No.2

Journal of WSCG

A Unified Triangle/Voxel Structure for GPUs and its

Martin Weier

Institut of Visual
Computing
Sankt Augustin
Grantham-Allee 20
53757, Sankt Augustin,
Germany

Martin.Weier@h-brs.de

Applications

André Hinkenjann

Institut of Visual
Computing
Sankt Augustin
Grantham-Allee 20
53757 Sankt Augustin,
Germany

Andre.Hinkenjann@h-brs.de

Philipp Slusallek

Saarland University
Computer Graphics Lab &
Intel Visual Computing
Institute Campus E 1 1
66123 Saarbriicken,
Germany

slusallek@cs.uni-saarland.de

ABSTRACT

We present a system that combines voxel and polygonal representations into a single octree acceleration structure
that can be used for ray tracing. Voxels are well-suited to create good level-of-detail for high-frequency models
where polygonal simplifications usually fail due to the complex structure of the model. However, polygonal
descriptions provide the higher visual fidelity. In addition, voxel representations often oversample the geometric
domain especially for large triangles, whereas a few polygons can be tested for intersection more quickly.

We show how to combine the advantages of both into a unified acceleration structure allowing for blending be-
tween the different representations. A combination of both representations results in an acceleration structure that
compares well in performance in construction and traversal to current state-of-the art acceleration structures. The
voxelization and octree construction are performed entirely on the GPU. Since a single or two non-isolated tri-
angles do not generate severe aliasing in the geometric domain when they are projected to a single pixel, we can
stop constructing the octree early for nodes that contain a maximum of two triangles, further saving construction
time and storage. In addition, intersecting two triangles is cheaper than traversing the octree deeper. We present
three different use-cases for our acceleration structure, from LoD for complex models to a view-direction based
approach in front of a large display wall.

Keywords

Visualization, Computer Graphics, Ray Tracing, Level-of-Detail, Voxelization, Octree, SVO

1 INTRODUCTION

In contrast to polygonal model descriptions, volumetric
descriptions are less sensitive to the scene’s complexity
and enable a progressive refinement — using e.g. oc-
trees, necessary for out-of-core rendering and Level-of-
Detail (LoD). However, if these Sparse Voxel Octrees

(SVOs) [LK11] are to have a visual quality that com-
pares to a polygonal description, they need a high reso-
lution and require much memory space. When arbitrary
scenes are voxelized, many voxels need to be created
for single triangles, possibly oversampling the geomet-
ric domain even though the polygonal representation is
more compact and provides the higher visual fidelity. In
addition, it is often cheaper to intersect a couple of tri-
angles compared to traversing an octree deeper. In this

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit

paper a hybrid approach is introduced where a SVO is
extended with triangle references in the leaf nodes. The
voxelization and construction of the structure is entirely

or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Volume 23, 2015

performed on the GPU.

Having voxel and polygonal data in one acceleration
structure is beneficial because it minimizes manage-

ISSN 1213-6972

No.2

ment and storage cost compared to having two separate
structures. In addition, having triangle information in
the leaf nodes can reduce the size of the octree. The
construction is stopped for those nodes that contain a
maximum of two triangles. Two triangles building up
a leaf node are often cheaper to intersect than travers-
ing the structure deeper. In addition, they are common
for non-isolated triangles, i.e. the ones sharing an edge.
Non-isolated triangles form a solid surface and are not
crucial to direct geometric aliasing problems. However,
the polygonal information provides the higher visual fi-
delity.

Another benefit of the unified octree structure is that it
allows for a convenient smooth intra-level interpolation
and color blending between layers in the hierarchy and
faster image generation for parts of the scene for which
a coarse representation is sufficient.

We contribute by presenting a system to construct and
render triangles and voxels in a hybrid acceleration
structure. We show how to extend the voxelization
method proposed [CG12] and how to perform an in-
teractive construction of unified SVOs on the GPU. In
addition, we present a compact data layout allowing for
a fast traversal. Finally, we present three applications,
where having pre-filtered voxels along with the polyg-
onal information is beneficial and give benchmarks on
the construction and traversal times and memory sav-
ings by embedding triangle data.

