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ABSTRACT

Compressed sensing(CS) has shown great potential in speeding up magnetic resonance imaging(MRI) without
degrading images quality. In CS MRI, sparsity (compressibility) is a crucial premise to reconstruct high-quality
images from non-uniformly undersampled k-space measurements. In this paper, a novel multi-scale geometric
analysis method (uniform discrete curvelet transform) is introduced as sparse prior to sparsify magnetic resonance
images. The generated CS MRI reconstruction formulation is solved via variable splitting and alternating direction
method of multipliers, involving revising sparse coefficients via optimizing penalty term and measurements via
constraining k-space data fidelity term. The reconstructed result is the weighted average of the two terms. Simulat-
ed results on in vivo data are evaluated by objective indices and visual perception, which indicate that the proposed
method outperforms earlier methods and can obtain lower reconstruction error.

Keywords
Compressed sensing, magnetic resonance imaging, uniform discrete curvelet transform, variable splitting, alter-
nating direction method of multipliers.

1 INTRODUCTION basis; the reconstruction optimization problem can
be solved by using nonlinear method. In CS MRI,
incoherent random, radial and spiral sampling tra-
jectories are applied to obtain k-space measurements
[lustig2007sparse, chen2010novel, santos2006single].
The generally employed sparsifying methods in-
clude spatial finite-difference [lustig2007sparse,
huang201lefficient, huang2012compressed], dis-
crete wavelet transform(DWT) [lustig2007sparse,
huang201 lefficient, huang2012compressed], multi-
scale geometric analysis(MGA) methods (contourlet

Traditional scanning methods of magnetic resonance
imaging(MRI) spent plenty of time on data acquisition.
This brought negative influences for clinical diagnosis.
K-space undersampling provides one method to speed
up the imaging at the expense of introducing aliasing
for violating the Nyquist (Shannon) sampling theorem.

Compressed sensing(CS) [baraniuk2007compressive,
1614066] points out, sparse or compressible signal
can be reconstructed precisely from less number
of sampled data than those constrained by Nyquist g ngform  [1532309], nonsubsampled contourlet
sampling theorem.  Hence, CS provides theoreti- . cform [da2006nonsubsampled], sharp frequen-
cal feasibil.ity for highly un.dersampled MR images cy localization contourlet(SFLCT) [lu2006new],
reconstructlon.. The emerging approach is terme.d discrete curvelet transform wusing fast algorith-
Cs MRI [lustig2007sparse, 4472246]‘. The main m(FDCT) [candes2006fast] and discrete shearlet
principles of CS MRI are that the images to be  oncform(DST) [1im2010discrete]), dictionary learnt
reconstructed can be sparsely represented; mea-  fron intermediate reconstruction or fully sampled im-
surement matrix is irrelevant to sparse transform ages [ning2013magnetic, qu2012undersampled],
temporal sparsity along temporal axis for dy-
namic cardiac imaging [bilen2012high] and
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the combination of some of these transform-
s [lustig2007sparse, huang201 lefficient]. The main
thoughts of reconstruction approaches are nonlinearly
the full citation on the first page. To copy otherwise, or re- reconstructing original signal accurately from a small
publish, to post on servers or to redistribute to lists, requires number of measurements. The generally used are
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matching pursuit) for solving sparse coefficients [
regularization, provided that the sparsity of image is al-
ready known; linear programming (gradient projection,
basis pursuit) handling sparse coefficients /; regular-
ization at the cost of high computational complexity;
minimizing non-convex [, (0 < p < 1) quasi-norm such
as the recent one in [candes2008enhancing], which
doesn’t always give global minima and is also slow.
The widely used methods are based on augmented
Lagrangian for solving convex, non-smooth regular-
ization (total variation and [;) optimization. These
methods include YALL1 [yang201lalternating], FC-
SA [huang201 lefficient], split augmented Lagrangian
shrinkage algorithm(SALSA) [afonso2010fast] and
constrained split augmented Lagrangian shrinkage
algorithm(C-SALSA) [5570998], etc.

