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Abstract. Adaptation techniques are necessary in automatic speech recogniz-
ers to improve a recognition accuracy. Linear Transformation metfiMtdsR

or fMLLR) are the most favorite in the case of limited available data. The fM-
LLR is the feature-space transformation. This is the advantage with sbmtra
MLLR that transforms the entire acoustic model. The classical fMLLR estim
tion involves maximization of the likelihood criterion based on individual Gaus
sian components statistic. We proposed an approach which takes intmatieo
overall likelihood of a HMM state. It estimates the transformation to optimize the
ML criterion of HMM directly using gradient descent algorithm.
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1 Introduction

Nowadays, systems of speech recognition are based on Hidaidov Models (HMMSs)
with output probabilities described mainly by Gaussian tMig Models (GMMs) [1].
To recognize the speech from a recording one could train ak&péependent (SD)
model for each of the speakers present in the recording. WHawthis is in praxis of-
ten intractable because of the need of a large databaseecdinutes coming from one
speaker. Instead, so called Speaker Independent (Sl) nsdadsehed from large amount
of data collected from many speakers, and subsequentlg| tmedel is adapted to bet-
ter capture the voice of the talking person. Thus, a SD madatquired.

More precisely, the adaptation adjusts the SI model so teaptobability of the
adaptation data would be maximized. Well known adaptatiethods are Maximum
A-posteriori Probability (MAP) technique [3] and Linearahsformations based on
Maximum Likelihood (LTML), as model adaptation Maximum klihood Linear Re-
gression (MLLR). In the ASR systems where the speaker clsaqgiekly the adap-
tation of acoustic feature then updating of an acousticsahisdess time consuming,
such method is called feature Maximum Likelihood Linear fRegion (fMLLR). In
this paper we have chosen out of LTML based adaptationsrpt#fethe feature trans-
formations which are well suited for on-line adaptatiore E2].

The classical approach to the estimation of the fMLLR apghassing row-by-row
estimation of the adaptation matrix. Data are accumulatighl respect to individual
Gaussians. In our proposed method a direct minimizationasit@rion function is ap-
plied. Our criterion is based on likelihood of whole HMM #tat The adaptation param-
eters are estimated via gradient descend method [13]. VdeN®@ton’s method with
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diagonal Hessian matrix to speed-up a convergence of tiaatgin process. More-
over, we modified the ML criterion to be less sensitive to thenes length.

This paper is organized as follows. In Section 2 is descridneddea of speaker
adaptation. Particular techniques for feature adaptafiMblLR approach, is presented
in Section 3. The proposed approach for finding the fMLLR &afépn matrices using
gradient techniques is discussed in Section 4. Experirhesgalts are presented in
Section 5.

2 Adaptation techniques

The difference between the adaptation and ordinary trgimathods stands in the prior
knowledge about the distribution of model parameters, liysualerived from the Sl
model [2]. The adaptation adjusts the model in order to medrthe probability of
adaptation data. Hence, the new, adapted parameters cansenas

A" = argmax p(O[A)p(A), 1)

wherep() stands for the prior information about the distribution foé vectorA con-
taining model parameter& = {o1, 09, ..., 07} is the sequence df feature vectors
related to one speakeX; is the best estimation of parameters of the SD model. We will
focus on HMMs with output probabilities of states repreednby GMMs. GMM of

thej — th state is characterized by a set= {w;n,, tjm, ij}ff;l, wherel; is the

number of mixturesw;,, p;m andCj, are weight, mean and variance of the— th
mixture, respectively.

The most know adaptation methods are Maximum A-posteriabh&bility (MAP)
[4] and Linear Transformations based on the Maximum Lilaith (LTML) [7]. The
benefit of MAP technique is in the convergence of such adaptedel S A into the
modelS D, but in the task of limited amount of adaptation data is imapgate.

