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ABSTRACT

We present an efficient interactive tool for separating collectively segmented bones and bone fragments in 3D
computed tomography (CT) images. The tool, which is primarily intended for virtual cranio-maxillofacial (CMF)
surgery planning, combines direct volume rendering with an interactive 3D texture painting interface to enable
quick identification and marking of individual bone structures. The user can paint markers (seeds) directly on
the rendered bone surfaces as well as on individual CT slices. Separation of the marked bones is then achieved
through the random walks segmentation algorithm, which is applied on a graph constructed from the collective
bone segmentation. The segmentation runs on the GPU and can achieve close to real-time update rates for volumes
as large as 5123, Segmentation editing can be performed both in the random walks segmentation stage and in a
separate post-processing stage using a local 3D editing tool. In a preliminary evaluation of the tool, we demonstrate

that segmentation results comparable with manual segmentations can be obtained within a few minutes.
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1 INTRODUCTION

Cranio-maxillofacial (CMF) surgery to restore the fa-
cial skeleton after serious trauma or disease can be both
complex and time-consuming. There is, however, evi-
dence that careful virtual surgery planning can improve
the outcome and facilitate the restoration [27]. In addi-
tion, virtual surgery planning can lead to reduced time
in the operating room and thereby reduced costs.

Recently, a system for planning the restoration of skele-
tal anatomy in facial trauma patients (Figure 1) has been
developed within our research group [25]. As input, the
system requires segmented 3D computed tomography
(CT) data from the fractured regions, in which individ-
ual bone fragments are labeled. Although a collective
bone segmentation can be obtained relatively straight-
forward by, for instance, thresholding the CT image at
a Hounsfield unit (HU) value corresponding to bone
tissue, separation of individual bone structures is typ-
ically a more difficult and time-consuming task. Due to
bone tissue density variations and image imprecisions
such as noise and partial volume effects, adjacent bones
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Figure 1: Example of a patient who has suffered com-
plex fractures on the lower jaw and the cheekbone. The
individual bone fragments in the CT image have been
segmented with our interactive 3D texture painting tool
to enable virtual planning of reconstructive surgery.

and bone fragments in a CT image are typically con-
nected to each other after thresholding, and cannot be
separated by simple connected component analysis or
morphological operations. In the current procedure, the
bones are separated manually, slice by slice, using the
brush tool in the ITK-SNAP software [30]. This pro-
cess takes several hours to complete and is the major
bottleneck in the virtual surgery planning procedure.
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1.1 Contribution

Here, we present an efficient interactive tool for sep-
arating collectively segmented bones and bone frag-
ments in CT volumes. Direct volume rendering com-
bined with an interactive 3D texture painting interface
enable the user to quickly identify and mark individual
bone structures in the collective segmentation. The user
can paint markers (seeds) directly on the rendered bone
surfaces as well as on individual CT slices. Separation
of marked bones is then achieved through the random
walks segmentation algorithm [12]. A local 3D editing
tool can be used to refine the result. In a preliminary
evaluation of the bone separation tool, we demonstrate
that segmentation results comparable with manual seg-
mentations can be obtained within a few minutes.

1.2 Related Work

Model-based segmentation techniques have been used
for automatic segmentation of individual intact bones
such as the femur and tibia, but are not suitable for seg-
mentation of arbitrarily shaped bone fragments. Au-
tomatic bone segmentation methods without shape pri-
ors have been proposed [10][18][2] but are not general
enough for fracture segmentation.

Manual segmentation can produce accurate results and
is often used in surgery planning studies. However, it
is generally too tedious and time-consuming for routine
clinical usage, and suffers from low repeatability. An-
other problem with manual segmentation is that the user
only operates at a single slice at the time and thus may
not perceive the full 3D structure. This tends to produce
irregular object boundaries.

