were

used in testing. Additionally, we performed visual com-

parisons of the rendered images to determine if there

was a difference between renderings made using the

two orientation estimation approaches.

The datasets were converted to sparse grid representa-

tions by removing all grid values that were not required

by MC to extract the isosurface with marker values.

Specifically, grid points that were not on grid edges

containing a mesh vertex were set to marker values.

By removing all data points that do not contribute to

the isosurface extraction, we could operate on volumes

with the least possible number of defined values and

thus the least favorable datasets for the classic central

difference orientation estimation approach used in MC.

(a) Our approach

(b) LSN approach

Figure 9: Renderings performed using both orientation

estimation approaches.

5.1 Measurement of Orientation Estima-

tion Accuracy

Isosurfaces were extracted using Marching Cubes for

ranges of isovalues on the eight sensed datasets. The

range was made large so that results would not be bi-

ased against a particular sub-range of isovalues. A root

mean square (RMS) error for each isosurface was calcu-

lated by comparing the angular difference (in radians)

of all orientation vectors produced by both estimation

approaches against the central-difference estimate. The

central-difference is the baseline in this error compari-

son because it is equivalent to computing the gradient

of a second-order data fitting at each grid point. The

mean RMS error of each dataset at all tested isovalues is

shown in Table 1. Inspection of individual isovalues on

some datasets showed that LSN was sometimes more

accurate than our approach, but on average ours appears

to be the superior approach. The spline orientation es-

timation produced more accurate orientation estimates

(on average) than the LSN approach in all datasets ex-

cept for the Engine dataset.

Table 2 shows the RMS errors for 9 isosurfaces ex-

tracted on the sensed datasets. LSN does occasionally

produce more accurate results, however our orientation
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Dataset Ours LSN

Foot 0.531 0.547

Frog 0.569 0.589

Lobster 0.369 0.375

MRA 0.639 0.653

Piggy bank 0.876 0.898

Backpack 0.561 0.568

Sheep heart 0.313 0.315

Engine 0.204 0.187

Table 1: Average RMS error of approaches vs. central-

difference

Dataset Isovalue Ours LSN

MRA 65 0.740 0.764

75 0.684 0.714

80 0.775 0.783

Foot 80 0.555 0.572

90 0.502 0.518

100 0.472 0.322

Frog 40 0.512 0.524

45 0.513 0.523

80 0.545 0.640

Lobster 50 0.318 0.316

65 0.329 0.332

80 0.336 0.338

Table 2: RMS error of approaches vs. central-

difference

estimation produces more accurate results in the major-

ity of cases we tested. Figure 10 shows MRA and Foot

isosurfaces (for α = 65 and 90, respectively). The mag-

nified callouts show subtle differences in the two ren-

derings, but both are very similar to the baseline images

produced using central-difference gradient estimates.

5.2 Accuracy using Mathematically De-

fined Data

Experiments were also performed to measure the ac-

curacy of the orientation estimation approaches ver-

sus exact orientation vector values. These experiments

tested scalar fields generated using five mathematically

defined fields. The isosurfaces were generated corre-

sponding to level sets (i.e., implicit surfaces) of these

fields. Orientation vectors were estimated using our

spline-based estimation, the LSN estimation, and the

standard MC central-difference approaches. Orienta-

tion vectors at each location were compared against the

exact orientation vector values computed at the isosur-

face intersection locations. Table 3 reports the RMS er-

ror with respect to the exact orientation vectors for iso-

surfaces of the zero level set. Excepting the Marschner-

Lobb dataset, the central-difference estimates are supe-

rior to both LSN and our orientation estimations. But

LSN estimates are sometimes better than ours. Thus,

empirical evidence suggests that, for mathematically

(a) Foot Ours (b) Foot LSN

(c) MRA Ours (d) MRA LSN

Figure 10: Zoomed comparison of isosurface images

Figure 11: MC lookup table base topologies

defined, noise-free data, LSN estimation may be quite

suitable; LSN estimation may provide more accurate

normal estimation than our approach for many mathe-

matically defined scalar fields.

5.3 Individual MC Topologies

Since results for the mathematically defined datasets

were incongruous with those observed for sensed data

(where our approach appears to be better than LSN),

we performed an analysis of occurrences of MC base

topologies defined in the MC lookup table [12] to deter-

mine if one estimation approach produced more accu-

rate orientation vectors for particular base topologies.
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Dataset Ours LSN
Central

Diff
Mar-
Lobb 0.0545 0.0616 0.0718

Six Peaks 0.0139 0.0534 0.0179

Genus_3 0.00622 0.00506 0.000265

Flower 0.0261 0.0261 0.0183

Peaks 0.0372 0.0235 0.0218

Table 3: RMS error calculated versus exact orientations

The base topologies are shown in Figure 11 with la-

bels Ci (Ci means “Case i”, as used throughout this sec-

tion). The isosurfaces extracted from mathematically

defined datasets showed no occurrences of the Case 4,

7, 12, and 15 topologies. Additionally, very low oc-

curences were observed for Cases 6, 10, 11, 12, 14, 15,

18 and 19. Many of these topologies consist of discon-

nected triangles within a cell. Due to the nature of the

level sets MC produced for these datasets it is not un-

expected that occurrences of these topologies would be

rare. The sensed data contained far more examples of

these topologies. While for some isovalues, there were

no instances of a few topological cases, such situations

were observed less frequently than for the synthesized

datasets. For one dataset (MRA), some isovalues did

not give rise to any cells of the type Case 15 or 18. For

one dataset (the Engine dataset), the majority of iso-

values did not give rise to any of Case 4, 7, 13, or 15

cells. This may be a result of the engine structure in

the dataset being manufactured from a CAD model that

had a limited number of basic surface types.