The advantage of LTML techniques over the MAP techniqueas tine number of
available model parameters is reduced via clustering ofa@immodel components [9].
The transformation is the same for all the parameters frarsttme clustek,,,n =
1,...,N. Hence, less amount of adaptation data is needed. In thenextcase, co
called global adaptation, only one adaptation matrix forraddel components is com-
puted from all the adaptation data. The first of the methott®dinced by Leggeter
in [5] is known as Maximum Likelihood Linear Regression (MR).and was further
investigated by Gales, who introduced feature MLLR (fMLLRhe main difference
between these two approaches stands in the area of theiedht®LLR transforms
means and covariances of the model, whereas fMLLR transfdirectly the acoustic
feature vectors. The MLLR method is out of our interest areldtaptation formulas
can be found in [5].
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3 Feature Maximum Likelihood Linear Regression (fMLLR)

The method is based on the minimization of the auxiliary fiomc[7]:

- 1
Q(X\, ) = const — 3 ; Zt:'yjm(t)(constjm +1og |C)jm| + 2

+(0(t) = pjm) T C; (0(1) — pajm))
whereo(t) represents the feature vector transformed according tiothaila:

whereW,,y = [A(,), b,)] stands for the transformation matrix corresponding to the
n — th clusterk,, and¢(t) = [o], 1]" represents the extended feature vector.

The standard implementation of fMLLR (or other adaptatiasdd on linear trans-
formation) requires four steps [6]:

1. Alignment of the adaptation utterance to HMM states. This can be dorfierbgd-
alignment(Vitterby algorithm) or more time demanding but more accuraiavard-
backward algorithm [2]. Both approaches need transcription of adaptatiorr-utte
ance. This transcription can by done as reference tratiserifsupervised adap-
tation) or can by required from the first pass or ASR (unsupedvadaptation).
The result of alignment is probabiligy(o(¢)|jm) that featuren(t) is generated by
m — th mixture of thej — th state of the HMM. Posterior probability;,,, (¢) of
featureo(t) is given as

o wimp(o(t)|jm) .
Tim ) M wimplo(t)|jm) @

2. Computation
of the soft count;,, of mixturem and the first and the second statistics moment,
ejm(0) ande ., (oo"), of features which align to mixture in the j-th state of the
HMM

T
Cjm = Z ”ij(t) )
t=1
is the soft count of mixturen,
R _ 22;1 'ij(t)o(t) . Ty E?:l 'ij(t)o(t)o(t)T
eim(0) = == 0 €m(007) = =S (6)

Note thataf-m = diag(C},) is the diagonal of the covariance mat(,,.

3. Accumulation
of the statistics matrice&(,,; and k(,,); for each cluster(n) of similar model
components [9] and farrow of the adaptation matri,,)

CmHmi€m CmEm T
Ko = Do, S50 | G = S, 2 )

mi mi
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where

€1’ﬂ

en®) = ehio11]  enteeh = |TH) O] @

4. Iterative update
of estimated matri¥¥¥,,). The auxiliary function (2) can be rearranged into the
form [8]

I
QW (A, A) =log A | — Z i,k — 05w, Goyiwmy,  (9)

i=1

To find the solution of equation (9) we have to expréss, in terms ofW,,), e.g.
use the equivalendypg | A ,,)| = log \w{n)iv(n)i\, wherev,,); stands for transpose
of thei — th row of cofactors of the matrix ,,) extended with a zero in the last
dimension. After the maximization of the auxiliary funati(®) we receive

IQ(X,A) _1 ((Vmi
- - ) + . 1
oW, 0= wipy, G(n)z ) ki) s (10)

wherea,) = w(Tn)mn)i can be found as the solution of the quadratic function

2 T —1 T —1
6(n)04(n) - a(n) 'v(n)lG(n)lk(n)L — v(n)iG(n)i'v(n)i =0 R (11)

By = Y. > (D). 12)

meK, t

where

Two different solutionaulfi are obtained, because of the quadratic function (11).
The one that maximizes the auxiliary function (9) is cho$éute that an additional
term appears in the log likelihood for fMLLR because of thatfge transforms,
hence:

IOg L (Ot|ll/m7 C7n7 A(n)v b(n)) = IOgN (A(n) o + b(n); Hm, Cm)+05 IOg ‘A(n) ‘2~
(13)

The estimation oM/(,,) is an iterative procedure. Matrice$,,) andb,,) have to

be correctly initialized first, e.g4,,) can be chosen as a diagonal matrix with ones

on the diagonal and,,, can be initialized as a zero vector. The estimation ends

when the change in parameters of transformation matrices&l enough (about

20 iterations are sufficient) [8].