2 RELATED WORK

Several methods have been introduced to create a vol-
umetric description out of a polygonal model, how to
construct octrees or multi-level grids and how to tra-
verse these structures.

One important step to generating unified triangle-voxel
data is the transformation of the parametric or polygo-
nal description of a model into a volumetric description
(voxelization). Early systems such as the Cube system
[KS87] try to rebuild a classical hardware-supported
rasterization pipeline in software. They use a 3D Bre-
senham line drawing algorithm to draw the polygonal
outline and perform a 3D polygonal filling step. These
systems are slow and difficult to implement, as rebuild-
ing an efficient hardware pipeline in software can be
challenging.

As dedicated graphics hardware became available to
the masses, systems for 3D rasterization using the
GPU hardware were proposed. Systems like Voxelpipe
[Panl1] and the one proposed by Schwarz and Seidel
[SS10] perform voxelization using an optimized
triangle/box overlap test on the GPU. The Voxelpipe
system allows an A-buffer voxelization where each
voxel stores a list of triangles intersecting it. However,
using only a triangle/box overlap test creates a binary
voxelization of the data, only specifying whether a

Volume 23, 2015

Journal of WSCG

voxel is on or off. This representation is not sufficient
for a LoD representation of textured models. Another
example is the system proposed by [EDO06] that gener-
ates a binary voxelization. However, to use a voxel as a
general rendering primitive, more information such as
colors and normals are necessary.

Other approaches for performing a surface voxelization
on the GPU using a GPU accelerated render pipeline
are [DCB104] and [ZCEP07]. Both approaches render
the scene from three sides, combining multiple slices
through the model into a final voxel representation.
However, rendering a scene multiple times has a neg-
ative impact on performance. OpenGL allows to write
to a 3D texture or linear video memory directly from
the fragment shader. In [CG12], this feature is used to
create a boundary voxelization of the model. In this ap-
proach, the model has to be rendered only once. More-
over, using the fragment shader means that colors and
normals for each voxel are instantly available.

Several methods have been introduced for fast octree
and multi-level grid construction. We focus on GPU
in-core methods. Each voxel’s position in a grid can be
represented by a Morton code, that can be used for a fast
bottom-up construction of the tree, e.g. in [ZGHGI11]
[SS10]. A way to create a two level grid is presented in
[KBS11]. The algorithm starts by computing pairs of
triangle-cell overlaps, sorts these pairs and then fills in
the pairs in the grid cells. However, this method must
sort the input data first and must be extended to more
then two levels.

Another approach is presented by [CG12]. By running
multiple shader threads, each voxel is written unsorted
top-down to a set of leaf nodes. If a leaf node is touched
by a fragment generated in the fragment shader, the
node is subdivided further level-by-level. We use a
similar approach, and extend it to get an A-Buffer vox-
elization as well as to construct our hybrid acceleration
structure out of it.

A few approaches combine voxel and point based mod-
els with polygonal data — one is FarVoxel [GMO5].
There, a voxel-based approximation of the scene is gen-
erated using a visibility-aware ray-based sampling of
the scene represented by a BSP tree. FarVoxels can be
used for out-of-core rendering of very large but static
models only — the construction of the tree is an offline
process. Another approach that combines rasterization
and sample-based ray casting is [RCBW12]. In this ap-
proach, all the polygonal data is subdivided into cubical
bricks, essentially performing a voxelization. However,
it is mainly used to speed up rasterization using ray
casting methods and not as a general rendering struc-
ture.

Sparse Voxel DAGs [KSA13] are an effective way to
compact voxel data since they encode identical struc-
tures of the SVO in a DAG. However, this method lacks

ISSN 1213-6972

No.2

Triangles Extended Hybrid
Fragments Octree

) Voxelization 00:: Construction }“ﬁ\

<4
L 2
/ N/ \
Sum
Triangle Fragment Top-Down Bottom-Up
Processing Processing Phase Phase

Figure 1: Overview of the GPU-based construction
pipeline for the unified structure.

colors and normals for each voxel. If they were to be
included, most of the compactness would be gone since
colors and normals are unique for most parts of the
scene and cannot be easily compacted in a DAG.