In this paper, a novel MGA method termed uniform
discrete curvelet transform(UDCT) (refer to [5443489]
for details) is adopted to sparsify MR images. In terms
of the alias free subsampling in frequency domain
they both employed, UDCT has similar properties as
wrapping-based FDCT, such as tight frame property,
highly directional sensitivity and anisotropy. Besides,
UDCT is superior than FDCT for its lower redundancy
of 4 and clear coefficients parent-children relationship.
Reconstruction model is proposed involving UDCT co-
efficients regularization term and k-space data fidelity
term. To solve the corresponding reconstruction model,
C-SALSA, i.e., variable splitting(VS) and alternating
direction method of multipliers(ADMM-2) [5570998]
is used. The proposed CS MRI method is termed
UDCSMRI

The paper is organized as follows. Section 2 describes
the existing CS MRI work, and then introduces UDC-
SMRI in detail including UDCT sparse prior and corre-
sponding reconstruction model handling the ill-posed
linear inverse problems. In section 3 UDCSMRI is
compared with current CS MRI methods in reconstruc-
tion performance. Then its ability of handling noise and
convergence performance is analyzed. Conclusions and
future work involving extending this work to dynamic
parallel MRI are explicit in section 4.

2 MATERIALS AND METHODS
CS MRI

Define x € C" is vector-version of 2D image to be
reconstructed. y = F,x denotes undersampling in k-
space, where F, € C™*™ means undersampled Fourier
Encoding matrix and y € C™ represents k-space mea-
surements. ¥ € C'*" represents analytical sparse trans-
form matrix or the inverse of a set of learnt signals. CS
reconstructs the underlying MR image x from measure-
ments y via solving the constrained linear inverse prob-
lem, denoted as Eq. (1)

min|[¥x]; s.t. [Fux—y|3<e (1
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where € € C™ controls the allowed noise level in recon-
structed image, /; enforces sparsity, I, constrains the
data fidelity. Finite-difference (total variation) is gen-
erally added to the objective to suppress the noise and
preserve images details simultaneously, then the prob-
lem is

min | ¥ + BTV (x) st. [Fuax—y[3<e (2

where § > 0 denotes weight of total variation(TV).
Rather than Eq. (1), most current methods handling lin-
ear inverse problems with convex, non-smooth regular-
ization (/; and TV) consider the unconstrained problem

. 1
min By x|, + BTV (x) + 5 [Fux -yl (3)

in which B;(;) > 0 is regularization parameter. The
commonly used techniques dealing with Eq. (3) are
VS and methods upon augmented Lagrangian, such as
TVCMRI [ma2008efficient], RecPF, FCSA, SALSA,
etc. However, Eq. (3) is not efficient for ignoring €,
which has a clear meaning (proportional to the noise
deviation) and is easier to set than parameter f3 ).
Additionally, numerous different reconstruction models
have been explored, such as NLTV-MRI incorporating
with nonlocal TV [huang2012compressed], reconstruc-
tion upon wavelet tree structured sparsity(WaTMRI)
studied in [NIPS20124630], reconstruction by using
dictionary learning(DL) [qu2012undersampled, n-
ing2013magnetic] and patch-based nonlocal operator
combined with VS and quadratic penalty reconstruc-
tion technique named PANO [qu2014magnetic], etc.
Besides, 3D dynamic parallel imaging has also been
proposed and is of great significance for practical MRI
applications. It is established on either sparsity along
temporal axis [bilen2012high] or structured low-rank
matrix completion [shin2013calibrationless]..

Proposed Method based on UDCT

In this paper, MR images are sparsified by MGA
method named UDCT. Efficient C-SALSA is intro-
duced to solve the generated CS MRI reconstruction
formulation under UDCT sparse prior. MR image x to
be reconstructed is initialized to one zero-filling image.
This zero-filling image is obtained from the result of
direct inverse Fourier transform to zero filled k-space
measurements, represented as Xo = FHy. Zero-filling
image serves as the original intermediate image. The
real and imaginary part of X¢ are decomposed into
J levels by using UDCT separately, 2k; directional
sub-bands for each level. CS MRI reconstruction prob-
lem comes down to solving the optimization problem
constrained by image transform sparsity and k-space
measurements fidelity (in an iterative process). The
solving process requires the definition of the Moreau
proximal maps of regularization term and fidelity term.
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Reconstruction result is the trade-off between the two
terms and then serves as the intermediate image for the
next iteration. This procedure is executed iteratively
until some stop criterion is satisfied. = Framework
of UDCSMRI in Fig.l1 demonstrates clearly the
implementation process.