4 Gradient descent fMLLR

Classical fMLLR is based on a row-by-row estimation of thetdtion matrixV with
respect to data accumulated for each Gaussian. The ma@ratitfe in our gradient
descend fMLLR technigue is a direct minimization of a ciarfunction [6]. From
classical fMLLR described above, only the first step of thienestion -alignment - is



A Direct Criterion Minimization based fMLLR via Gradient Descend 5

—— j-th state of SI model
(with two mixture’s GMM)

X XX adaptation data
— classic fMLLR
— gradient fMLLR

£(0) My Hiz

Fig. 1. Visualization of the fMLLR adaptation base on classical estimation and oproposed
estimation using gradient approach.

identical. The rest of the estimation is modified to direchimiization of the criterion
function.

We do not consider individual Gaussians only. We considgative Maximal Like-
lihood (ML) criterion that is based on likelihood of whole HWistates (see Figure 1).
In contrast with classical fMLLR approach, adapted datdraresformed into the center
of the HMM state instead of the center of the Gaussian only.

The same approach can be used for various alternativeetitiable criteria (e.g.
Maximal Mutual Information or other discriminative one3he minimization of the
criteria formally written is similar to the equation (1)

Af = argmgn F(O, ), (14)

whereF (O, A) is the criterion function which is the negative ML criterionour case
F(O,X) = =p(O[X)p(N). (15)

We choose the gradient descend method to optimize parandtecause it is the most
general optimization technique. Therefore, it can be ugddwarious criteria and it can
be used to optimize even other parameters, not only the fMitaRsformation matrix.
So, the same framework can be developed further. In our dasi @riterion, even
second derivatives - diagonal Hessian - can be easily eatmiand the second order
Newton optimization method can by employed to reduce a nuwittae optimization
iterations.
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For single Gaussian case, the partial derivation of the tavaenta;; of the trans-
formation matrix A is

OF _ pi —0i(t)
= ; 1
8aij 012 OJ (t>7 ( 6)
and the diagonal Hessian element - the second partial tierivia
°F _ o5(t)
= — . 17
9%, =~ o7 (7
The partial derivations for the fMLLR vectaérare
OF i —0i(t)
S e AN 1
and 52
F 1
= 1
o o2 (19)

Besides the sum of partial derivations over all data)égédet(A)) derivation needs to
be added. The derivation is equalitar(A)”. The second derivative dfg(det(A)) is
computed numerically.

The total partial derivations for entire HMM is a sum of akktimdividual Gaussians
with using the same;,, as in the equations (5) and (6).

Then, the new estimate of is

oF
A A 134,
(1) = Am) — a5 7z (20)

2
GA(H)

whereq is a stabilization constant from intervél, 1). The stabilization together with

an iterative approach must be used because we use only tlendiaHessian which is
inaccurate. The used;,, are also dependent on the derived parameters, but it makes
the derivations too complicated. Therefore, we ignorerghieifluence and the gammas
are treated as fixed constants. It brings additional inaoguwhich involves a need of
iterative stabilized approach.