Semi-automatic or interactive segmentation methods
combine imprecise user input with exact algorithms
to achieve accurate and repeatable segmentation
results. This type of methods can be a viable option
if automatic segmentation fails and a limited amount
of user-interaction time can be tolerated to ensure
accurate results. An example of a general-purpose
interactive segmentation tool is [6]. Liu et al. [22]
used a graph cut-based [4] technique to separate
collectively segmented bones in the foot, achieving an
average segmentation time of 18 minutes compared
with 1.5-3 hours for manual segmentation. Fornaro
et al. [9] and Fiirnstahl et al. [11] combined graph
cuts with a bone sheetness measure [7] to segment
fractured pelvic and humerus bones, respectively.
Mendoza et al. [23] adapted the method in [22] for
segmentation of cranial regions in craniosynostosis
patients. The TurtleMap 3D livewire algorithm [16]
produces a volumetric segmentation from a sparse set
of user-defined 2D livewire contours, and have been
applied for segmentation of individual bones in the
wrist. It is, however, not suitable for segmentation of
thin bone structures such as those in the facial skeleton.
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Segmentation of individual wrist bones has also been
investigated in [15][24].

In all the semi-automatic methods listed above, the user
interacts with the segmentation via 2D slices. A prob-
lem with using slice-based interaction for bone segmen-
tation is that it can be difficult to identify, mark, and
inspect individual bone structures and contact surfaces,
particularly in complex fracture cases.

Texture painting tools [17][29] enable efficient and
intuitive painting of graphical models (3D meshes)
via standard 2D mouse interaction. Mouse strokes in
screen space are mapped to brush strokes in 3D object
space. Mesh segmentation methods [20] utilize similar
sketch-based interfaces for semi-automatic labeling
of individual parts in 3D meshes. Biirger et al. [5]
developed a direct volume editing tool that can be used
for manual labeling of bone surfaces in CT images.
Our proposed 3D texture painting interface extends this
concept to semi-automatic segmentation.

2 METHODS

Our bone separation tool combines and modifies several
image analysis and visualization methods, which are
described in the following sections. In brief, the main
steps are (1) collective bone segmentation, (2) marking
of individual bone structures, (3) random walks bone
separation, and (4) segmentation editing.

2.1 Collective Bone Segmentation

A collective bone segmentation is obtained by thresh-
olding the grayscale image at the intensity value f,y,
(see Figure 2). The threshold is preset to 300 HU in
the system, but can be adjusted interactively, if needed,
to compensate for variations in bone density or image
quality. The preset value was determined empirically
and corresponds to the lower HU limit for trabecular
(spongy) bone. Noisy images can be smoothed with a
3 x 3 x 3 Gaussian filter (o = 0.6) prior to threshold-
ing. The Gaussian filter takes voxel anisotropy into ac-
count and can be applied multiple times to increase the
amount of smoothing, although usually a single pass is
sufficient. Both the thresholding filter and the Gaussian
filter utilize multi-threading to enable rapid feedback.

2.2 Deferred Isosurface Shading

We use GPU-accelerated ray-casting [19] to render the
bones as shaded isosurfaces. The isovalue is set to e,
so that the visual representation of the bones matches
the thresholding segmentation. Similar to [14] and [13],
we use a deferred isosurface shading pipeline. A 323
min-max block volume is used for empty-space skip-
ping and rendering of the ray-start positions (Figure 3a).
We render the first-hit positions (Figure 3b) and surface
normals (Figure 3c) to a G-buffer via multiple render
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Figure 2: Left: Coronal slice of a grayscale CT volume of the facial skeleton. Right: Collective bone segmentation
obtained by thresholding the CT volume at a Hounsfield unit (HU) value corresponding to trabecular bone.

targets (MRT), and calculate shadows and local illu-
mination in additional passes. Segmentation labels are
stored in a separate 3D texture and fetched with nearest-
neighbor sampling in the local illumination pass.