Uniform Discrete Curvelet Transform

As is known, discrete wavelet basis only represents the
location and features of singular point with limited di-
rections. The generally used contourlet transform lack-
s shift-invariance and brings pseudo-Gibbs phenomena
around singular points. NSCT owns too high redundan-
cy and SFLCT cannot capture clear directional features
in spite of flexible redundancy. The needle-shaped el-
ements of FDCT allow very high directional sensitivi-
ty and anisotropy and are thus very efficient in repre-
senting line-like edges. But FDCT possesses too high
redundancy, which makes it sub-optimal in sparse rep-
resentation, either. UDCT has been proposed as an in-
novative implementation of discrete curvelet transform
for real-valued signals. Utilizing the ideas of FFT-based
discrete curvelet transform and filter-bank based con-
tourlet transform, UDCT is designed as a perfect multi-
resolution reconstruction filter bank(FB) but executed
by FFT algorithm. The number of UDCT coefficients
are fixed at each scale and sizes of directional sub-bands
are the same for each scale, which provides simple cal-
culation. UDCT can provide a flexible instead of fixed
number of clear directions at each scale to capture var-
ious directional geometrical structures accurately. Be-
sides, the forward and inverse transform form a tight
and self-dual frame with an acceptable redundancy of
4 to allow the input real-valued signal to be perfect-
ly reconstructed. UDCT has asymptotic approximation
properties: for image x with C? (C is a constant) sin-
gularities, the best N-term approximation xy (N is the
number of most important transform coefficients allow-
ing reconstruction) in the curvelet expansion is [can-
des2000curvelets]

[x —xn|[3 <CN“2(logN)* N = oo )

This property is known as the optimal sparsity. There-
fore, UDCT is considered as the preeminent MGA
method for CS MRI application.

Constrained Split Augmented Lagrangian Shrink-
age Algorithn

Define @ as regularization function, ¥ the UDCT ana-
Iytical operator, the sparse representation is defined as
a = Wx. The reconstruction model can thus be denoted
as

el
TV(EF‘a)

if & =1
ifO=TV (5

a.x

min® (o) :{

st [Fux—y[3 <&
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Eq. (5) is solved by C-SALSA. Different from the pre-
vious augmented Lagrangian based methods to solve E-
g- (3), C-SALSA has been proposed as a new augment-
ed Lagrangian based method, which directly solves the
original constrained inverse problem optimization ef-
ficiently. C-SALSA first translates the constrained E-
g- (5) into an unconstrained one via adding the in-
dicator function of the feasible set, the ellipsoid {x :
|[Fux — y||§ < g}, to the objective in Eq. (5). Then the
unconstrained problem can be denoted as

min 4@ (@) + 22-Z e 1y) (FuX) ©6)

In Eq. (6), parameters A; and A, measure the weight
of the regularization term and error constraint term, re-
spectively. The values linearly increase along with the
increase of iteration number (A;(3) <= PAia), p > 1
means linear growth factor). Eq. (6) is translated into
another constrained problem via VS, denoted as
ae@ﬁxrél(l:r{vecm M@ (@) + 12 Zeery) (V) st. v =Fyx

(N
Finally, ADMM-2 solves the two sub-problems con-
cerning & and v. The reconstruction result is obtained
in this way. In terms of sub-problem concerning the
regularization @, the Moreau proximal mapping func-
tion can be defined as

~ 1 ~
0y () :argmgniHa—aH;—i—ib(a) (8)

where @ is the result of mapping to @ according to the
mapping relation C' — C'. If ® (-) = |||, O is simply
a soft threshold. If @ is TV norm, Chambolle’s algorith-
m [chambolle2004algorithm] is available to compute
the involving problem. E(g,1,y) represents a closed &-
radius Euclidean ball centered at y. The Moreau prox-
imal map of Zf ¢ 1y) can be simply denoted as the or-
thogonal projection of v on the closed €-radius ball
centered at'y

_ . 2
yrepo iflv-ylh>e

9)
v flv-yli<e

®$E(E,I,y) (V) = {

The resulting algorithm is summarized in Algorithm C-
SALSA-2 [5570998].