3 TRIANGLE/VOXEL STRUCTURE
CONSTRUCTION

Our voxelization and octree construction process uses
an approach similar to [CG12] using programmable
shaders with GLSL. This approach is extended to gen-
erate the information on which primitives are touching
each non-empty voxel. We show how to use this infor-
mation to construct the unified acceleration structure on
the GPU. Fig. 1 shows the GPU construction pipeline.

MORTON CODE 8B
RGBA 4B
NORMAL 12B
PRIMITIVE ID 4B

Table 1: Structure of an extended fragment entry gen-
erated during voxelization, including each element’s
memory size in byte

Voxelization: The voxelization is performed using
OpenGL. The view port’s resolution is set to match the
voxelized model’s target voxel resolution. The view
frustum is set up to match the greatest extent of the
scene’s bounding box. After disabling depth writes and
backface culling, each triangle within the view frustum
creates a set of fragments accessible in the fragment
shader. To extend the projected area of the triangle with
respect to the view plane, the triangle is projected to
the view plane as if it had been rendered from another
side of the bounding box.

Since OpenGL samples each rectangular pixel during
the rasterization within the pixel’s center, the triangles
need to be extended slightly in the geometry shader
to ensure that each triangle intersecting a rectangular
pixel area covers the pixel’s center. This is performed
by applying conservative rasterization [HAMOOQS5]. Us-
ing the OpenGL Shading Language GLSL and atomic
counters, each fragment is written from the fragment
shader to a chunk of linear video memory.

Each of these extended fragments stores a position en-
coded in a Morton code. This enables us to perform

Volume 23, 2015

Journal of WSCG

a fast per-fragment traversal using bit shifts and a fast
comparison of fragments generated at the same spatial
position. In addition, the extended fragments store a
color, a normal and a triangle index, i.e. the fragment
index it originates from. To determine this index, we
use the built-in variable gl_PrimitiveID. Tab. 1
gives an overview on the memory layout of each ex-
tended fragments.

TrianglelndexArray|3|3 §|5|6|1|ﬂ|2|3|1|7|;|4|2‘

Nodes with two triangles Nodes with more than two triangles

Figure 2: Overview of the unified data structure stor-
ing triangles and voxels. Inner nodes (orange), empty
nodes (grey), leaf nodes containing a single triangle
(light blue), leaf nodes containing two triangles (pur-
ple), and leaf nodes containing more than two triangles
(green).

Data Structure: Fig. 2 shows the data structure. If a
leaf node contains only a single triangle or two trian-
gles, the tree does not need to be constructed for deeper
levels for these nodes. If it contains more than two tri-
angles, the node needs to be split. A single node can
store the reference to a single triangle alongside with
the voxel information. However, if it needs to encode
two or more triangles, they are stored in a triangle index
array.

ds ’LEAF|SPLIT| NEXT ‘

b 1b 30b

payload ’ PAYLOAD ‘

32b

Figure 3: Structure of a single node in the octree.

Each node of the data structure is encoded in two 32
bit fields (see fig. 3). A single bit is used to encode
whether the node is a leaf or not, another bit is used to
mark a node during construction if it needs to be split
further. The next 30 bits either encode the index of the
first child node, the id of the triangle if it is the only one
represented in the voxel or the index into the triangle in-
dex array. The other 32 bits payload hold a reference
to a voxel array storing the voxel’s color, its normal and
possibly user-defined fields e.g. material parameters.

ISSN 1213-6972

No.2

Construction: The main idea during construction to
decide whether a node contains a single, two or more
than two triangles is to cache and compare triangle in-
dices in the 64 bit nodes.

The construction is a splatting process in which sev-
eral vertex shaders are executed repetitively spanning
an arbitrary number of threads using indirect draw calls.
First the tree is traversed per-fragment in parallel and
construction is done level-by-level. Afterwards the val-
ues from the inner nodes of the voxel structure and the
color information are written back to the tree nodes
bottom-up.

In the first top-down construction phase of the structure,
we store the individual triangle IDs from each fragment
in the node’s two 32 bit fields using atomic comp-and-
swap operations. If more than two triangles have to be
stored in a node, this node needs to be marked for fur-
ther splitting. In the next shader step new nodes and
voxel payloads for deeper levels are created and the tri-
angle IDs of those nodes that contain only two triangles
are written to the triangle index array. Now the first
stage is executed again.