Local illumination (Figure 3e) is calculated using a nor-
malized version of the Blinn-Phong shading model [1].
To make it easier for the user to perceive depth and spa-
tial relationships between bones and bone fragments,
we combine the local illumination with shadow map-
ping to render cast shadows (Figure 3f). The shadow
map (Figure 3d) is derived from an additional first-hit
texture rendered from a single directional light source’s
point of view. The shadows are filtered with percentage
closer filtering (PCF) [26] and Poisson disc sampling
to simulate soft shadows. It is possible to disable the
shadows temporarily during the segmentation if they
obscure details of interest.

Ambient lighting is provided from pre-filtered irradi-
ance and radiance cube maps [1]. Unlike the traditional
single-color ambient lighting commonly used in medi-
cal visualization tools, the color and intensity variations
in the image-based ambient lighting allow the user to
see the shape and curvature of bone structures that are in
shadow. The image-based ambient lighting also enables
realistic rendering of metallic surfaces, e.g., metallic
implants that have been separated out from the bones
as part of the planning procedure. To enhance fracture
locations, we modulate the ambient lighting with a lo-
cal ambient occlusion [21] factor, which is computed
on-the-fly using Monte-Carlo integration.

2.3 3D Texture Painting Interface

As stated in Section 1.2, a problem with 2D slice-based
interaction is that it may be difficult to identify, mark,
and inspect individual bone structures. Even radiolo-
gists, who are highly skilled at deriving anatomical 3D
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structures from stacks of 2D images, may find it dif-
ficult to locate and mark individual bone fragments in
complex fracture cases. To overcome this issue, we im-
plemented a 3D texture painting interface that enables
the user to draw seeds directly on the bone surfaces.

Our 3D brush (Figure 4a) is implemented as a spher-
ical billboard and uses the first-hit texture (Figure 3b)
for picking and seed projection. The brush proxy fol-
lows the bone surface and can only apply seeds on sur-
face regions that are visible and within the brush ra-
dius (in camera space). To prevent the brush from leak-
ing through small gaps in the surface of interest, we
compute a local ambient occlusion term from a depth
map derived from the first-hit texture, and discard brush
strokes in areas where the ambient occlusion value at
the brush center exceeds a certain threshold. The radius
of the ambient occlusion sampling kernel corresponds
to the radius of the brush.

Additional tools include a label picker, an eraser, a
floodfill tool, and a local editing tool (Section 2.6).
A 3D slice viewer enables the user to mark occluded
bones or place additional seeds inside the bones. The
latter can be useful when the boundaries between the
bones are weak or when the image is corrupted by
streak artifacts from metal implants. We also provide
interactive clipping tools that can be used to expose
bones and contact surfaces. Both the 3D slice viewer
and the clipping tools are useful during visual inspec-
tion and editing of the segmentation result.

2.4 Random Walks Bone Separation

Given the collective binary bone segmentation, the next
step is to separate the individual bones and bone frag-
ments. We considered two graph-based segmentation
algorithms, graph cuts [4] and random walks [12], for
this task. In the end, we selected the random walks
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Figure 3: Deferred isosurface shading pipeline: (a) ray-start positions; (b) first-hit texture; (c) surface normals; (d)
shadow map derived from an additional first-hit texture rendered from a directional light source’s point of view;
(e) local illumination; (f) local illumination with shadows.

algorithm since it is robust to noise and weak bound-
aries, extends easily to multi-label (K-way) segmenta-
tion, and does not suffer from the small-cut problem of
graph cuts. The main drawback and limitation of ran-
dom walks is its high computational and memory cost
(which, to be fair, is also a problem for graph cuts).
For interactive multi-label segmentation of volume im-
ages, this has traditionally limited the maximum vol-
ume size to around 2563, which is smaller than the CT
volumes normally encountered in CMF planning. Our
random walks implementation overcomes this limita-
tion by only operating on bone voxels.