3 EXPERIMENTAL RESULTS AND
ANALYSIS

Experimental Setup

The reconstruction performance of UDCSMRI for
various MR raw data, is analyzed from four aspect-
s. Experimental raw data include complex-valued
T2-weighted brain image (MR T2wBrain_slice27
of 256 x 256), water phantom [ning2013magnetic],
real-valued MBA_T2_slice006, randomly selected
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Figure 1. Framework of UDCT based CS MRI

AIDS dementia (slice 0-16), Brain Tumor (slice
0-23) and Normal aging (slice 0-53) (Courtesy of
http://www.med.harvard.edu/AANLIB/home.html).
Partial raw images and sampling schemes are shown
in Fig.2. Computations are performed on a 64-
bit Windows 7 operating system with an Intel
Xeon E5 CPU at 2.80 GHz and 8 GB memory,
MATLAB R2011b. Numerical metrics of quality
assessment for reconstructed images are peak signal-
to-noise ratio(PSNR) (in dB) and relative I norm
error(RLNE) [qu2012undersampled].

Comparison with Earlier Methods

The performance of UDCSMRI for images in Fig.2(a)-
(c) is compared with that of TVCMRI, FCSA and
WaTMRI. UDCT decomposition of J =1, 12 di-
rectional sub-bands for each scale is adopted by
Fig.2(a)-(b). For Fig.2(c), UDCT decomposition of
J = 3, 12 directional sub-bands for each scale is used.
The preset maximum iteration number for ADMM-2 is
K =170.

MR T2wBrain_slice27 reconstruction under 40%
Cartesian sampling scheme is exhibited in Fig.3. Fig.3
indicates that reconstructed images under wavelet
basis sparse regularization show severe pseudo-Gibbs
phenomena, edge blur and aliasing. Whereas UDC-
SMRI with & = [; (UDCSMRI(/;)), UDCSMRI with
& =TV (UDCSMRI(TV)) reconstructed images show
clear edge details, the least aliasing and the lowest
reconstructed error. Besides, UDCSMRI(TV) recon-
structed image obtains the highest PSNR (39.10dB)
and lowest RLNE(0.0684). These demonstrate that
UDCSMRI performs preeminently in reconstructing
T2wBrain_slice27.

For MBA_T2_slice006 reconstruction under Cartesian
sampling scheme at 0.40 sampling rate, the recon-
structed images PSNRs of TVCMRI, FCSA, WaTMRI,
UDCSMRI(/;) and UDCSMRI(TV) are 30.15dB,
31.08dB, 30.48dB, 36.01dB and 38.95dB, respectively.
RLNES are 0.1263, 0.1135, 0.1224, 0.0644 and 0.0459
separately. These indicate that UDCSMRI obtains the
least reconstruction error.
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Water phantom reconstructed results under 30.20%
pseudo radial sampling scheme in Fig.4 indicate that
TVCMRI, FCSA and WaTMRI can not reduce aliasing
efficiently. While UDCSMRI(/;) and UDCSMRI(TV)
reconstructed images obtain clear edge structures.
It is worth mentioning that reconstructed result in
Fig.4(d) has better rhombic texture features and more
clear directions than that in Fig.4(e). It means that
UDCSMRI(!;) performs better than UDCSMRI(TV) in
reconstructing water phantom.

AIDS dementia (slice0-16), Brain Tumor (slice0-23)
and Normal aging (slice0-53) reconstruction using
Cartesian sampling at 0.40 sampling rate are imple-
mented to further test the performance of UDCSMRI.
PSNR and RLNE curves versus slices of UDCSMRI
reconstruction, for AIDS dementia, Brain Tumor,
Normal aging separately, are compared with those of
TVCMRI, FCSA, WaTMRI. The comparison curves
are exhibited in Fig.5. The statistical results in Fig.5
show that UDCSMRI can reconstruct original MR
images from highly undersampled k-space with high
probability among all the compared methods.