Eventually, when the tree is created for the highest res-
olution, the number of triangles that fell into the leaf
nodes are counted using an atomic add operation in the
payload field. In this stage, each leaf node that has
not been already finalized in a earlier shader stage, since
it contained only up to two triangles, contains more than
two. Afterwards, the triangle counts stored in each leaf
node are written to a temporary triangle index count ar-
ray.

In the next step the prefix sum of the triangle index
count array is computed. Finally, the tree is traversed
once more and the primitive IDs in the fragment are
written to the final array locations in the triangle in-
dex array using the triangle index count array and the
nodes are relinked accordingly. In this phase we can
keep track of the individual primitive id locations in the
triangle index array by decrementing the values in the
triangle index count array using atomic add operations.

To decide whether a leaf node contains a single, two or
more triangles offsets are added to the indices, we store
in each leaf node’s next field. If a node stores an index
to a single triangle it encodes the triangle id directly. If
it holds an index to a node containing more than two
triangles it stores the maximal triangle id plus the index
in the triangle index array storing two triangle indices
consecutively. If it contains more than two triangles we
add the maximal triangle id, the length of the triangle
index array storing two triangles and the index. (See
fig. 2)

The bottom-up phase continues by filling in the voxel
colors, normals and primitive IDs for each node of the
tree. Therefore, the tree is traversed per fragment in
parallel. Once a shader thread reaches leaf node, the

Volume 23, 2015

Journal of WSCG

fragment’s color and normal must be averaged. This
is performed in a similar fashion as in [CG12]. Using
an atomic compare-and-swap operation in a loop, each
thread checks whether it can write its new summed and
averaged value into the voxel’s color field. For the nor-
mals a simple atomic add on the float components is
used. If normals sum up to a zero length normal, e.g.
for two opposing faces, the last valid normal is stored.

Finally the tree is processed bottom-up and level by
level. Inner nodes are filled by averaging colors and
normals and by normalizing the normals of all the child
nodes, since the latter resulted only in adding up the
normals in the step before.

4 TRIANGLE/VOXEL STRUCTURE
TRAVERSAL & INTERSECTION

Rendering of the data structure is performed using a
prototypical ray tracer using OpenCL. After the con-
struction, each OpenGL buffer is mapped to OpenCL.
These are the buffers containing the nodes, the voxels
and the triangle index array and all triangle data, as well
as the material information of the model.

Traversal: We decided to implement a traversal using
a small stack on the GPU. We set the active parametric
t-span of each ray that hits the scene’s bounding box
to the extent of this bounding box. The algorithm has
three phases:

1. If the current first hit voxel within the active t-span
is not empty, we traverse the tree deeper and push
the parent node with the current #,,,, onto a stack.
We set 1,4 to point to the end of the active voxel.

2. If the voxel is empty, we either need to process the
next sibling node of the active parent by setting i,
to the beginning of the next node within the 7-span
or,

3. if the node is not a sibling node of the active parent,
we need to pop nodes from our stack, reset #,,,,x to
the position stored on the stack until we can hit the
first possible neighboring voxel, and traverse the tree
deeper again.

If the traversal reaches a leaf, its triangles can be inter-
sected - either one, two or more. Therefore, the algo-
rithm looks at the index stored in the leaf’s next field.
Since the index is encoded using offsets, it can be de-
cided directly if the node references a single, two or
more triangles. The traversal code now determines the
closest hit point of the ray and all triangles lying within
that leaf node. If the closest triangle is hit and the in-
tersection is within the boundaries described by the leaf
node, the traversal returns a structure representing the
hit point. Otherwise the traversal is continued with the
next sibling node.