We construct a weighted graph G = (V, E) from the col-
lective bone segmentation and use the random walks
algorithm to separate individual bones marked by the
user. Figure 4 illustrates the segmentation process. For
every bone voxel, the random walks algorithm calcu-
lates the probability that a random walker starting at the
voxel will reach a particular seed label. A crisp segmen-
tation is obtained by, for each bone voxel, selecting the
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label with the highest probability value. The vertices
v € V in the graph represent the bone voxels and the
edges e € E represent the connections between adjacent
bone voxels in a 6-connected neighborhood. The num-
ber of neighbors can vary from zero to six. Each edge
e;j between two neighbor vertices v; and v; is assigned
a gradient magnitude-based weight w;; [12] defined as

wij =exp(—B(gi—gj)*) +&, (1)

where g; and g; are the intensities of v; and v; in the
underlying grayscale image, and f3 is a parameter that
determines the influence of the gradient magnitude. We
add a small positive constant € (set to 0.01 in our imple-
mentation) to ensure that v; and v; are connected, i.e.,
wij > 0. Increasing the value of 8 makes the random
walkers less prone to traverse edges with high gradi-
ent magnitude. Empirically, we have found = 3000
to work well for bone separation; however, the exact
choice of B is not critical and we have used values in
the range 2000-4000 with similar results.
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Figure 4: 3D texture painting interface for interactive random walks segmentation: (a) 3D brush used for painting
seeds directly on the bone surfaces; (b) marked bones; (c) bone separation obtained with random walks.

As proposed in [12], we represent the weighted graph
and the seed nodes as a sparse linear system and use
an iterative solver (see Section 2.5) to approximate the
solution for each label. By constructing the graph
from the bone voxels in the collective segmentation,
rather than from the full image, we simplify the ran-
dom walks segmentation task from separation of mul-
tiple tissue types to bone separation. Moreover, we re-
duce the memory and computational cost substantially
(by ~ 90% in our test cases). The head CT volumes en-
countered in CMF planning typically contain between
3 and 8 million bone voxels, which is a small fraction,
~ 10%, of the total number of voxels. Combined with
fast iterative solvers, this enables rapid update of the
segmentation for volumes as large as 5123,

A problem with constructing graphs from collective
bone segmentations is that the sparse matrix A in the
linear system becomes singular if some of the bone vox-
els are isolated (which, due to noise, is often the case.)
This prevents the iterative solver from converging to a
stable solution. The problem does not occur for graphs
constructed from full images, where every voxel has at
least one neighbor. To remove the singularity, we sim-
ply add a small constant weight k¥ = 0.001 to the diag-
onal elements in A. The value of k is set smaller than €
to not interfere with the gradient weighting.

2.5 Iterative Solvers

We compute the random walks probability values itera-
tively using the Jacobi preconditioned conjugate gradi-
ent (CG) [28] method. The CG solver consists of dense
vector operations and a sparse matrix-vector multipli-
cation (SpMV), where SpMV is the most expensive op-
eration. Although the Jacobi preconditioner improves
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the convergence rate, we found a single-threaded CPU
implementation to be too slow for our problem sizes.
Hence, to enable an interactive workflow, we followed
the suggestion in [12] and implemented multi-threaded
and GPU-accelerated versions of the solver. The multi-
threaded solver was implemented in OpenMP and uses
the compressed sparse row (CSR) matrix format for
SpMV. The GPU-accelerated solver was implemented
in OpenCL and supports two sparse matrix formats:
CSR and ELLPACK [3]. ELLPACK has a slightly
higher memory footprint than CSR, but enables coa-
lesced memory access when executing the SpMV ker-
nel on GPUs, which usually leads to better perfor-
mance [3]. Our OpenCL SpMV kernels are based on
the CUDA implementations in [3]. A benchmark of the
implemented solvers is presented in Section 3.

2.6 Segmentation Editing

The user can edit the initial random walks segmenta-
tion by painting additional seeds on the bone surfaces
or individual CT slices and running the iterative solver
again. To enable rapid update of the result, the previous
solution is used as starting guess [12]. Visual inspec-
tion is supported by volume clipping (Figure 5). The
editing process can be repeated until an acceptable seg-
mentation result has been obtained.