Sampled Data with Noise

The ability of UDCSMRI for handling noise is tested
in this subsection. After random gaussian white
noise with standard deviation of 10.2 is added to
fully sampled k-space data, PSNRs for fully sampled
reconstructed T2wBrain_slice27, MBA_T?2_slice006
and water phantom are 29.87dB 28.94dB and 30.76dB
separately. RLNEs are 0.1980, 0.1451 and 0.0609
separately. Table 1 shows numerical metrics for re-
constructed T2wBrain_slice27 and MBA_T2_slice006
using sampling scheme in Fig.2(d) at 0.40 sampling
rate, and reconstructed water phantom using sampling
scheme in Fig.2(e) at 0.3020 sampling rate, respec-
tively. In Table 1, UDCSMRI reconstructed results
obtain the highest PSNR and lowest RLNE, indicating
that UDCSMRI can eliminate noise efficiently. TV
regularization constrained UDCSMRI performs better
that /; regularization constrained UDCSMRI in elimi-
nating noise in reconstructing images in Fig.2(a)-(b).
While for reconstructing image in Fig.2(c) under
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(a) (b) (c) (d) (e)
Figure 2. (a) MR T2wBrain_slice27, (b) MBA_T2_slice006, (¢) Water phantom, (d) Cartesian sampling
scheme and (e) Pseudo radial sampling scheme.

@ (®) © (d (© (®

(O] ) (9] U] (m)

Figure 3. T2wBrain_slice27 reconstruction with Cartesian sampling at 0.40 sampling rate. (a)-(f) Amplified
local regions of reconstructed images from TVCMRI, FCSA, WaTMRI, UDCSMRI(/;), UDCSMRI(TYV)
and fully sampled k-space data separately, (g)-(k) Difference image between fully sampled MR image and
TVCMRI, FCSA, WaTMRI, UDCSMRI(/;), UDCSMRI(TV) reconstructed images with gray scale of [0,
0.20], respectively. PSNRs of TVCMRI, FCSA, WaTMRI, UDCSMRI(/;), UDCSMRI(TV) reconstructed
images are 30.74dB, 31.29dB, 30.87dB, 36.41dB and 39.10dB and RLNEs of them are 0.1790, 0.1681, 0.1764,
0.0932 and 0.0684 separately.

(@ (b) © (d) © ®
Figure 4. Pseudo radial sampling at 0.3020 sampling rate. (a)-(f) Enlarged local regions of reconstructed
water phantom from TVCMRI, FCSA, WaTMRI, UDCSMRI(/;), UDCSMRI(TV) and fully sampled k-
space data separately.

noise, UDCSMRI(/;) performs slightly better than for maximum PSNRs and minimum RLNEs. Table
UDCSMRI(TV). 2 and Table 3 exhibit reconstructed numerical indices
using C-SALSA with & =/; and ® = TV separately.
Table 2 exhibits clearly that reconstruction based
on conventional sparse methods cannot efficiently
Influences of various sparse priors to C-SALSA recon-  eliminate artifacts and aliasing caused by Cartesian un-
struction performance without noise are discussed in  dersampling, particularly for wavelet and FDCT based
this subsection, for reconstructing T2wBrain_slice27  C-SALSA. MRSFLCT based C-SALSA reconstructed
and MBA_T2_ slice006 under Cartesian sampling images obtain slightly higher PSNRs and lower RLNEs
scheme at 0.40 sampling rate and water phantom under  separately than LRSFLCT based C-SALSA recon-
30.20% pseudo radial sampling scheme. C-SALSA  structed images, indicating that increasing redundancy
based on Daubechies wavelet basis, less redundant proper]y can improve the reconstruction qua]ity to
SFLCT(LRSFLCT) based C-SALSA, more redundant  some extent. While UDCSMRI reconstructed images
SFLCT(MRSFLCT) based C-SALSA, FDCT based  possess highest PSNRs and lowest RLNEs, indicating
C-SALSA and UDCSMRI reconstruction methods are  that UDCT performs best in sparsifying MR images
compared in our work. In simulation, regularization pa-  and thus can lead to lower undersampling rate while
rameters of compared methods are manually optimized

Influences of Various Sparse Priors
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©

®

Figure 5. Cartesian sampling at 0.40 sampling rate. (a)-(c) PSNR versus slices for AIDS dementia, Brain
Tumor and Normal aging, respectively. (d)-(f) RLNE versus slices for AIDS dementia, Brain Tumor and

Normal aging, respectively.