ISSN 1213-6972

No.2 Journal of WSCG
Full Octree Resolution
Scene Nodes | Triangles | Triangle Index Array | Voxel | Overall
Sponza 42.29 27.66 14.14 46.06 | 130.15
Urban Sprawl 18.32 75.19 19.31 20.38 | 133.21
Happy Buddha | 11.42 103.07 21.94 11.95 | 148.38
Forest Scene 30.41 156.25 34.58 33.29 | 254.53
Our Method
Scene Nodes | Triangles | Triangle Index Array | Voxel | Overall | Saved
Sponza 10.89 27.66 12.51 13.97 65.03 50.03%
Urban Sprawl 12.37 75.19 18.47 14.77 | 120.81 9.31%
Happy Buddha | 10.97 103.07 21.92 11.81 | 147.77 0.41%
Forest Scene 21.27 156.25 34.00 272 238.72 6.21%

Table 2: Size of the acceleration structure (MB). The upper part of the table shows the acceleration structure size
of the test scenes for a tree build for all octree levels. The lower part of the table shows our method, where the tree

is built only for nodes containing more than two triangles.

Inter-level blending: For the LoD selection and to en-
able a smoother blending between different levels of the
hierarchy we use Ray Differentials [Ige99]. Each ray is
represented by its origin and a unit vector describing
its direction. In addition, we store its’ differentials de-
scribing the pixel offset on the image plane in x and y
direction.

By using ray differentials, we can compute an estimated
pixel’s footprint in world space on the voxels. This
footprint can be compared with the size of an individ-
ual voxel at level /. If the pixel’s footprint is roughly
equal or smaller than the voxel, we can stop traversing
deeper.

In addition, we compute a value describing the under-
estimation i(/, f) of the size of the pixel’s footprint and
the actual size of nodes at level [and / — 1 by computing

2-v() = f
Vi (1)

with vy, (I) being the length of a side of a voxel in world
space and f being the estimated length of the pixel’s
footprint at the ray’s hit point. This value can be used
as interpolation factor between the two subsequent lev-
els in the SVO. Since we traverse the tree using a small
stack, we can keep track of the voxel at level [— 1 di-
rectly and use the interpolation factor during shading
and lighting computations.

i(l,f) =

5 BENCHMARKS

The benchmarks of our system were performed using a
Nvidia GeForce GTX Titan with 6GB video memory on
an Intel Core i7 system with 16GB RAM. Fig. 4 shows
the construction times of four different test scenes. The
forest test scene shows 13 highly detailed plant mod-
els on a small plane. As expected, increasing triangle
counts increase the run time of the construction. How-
ever, the pure triangle count is not the only parame-
ter when it comes to measuring construction times as
highly detailed textures and shaders extend the time it
takes to voxelize the model.

Volume 23, 2015

20ms

18.81ms
17.50ms 5 3; “ Bottom-up
16 220 g5t hase
ms 13.55ms " 51— Prefix Sum
13.50ms 533
2.32 B
12ms 1 0.51. 1 & Top-Down
51— 7.15 7.90 Ploce
5.95
W Bl BN
’ [
4ms 1 izati
7.55 8.09 Voxelization
a.77 5.85
Oms | | | |
Sponza Urban Sprawl Happy Buddha Forest Scene
0.28M 0.78M 1.09M 1.6M
Triangles Triangles Triangles Triangles

Figure 4: Run times for each phase of the construction
as well as the overall construction time. Each scene was
voxelized with a resolution of 5123.

Voxel Triangle Hybrid
Scene
only only Structure
Sponza 573 fps | 18.2 fps 20.6 fps
Urban Sprawl | 40.3 fps | 13.3 fps 23.7 fps
Happy Buddha | 63.1fps | 10.1 fps 16.7 tps
Forest Scene 64.2 fps 2.4 fps 12.9 fps

Table 3: Avg. fps of four different scenes rendered with
aresolution of 1024 x 1024 using only primary rays and
phong lighting with simple shadows and a single point
light source. Each scene was voxelized with a resolu-
tion of 5123.

Table 2 shows the advantage of our method in com-
parison to a full build of the octree without stopping
the construction early in terms of size of the accelera-
tion structure. Both versions store the triangles in their
leaf nodes as a reference to the triangle index
array. We have included the size needed to store
the triangles themselves, which largely depends on the
scene. The triangle count in the Sponza scene is very
low. If one only considers the size of the nodes and the
voxel data, the overall saved space amounts to a larger
percentage for most scenes. The Happy Buddha scene
has many, but very small triangles. For this scene con-
struction can’t be stopped for most inner nodes result-
ing in only a small memory saving.