Further refinement of the segmentation can be achieved
with a dedicated 3D editing tool (Figure 6), which up-
dates a local region of the segmentation in real-time and
allows a selected label to grow and compete with other
labels. The tool is represented as a spherical brush and
affects only voxels within the brush radius r. A voxel p;
marked with the active label will transfer its label to an
adjacent voxel p; in a 26-neighborhood if the editing
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Figure 5: To support visual inspection and editing of bone fragments and contact surfaces, a segmented region
(a) can be hidden (b) or exposed (c) via volume clipping . The clipping is performed by temporarily setting the
grayscale value of the segmented region to #;,,. — | and updating the grayscale 3D texture.

(@) (b)

© (d)

Figure 6: Segmentation editing performed with the local 3D editing tool.

weight function W;; exceeds a given threshold. W;; is
defined as a weighted sum of the active label ratio, the
gradient, and the Euclidean distance to the brush center.

2.7 Implementation Details

We implemented the segmentation system in Python,
using OpenGL and GLSL for the rendering, PySide for
the graphical user interface, and Cython and PyOpenCL
for the image and graph processing.

3 CASE STUDY

To demonstrate the efficiency of our tool, we asked two
non-medical test users to perform interactive segmen-
tations of the facial skeleton in CT scans of three com-
plex CMF cases. The first user, who had prior experi-
ence of manual bone segmentation and virtual surgery
planning, was a novice on the system and received a
15 minutes training session before the segmentations
started, whereas the second user (the main author) was
an expert on the system. The CT scans were obtained
as anonymized DICOM files. Further details about the
datasets are provided in Table 1. Figures 7a—7c show
the collective bone segmentations obtained by thresh-
olding. Bone separation was carried out in three stages:

1. Initial random walks segmentation of marked bones.

2. Interactive coarse editing of the segmentation result
by running random walks multiple times with addi-
tional seed strokes as input.
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3. Fine-scale editing with the local 3D editing tool.

We measured the computational time and the interac-
tion time required for each stage and asked the users
to save the segmentation result obtained in each stage.
Additionally, one of the users segmented case 1 manu-
ally in the ITK-SNAP [30] software to generate a refer-
ence segmentation for accuracy assessment. The man-
ual segmentation took ~5 hours to perform and was in-
spected and validated by a CMF surgeon.

To assess segmentation accuracy and precision, we
computed the Dice similarity coefficient
2|ANB]

Al +B|
DSC measures the spatial overlap between two multi-
label segmentations A and B and has the range [0, 1],

where O represents no overlap and 1 represents com-
plete overlap.

DSC = 2

The interactive segmentations (Figures 7d—7f) took on
average 14 minutes to perform. As shown in Figure 8,
most of the time was spent in the local editing stage
(stage 3). DSC between the final interactive case 1 seg-
mentations and the manual reference segmentation was
0.97782 (User 1) and 0.97784 (User 2), indicating over-
all high spatial overlap. The inter-user precision (Ta-
ble 2) was also high and improved with editing.

Figure 9 shows a benchmark of the implemented CG
solvers. The bars show the execution times (in sec-
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Case Region Description #Labels Dimensions Threshold #Bone voxels
1 Head Multiple fractures 15 512x512x337 260 4426530
2 Head Multiple fractures 12 512 x512x301 300 4769742
3 Head Tumor 6 230 x512x 512 300 2787469
Table 1: Details about the CT images used in the case study.
(a) Case 1 (b) Case 2 (c) Case 3
(d) Case 1 (e) Case 2 (f) Case 3

Figure 7: Top row: Collective bone segmentations. Bottom row: Separated bones.

onds) for computing an initial random walks solution
on a graph with 4.6M bone voxels and 15 labels. The
fastest GPU-based implementation had an average ex-
ecution time of 0.4 seconds per label, which is a 14x
speedup compared with the single-threaded CPU im-
plementation and a 7x speedup compared with the
multi-threaded CPU implementation.