. . Methods

Tmages & Sampling schemes Indices =1 GMRI  FCSA  WaTMRI  UDCSMRI(;) UDCSMRI(TY)
.  PSNR(B) 2879  28.67 2838 31.84 32.24
T2wBrain_slice27 & Cartesian o) g " 02041 02272 0.2349 0.1577 0.1507
. — PSNR@B) _ 29.63 2957 2932 31.36 31.76
MBA_T2_slice006 & Cartesian o) \p " 01341 0.1351  0.1390 0.1099 0.1049
g PSNR(B)  12.62  9.43 9.38 33.03 32.80
Water phantom ¢ pseudo RLNE 0.4917  0.7102  0.7140 0.0469 0.0482

Table 1. Reconstructed images quality indices for sampled data with noise

Sparse priors

Images & Sampling schemes Indices  — echies wavelet LRSELCT MRSELCT _FDCT _ UDCT
- ~ PSNR(B) 32.01 33.79 3473 3334 3641
T2wBrain_slice27 & Cartesian b, \p 0.1395 01260  0.1131  0.1327 0.0932
.  PSNR(B) 31.49 31.15 32.19 3028 36.01
MBA_T2_slice006 & Cartesian o) \p 0.1083 0.1125  0.0998  0.1245 0.0644
AR PSNR(dB) 33.86 35.01 3528 3388 3574
water phantom c pseudo RLNE 0.0426 0.0374 0.0362  0.0425 0.0343

Table 2. Various sparse priors with /| regularization

obtaining high-quality reconstruction. Table 3 shows
similar reconstruction results in general. What worth
mentioning is that MRSFLCT and LRSFLCT based
C-SALSA (® = TV) obtain the same numerical
indices. Comparing Table 2 with Table 3, it can be
concluded that /; regularization performs better than
TV regularization for sparse transforms except UDCT.

Convergence Analysis

Convergence of UDCSMRI reconstruction is an-
alyzed in this subsection. MSE versus ADMM-2
iteration number for reconstructing Fig.3(d) and (e),
MBA_T2 slice006 under the same conditions and

Volume 23, 2015

Fig.4(d) and (e) are exhibited in Fig.6. When iteration
number reaches 25, MSE has already fell into minimal
values. Conclusions are made that UDCSMRI(/;) and
UDCSMRI(TV) can obtain rapid convergence with
very small MSEs.

4 CONCLUSIONS AND FUTURE
WORK

A simple and efficient uniform discrete curvelet trans-
form sparsity based CS MRI framework has been pro-
posed in this paper. In this framework, UDCT ob-
tains optimal structural sparsity, laying the foundation
of high quality reconstruction from ill-posed linear in-
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Sparse priors

Images & Sampling schemes Indices  —  Fechies wavelet LRSFLCT  MRSFLCT _FDCT _ UDCT
. ~ PSNR(B) 28.45 31.40 3141 3082 3910
T2wBrain_slice27 & Cartesian b, \p 02331 01659 01658  0.1774 0.0684
: T PSNR(B) 26.80 30.44 3044 3008 3895
MBA_T2_slice006 & Cartesian ) \p 0.1857 01221 01221  0.1274 0.0459
T PSNR(AB) 3111 33.01 33.01 3301 3442

watet phantom & pseudo RLNE 0.0585 0.0470 0.0470  0.0470  0.0400

Table 3. Various sparse priors with TV regularization

——UDCSMRI(1)
——UDCSMRI(TY)

(@

©

Figure 6. MSEs decline versus iteration. (a) Fig.3(d) and (e) reconstruction. (b) MBA_T2_slice006 recon-
struction under the same conditions. (c) Fig.4(d) and (e) reconstruction.

verse problems. C-SALSA enforces optimized images
transform sparsity and data fidelity at fast convergence
speed. Experiments on various MR images illustrate
the proposed method can achieve low reconstruction
error among current CS MRI methods. The proposed
method obtains preeminent reconstruction performance
at the cost of doubling the amount of calculation due to
handling the real part and imaginary part of complex-
valued MR images separately, though. Thus, further
improvements on the proposed method are subjects of
ongoing research and can be made from the following
three aspects: (1) Test and optimize the method on more
datasets. (2) Expand the method to 3D dynamic M-
RI by adding sparsity regularization defined along the
temporal axis. (3) Use partially parallel imaging(PPI)
to accelerate imaging.
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