To determine the effect that particular base topologies

had on orientation estimation accuracy, we considered

RMS error of orientation vectors on a topological basis

for sensed data isosurfaces. The Case 7, 10 12, 13, 15,

and 19 topologies demonstrated much lower RMS er-

rors for our estimation than for LSN estimation. LSN

estimation produced consistently more accurate orien-

tation vectors for the Case 8 topology. These results

suggest that LSN estimation be considered for isosur-

faces likely having low occurrences of topologies bene-

ficial to our approach; mathematically defined datasets

similar to ones tested here may be good for LSN.

The LSN’s orientation vectors can differ substantially

from true orientation vectors and from orientation vec-

tors calculated using central-differencing, as demon-

strated in Figure 3. We also analyzed the degree each

case should be considered “at-risk” of exhibiting errors

due to the incorrect topology assumption, focusing on

error-prone vertices. Our criterion for this analysis was

if angular divergence in the vector was 90 degrees or

more from the central-difference orientation vector. We

considered only vertices at the midpoint of cell edges.

The analysis showed that 146 of the 256 possible MC

cases were potentially problematic. One to five ver-

tices demonstrated angular divergence greater than 90

Dataset Ours LSN

MRA 0.639 0.651

Foot 0.922 0.933

Frog 0.652 0.689

Lobster 0.479 0.478

Table 4: RMS error for problematic cases

Dataset Isoval. # undef. Total %

Foot 40 12204 278894 4.36

Frog 40 1263 101841 1.24

Lobster 40 2946 149250 1.97

Engine 40 4704 637854 0.74

Mar-Lobb 0 0 603343 0

Six Peaks 0 8 2004650 0

Table 5: Undefined orientations using LSN approach

Dataset Ours (secs) LSN (secs)

Flower 1.077 2.873

Six Peaks 0.926 2.428

Mar-Lobb 2.959 8.018

Table 6: Orientation estimation times

degrees in these cases. Error comparisons of orienta-

tion vectors for just the problematic cases are reported

in Table 4 over an average of 100 isovalues for each

dataset. Our approach produces orientations that are

closer to the central-difference than LSN when these

cases are encountered. Figure 9 shows isosurface ren-

derings for the Lobster dataset using both approaches.

However, the incidence of orientations that meet the an-

gular divergence criterion in sensed and simulation data

is likely much smaller since the triangle vertex locations

in the analysis were chosen to highlight the problematic

cases and the severity in angular difference is lessened

when vertices are located closer to grid point locations.

Rendering artifacts at degenerate triangles in the isosur-

face mesh can be observed in Figure 9(b). They mani-

fest here as dark spots and are a result of using a vector

cross product to compute orientation vectors on degen-

erate triangles in the virtual mesh. (MC produces a tri-

angle with three coincident vertices when a grid value

is identical to the isovalue.) Here, the orientation vec-

tor computed for this triangle has length equal to zero.

The zero-length vector leads to a zero vector for the

Phong illumination diffuse and specular components .

Our method does not exhibit this phenomenon, as is il-

lustrated in Figure 9(a), since our orientation vector re-

lies on the result of a fitting to four data values within

the cell rather than on any mesh triangles.

In Table 5, we show the number of undefined orienta-

tion vectors recorded using the LSN estimation. Vol-

umes with 8 bit integers had more undefined orienta-

tions than did those with floating point values. Far

fewer undefined orientations were present in the syn-
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thetic datasets, which all used 32 bit floating point num-

bers to store the volume’s sample values. The number

of undefined orientation vectors using LSN estimation

appeared to correspond to the data type used to store the

volume’s data values.

Finally, in Table 6 execution times for calculating ori-

entations for three of the larger datasets are shown. The

LSN estimation requires over twice the computation of

our approach. The LSN approach is not as fast as ours.

6 CONCLUSION

We have presented a new approach for estimating iso-

surface orientation vectors on sparse grid datasets. The

typical approach for orientation estimations, central-

differencing, cannot be used universally in sparse grids

due to undefined data at some grid locations. Our ap-

proach can produce isosurface orientations anywhere

that MC can produce triangles. Further, the approach

is not affected by the presence of degenerate trian-

gles, which produce shading errors in other approaches

as a result of undefined orientations. Thus, the new

approach has certain advantages even over MC’s ori-

entation estimation. Our approach has, on average,

a smaller RMS error than a competing approach (us-

ing the baseline of central-difference estimations) on

real world data. For synthetic data, advantages were

less clear. Computation times for our approach were

markedly faster. Further, the new approach guarantees

orientation vectors to be defined at all vertex locations,

making it applicable to a wider variety of data.

An area for further investigation is using spline fit-

tings that observe the continuity properties of super

splines in producing more accurate orientation estima-

tions. Also, other isosurfacing algorithms could be in-

vestigated with our approach to estimate orientations

to determine what increases in accuracy and error tol-

erance occur. Another area of further investigation is

removing random data grid values to simulate random

sensor failures. Lastly, we will evaluate the impact of

increasing noise levels on the new approach’s accuracy.
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