ISSN 1213-6972

No.2

We have rendered all scenes with a resolution of 1024 x
1024 using a typical fly through for about 700 frames
and averaged the run times. The results in tab. 3 show
the rendering times from the OpenCL renderer shooting
primary rays with phong lighting, a single point light
source and no texture filtering. Rendering only voxels
is fast but lacking visual quality. Traversing our struc-
ture displaying triangles only provides the highest vi-
sual quality but is slow an offers no LoD - aliasing can
occur. he hybrid structure provides a good trade-off in
speed and offers LoD.

However, measuring the frame rates for the hybrid
approach is non trivial since they increase drastically if
parts of the scene show the voxel data only. For scenes
like Sponza showing an atrium where a camera is
mostly "inside" the model, only a few camera positions
can make use of the voxel data, resulting in only a
small speed up. In the Forest- or the Urban Sprawl
scene parts of the model are in the distance more often.
Thus the voxel data is used more frequently resulting
in larger speed ups.

6 APPLICATIONS

Our hybrid structure is well-suited for applications that
need a general LoD scheme, since the regular voxel
description allows to create a representation for arbi-
trary input meshes. In principle the hybrid structure
can be seen as a multi level grid, omitting the fact that
this structure contains a color and a normal for each
grid cell. However, this additional information, is well
suited to some scenarios to reduce aliasing and speed
up rendering. We present three different applications:
a visualization of large outdoor scenes, urban environ-
ments and a view-direction based rendering approach
in front of a large tiled display wall.

The first application (cf. fig. 6a) uses the hybrid accel-
eration structure to render highly complex vegetated ar-
eas with LoD. Here far distant models project to only a
few pixels on screen creating aliasing artifacts. We use
an approach similar to [DMS06] [WHDS13]. On the
highest level a nested hierarchy of kd-trees over wang
tiles with Poisson Disc Distributions is used to repre-
sent plant locations resulting in instanced, but aperi-
odic repetitions. Each scene contains millions of highly
complex plant models reused throughout the scene.

The advantage of our hybrid representation over a
polygonal simplification is that, within a regular octree
structure, an approximation of high-frequency input
models such as trees with different LoDs can be gener-
ated. Polygonal simplification of such models usually
fails due to the complex foliage and branching structure
of the trees. Sample caching strategies in object space
that provide LoD are limited to single instances, e.g.
samples can’t be cached in the accelerations structure
of a single tree since it is reused. Therefore, it is

Volume 23, 2015

Journal of WSCG

beneficial to have pre-filtered voxel data at hand to
limit aliasing artifacts or to reduce the oversampling
needed to create smooth animations and crisp images.
In addition, this speeds up rendering. We can render
a scene with trillions instantiated triangles consisting
of 40Mio. trees at a resolution of 720p with about
5-7fps including direct shadows using our prototypical
OpenCL ray caster.

Another example where this LoD structure is benefi-
cial are urban scenes as shown in fig. 5a and fig. 5b.
Even though a polygonal simplification of such struc-
tures is not as challenging as for tree models, renderings
of such scenes from far away have to cope with high-
frequency aliasing. If this urban scene is viewed from a
distance, the highly varying z-depth of the scene gener-
ate geometric aliasing which can be reduced by having
a pre-filtered voxel structure. Moreover, voxel are inde-
pendent from the scenes local complexity. In addition,
possibly large triangles in such a scene further reduce
the size of the octree. Furthermore, the hybrid structure
allows for smoother transitions and color blending be-
tween different layers of the hierarchy (cf. fig. 5b) and
faster render times for highly detailed parts in the scene
that are viewed from the distance.

A further application is shown in fig. 6b. There the
structure is used for a view dependent rendering on a
large tiled display wall. Since coarse voxel representa-
tions can be renderer faster than highly complex polyg-
onal models, the voxel representation is mainly used to
speed up rendering.