4 DISCUSSION

Overall, we found the performance of the bone separa-
tion tool to be acceptable for surgery planning. Minor
differences between segmentations generated by differ-
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ent users and between interactive and manual segmen-
tations were expected due to the complex boundaries of
the bone structures and the interactive editing.

Local editing (stage 3) is the most time-consuming part
of the segmentation. The editing tool is of great aid for
cleaning up the random walks segmentation and refin-
ing contact surfaces between separated bones or bone
fragments, but will sometimes grow the active label too
far or produce isolated voxels. Further modifications
of the weight function could prevent this. Using con-
nected component analysis for removing small isolated
components in the segmentation could also be useful.
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Figure 8: Interaction times (in minutes) for the two users.

Case DSC

Stage 1 Stage2 Stage 3
1 0.9199  0.9955 0.9971
2 0.9533  0.9968 0.9971
3 0.9832  0.99 0.9915

Table 2: Inter-user precision for the interactive segmentations.

4.6M bone voxels, 15 labels

i5-4690K 3.5GHz (CPU)
(Single thFEadEd, CSR) . i
i5-4690K 3.5GHz (CPU)

(OpenMP' 4 thrEBdS, CSR) I 187

NVIDIA GTX 970 (GPU) 9.6
(OpenCL, CSR) :

Ms.s

0 20

NVIDIA GTX 970 (GPU)
(OpenCL, ELL)

mm Total

B Per label (average)
40 60 80 100
Execution time (s)

Figure 9: Benchmark of the CPU- and GPU-based Jacobi preconditioned CG solvers. The graph shows the timings
(in seconds) for computing the initial random walks solution on a graph with 4.6M bone voxels and 15 labels. The
number of iterations per label ranged from 45 to 136 (mean 83). Solver tolerance was set to 3- 1073,

A limitation of our current approach is that the initial
thresholding segmentation either tend to exclude thin
or low-density bone structures or include noise and soft
tissue. However, with minor modifications, the system
should be able to display and process collective bone
segmentations generated with other segmentation tech-
niques. Postprocessing could potentially fill in holes.

S CONCLUSION AND FUTURE
WORK

In this paper, we have presented an efficient 3D tex-
ture painting tool for segmenting individual bone struc-
tures in 3D CT images. This type of segmentation is
crucial for virtual CMF surgery planning [25], and can
take several hours to perform with conventional manual
segmentation approaches. Our tool can produce an ac-
curate segmentation in a few minutes, thereby removing
a major bottleneck in the planning procedure. The re-
sulting segmentation can, as demonstrated in Figure 10,
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be used as input for virtual assembly [25]. Our tool is
not limited to CMF planning, but can also be used for
orthopedic applications or fossil data (Figure 11).

Next, we will focus on improving the efficiency of the
local editing tool. We will also investigate if the ac-
curacy of the random walks segmentation can be im-
proved by combining the gradient-based weight func-
tion with other weight functions based on, for example,
bone sheetness measure [7] or local edge density [22].
Finally, we will apply our segmentation tool on a larger
set of CT images and perform a more extensive evalua-
tion of the precision, accuracy, and efficiency.
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Figure 10: Haptic-assisted virtual assembly of one of the segmented cases, performed with the HASP [25] system.

Figure 11: Our tool is not limited to head and neck CT scans; it can be used for rapid segmentation of individual
bone structures in other regions such as the wrist, lower limbs, and pelvis. Another potential application (shown in
the right image) is segmentation of fossils in fCT scans. Total segmentation time for these four cases was < 1 h.

fibula scans are courtesy of the OsiriX DICOM repos-

itory

(http://www.osirix-viewer.com/datasets/), and the

fossil uCT scan is courtesy of [8].
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