The user’s central field of view is tracked and ren-
dered in high quality using the polygonal representa-
tion, whereas the surrounding is rendered using our
LoD approach. Therefore, we compute an intersection
of the tracked user’s view frustum with a virtual display
wall. Using the intersections an ellipsoid is generated.
Points within this ellipsoid are rendered with maximal
resolution using polygonal data. For points outside of
the ellipsoid the distance from the ellipsoid to the cur-
rent pixel is computed. This distance is use to decide
whether a deeper traversal of the hierarchy is necessary
or if traversal can be stopped early. The transitions be-
tween the layers of the hierarchy are blurred using a
post-processing step in image space.

7 DISCUSSION

We presented an approach to building a hybrid acceler-
ation structure storing voxels for inner nodes, stopping
construction of deeper levels if the number of primitives
within that node are not larger than two and storing the
full triangle list for each leaf node that represents the
finest voxelized level. This way, we generate a LoD de-
scription of the input geometry. The advantage of this
representation over a polygonal simplification is that,
within a regular octree structure, we generate a good

ISSN 1213-6972

No.2

()

Journal of WSCG

(b

Figure 5: Rendering of an urban environment (5a) using our unified octree structure with voxel data in the back-
ground. Fig. (5b) shows a color coding. The red areas were rendered using polygonal data and the green regions

were rendered using voxels.

(a)

(b)

Figure 6: Rendering of instantiated tree models (6a) and a focus and context based rendering in front of a large

display wall (6b) using our unified acceleration structure.

approximation of high-frequency input models such as
trees. In addition, this speeds up rendering by provid-
ing a coarse representation for areas that are of minor
interest in a visualization or are not visible/noticeable
to the user. Since the construction on the GPU is per-
formed in-core, the resolution of the voxelization is lim-
ited. However, the system is fast enough to construct an
octree of a scene in real time doing a complete rebuild.

One problem targeted by further research is that an oc-
tree is not truly adaptive with respect to the scene’s
input geometry. If one has highly complex geometry
inside a single leaf voxel, traversing these parts of the
scene can have a huge impact on performance. Simply
building a tree deeper by a regular subdivision of these
parts, is often not sufficient to divide the model’s in-
put geometry. It would be better to either identify these
high resolution parts beforehand and voxelize them sep-
arately or automatically use truly adaptive acceleration
structures such as BVHs or kD-Trees for these parts of
the scene. However, since a coarser voxel representa-
tion is available, the renderer can decide to stop travers-

Volume 23, 2015

ing these parts and display the coarse voxel representa-
tion to stay within a constant frame rate. In addition,
due to the regularity of the octree’s structure, more ad-
vanced optimizations such as e.g., a beam optimization
[LK11] could be applied. Moreover, for improved GPU
utilization, it might be beneficial to postpone the trian-
gle intersection from inside the octree traversal to sub-
sequent rendering passes.

Another aspect crucial to performance is memory man-
agement. Since the number of fragments generated by
the voxelizer, the size of the octree and the triangle in-
dex list are not known in advance, buffers must either be
preallocated with a maximal size, be used in a caching
scheme (e.g. [CNLE09]), or more advanced memory
management must be applied — though determining the
size needed for buffers, is a problem most grid construc-
tion algorithms have in common. However, once we
have generated the voxel’s extended fragment list, our
approach can stop the octree construction early when
too much memory is needed to construct deeper levels.
The system has been extended to perform an out-of-

ISSN 1213-6972

No.2

core voxelization and construction for parts of the scene
that have to be voxelized with a higher resolution.

Voxel structures have disadvantages which should be
targeted by further research. It is merely possible to
average different material informations inside a singe
voxel cell. Furthermore, due to their grid like struc-
ture, shadows are hard to implement because neighbor-
ing voxels tend to cast shadows on themselves. These
shadows create a high-frequency noise in the image
which is disadvantageous if one wants to use voxels to
reduce aliasing. Another issue is the size of the struc-
ture. However, we have shown that our structure is
compact enough to represent several dozens of mod-
els, voxelized with a high-resolution, in GPU memory
at once.

8 REFERENCES

[CG12] Cyril Crassin and Simon Green. Octree-
Based Sparse Voxelization Using The
GPU Hardware Rasterizer. OpenGL In-

sights. NVIDIA Research, July 2012.

Cyril Crassin, Fabrice Neyret, Sylvain
Lefebvre, and Elmar Eisemann. Gigavox-
els : Ray-guided streaming for efficient
and detailed voxel rendering. In ACM
SIGGRAPH Symposium on Interactive 3D
Graphics and Games (I13D), Boston, MA,
Etats-Unis, feb 2009. ACM, ACM Press.
to appear.

Zhao Dong, Wei Chen, Hujun Bao,
Hongxin Zhang, and Qunsheng Peng.
Real-time voxelization for complex polyg-
onal models. In Proceedings of the Com-
puter Graphics and Applications, 12th
Pacific Conference, PG 04, pages 43—
50, Washington, DC, USA, 2004. IEEE
Computer Society.

Andreas Dietrich, Gerd Marmitt, and
Philipp Slusallek. Terrain guided multi-
level instancing of highly complex plant
populations. In Proceedings of the 2006
IEEE Symposium on Interactive Ray Trac-
ing, pages 169-176, September 2006.

Elmar Eisemann and Xavier Décoret. Fast
scene voxelization and applications. In
ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games, pages
71-78. ACM SIGGRAPH, 2006.

Enrico Gobbetti and Fabio Marton. Far

voxels: A multiresolution framework for
interactive rendering of huge complex 3d
models on commodity graphics platforms.
In ACM SIGGRAPH 2005 Papers, SIG-

GRAPH 05, pages 878-885, New York,
NY, USA, 2005. ACM.

[CNLEO9]

[DCB'04]

[DMS06]

[EDO6]

[GMO5]

Volume 23, 2015

90

Journal of WSCG

[HAMOOS5] Jon Hasselgreen, Tomas Akenine-Moller,
and Lennart Ohlsson. GPU Gems 2:
Conservative Rasterization, volume 2,
chapter 42, pages 677-690. NVIDIA,
Addison-Wesley, 2005.

Homan Igehy. Tracing ray differentials.
pages 179-186, 1999.

Javor Kalojanov, Markus Billeter, and
Philipp Slusallek. Two-level grids for ray
tracing on gpus. Comput. Graph. Forum,
30(2):307-314, 2011.

Arie Kaufman and Eyal Shimony. 3d
scan-conversion algorithms for voxel-
based graphics. In I3D ’86 Proceedings
of the 1986 workshop on Interactive 3D
graphics, pages Pages 45 —75. ACM New
York, NY, US, 1987.

Viktor Kdmpe, Erik Sintorn, and Ulf As-
sarsson. High resolution sparse voxel
dags. ACM Trans. Graph., 32(4):101:1-
101:13, July 2013.

Samuli Laine and Tero Karras. Efficient
sparse voxel octrees. IEEE Transactions
on Visualization and Computer Graphics,
17:1048-1059, 2011.

Jacopo Pantaleoni. Voxelpipe: A pro-
grammable pipeline for 3d voxelization.
In Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graph-
ics, HPG " 11, pages 99-106, New York,
NY, USA, 2011. ACM.

Florian Reichl, Matthdus G. Chajdas, Kai
Biirger, and Riidiger Westermann. Hy-
brid sample-based surface rendering. In
Proceedings of VMV 2012, pages 47-54,
2012.

Michael Schwarz and Hans-Peter Sei-
del. Fast parallel surface and solid vox-
elization on gpus. ACM Trans. Graph.,
29(6):179:1-179:10, December 2010.

Martin Weier, André Hinkenjann, Georg
Demme, and Philipp Slusallek. Generat-
ing and rendering large scale tiled plant
populations. JVRB - Journal of Virtual
Reality and Broadcasting, 10(1), 2013.

Long Zhang, Wei Chen, David S. Ebert,
and Qunsheng Peng. Conservative vox-
elization. Vis. Comput., 23(9):783-792,
August 2007.

Kun Zhou, Minmin Gong, Xin Huang,
and Baining Guo. Data-parallel octrees
for surface reconstruction. IEEE Trans-
actions on Visualization and Computer
Graphics, 17(5):669—-681, May 2011.

[Ige99]

[KBS11]

[KS87]

[KSA13]

[LK11]

[Pan11]

[RCBWI12]

[SS10]

[WHDS13]

[ZCEPO7]

[ZGHG11]

ISSN 1213-6972