4.1 Modified ML criterion

A classic ML criterion has uniform influence over all proaeggeature-vectors. It
means that long phones or non-speech models have a highléntibtence than shorter
phones. Therefore, we modified the criterion to computesgee means of the ML
criterion and than the total sum is calculated from the meBos some states with a
few accumulated feature-vectors may disturb the final et We proposed a smooth
fade-out of the low-occupied states via soft threshol@ihe per-state means are summed
with using a state weight;

M
ZmZI ij (21)
M :
T+ Zm:l ij

The same weights are used to compute first and second order pattial derivatives.

wj:
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5 Experiments

5.1 SpeechDat-East (SD-E) Corpus

For experiment purposes we used the Czech part of Spee&d3atcorpus [10]. In
order to extract the features Mel-frequency cepstral adeffts (MFCCs) were utilized,
11 dimensional feature vectors were extracted each 10 fi@ngia 32 ms hamming
window, Cepstral Mean Normalization (CMN) was applied, atdA? coefficients
were added. A 3 state HMM based on triphones with 2105 statakdand 8 GMM
mixture components with diagonal covariances in each ofstages was trained on
700 speakers with 50 sentences for each speaker (cca 5 secentence). Using the
same data UBM containing 256 mixture components was trasnadi subsequently all
the GMMs of individual development speakers were MAP adhpfe test the systems
performance different 200 speakers from SD-E were used 5@itkentences for each
speaker, however a maximum of 12 sentences was used fordp&a#dn. A language
model based on trigrams used in the recognition [11]. Thebolary consisted of
7000 words.

5.2 Results

The results of the experiment are shown in Table 1. The firsgbéhe table contains the
Accuracy (Acc) of the baseline system (recognition donkzirtg only the SI model).

supervised unsupervised[%]

SI model 74.27 74.27
classic fMLLR  78.67 77.37
gradient fMLLR ~ 78.99 77.66

Table 1. Accuracy (Acc)[%] of transcribed words for each type of the adapia

As can be seen from Table 1, the proposed gradient fMLLR ambr@erformed
better than classical fMLLR. The margin is not large but gigant and it is obtained
for both cases, supervised as well as unsupervised adaptati

6 Conclusion

We proposed an approach which takes into account the ovigedihood of a HMM
state. It estimates the transformation to optimize the Mtedon of HMM directly
using the gradient descent algorithm. The criterion is thase likelihood of whole
HMM states. It is better than the classical fMLLR which catess a likelihood of
individual Gaussians only. The experiment results showawvgment over the classical
fMLLR method. Additional advantage of our approach is a catitylity with other
differentiable criteria, especially the discriminativess.



8 Jan Vagk, Zbyrek Zajc
Acknowledgements

This research was supported by ..........ccceeviceeeeeecinneen.

References

1. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selectedligppons in Speech
Recognition. In: Readings in speech recognition, pp. 267-296 (1990)

2. Psutka, J., Mller, L., Matowsek, J., Radd, V.: Mluvime s p@itatemcesky, Academia, Praha
ISBN:80-200-1309-1 (2007).

3. Gauvain, L., Lee, C.H.: Maximum A-Posteriori Estimation for Multiaée Gaussian Mixture
Observations of Markov Chains. In: IEEE Transactions SAP, pp.12:298 (1994).

4. Alexander, A.: Forensic Automatic Speaker Recognition using Baydaterpretation and
Statistical Compensation for Mismatched Conditions. In: Ph.D. thesis inpGtanScience
and Engineering, pp. 27-29, Indian Institute of Technology, Mad@eg).

5. Leggeter, C. J., Woodland P. C.: Maximum Likelihood Linear Regjoesfor Speaker Adap-
tion of Continuous Density Hidden Markov Models. In.: Computer SpesechLanguage, pp.
9:171-185 (1995).

6. Balakrishnan, S. V.: Fast incremental adaptation using maximum liaalilnegression and
stochastic gradient descent. In: EUROSPEECH, pp. 1521-1528)200

7. Gales, M.J.F.: Maximum Likelihood Linear Transformation for HMidsed Speech Recog-
nition. Tech. Report, CUED/FINFENG/TR291, Cambridge Univ. (1997)

8. Povey, D., Saon, G.: Feature and Model Space Speaker Adaptattid-ull Covariance Gaus-
sians. In: Interspeech, paper 2050-Tue2BuP.14 (2006).

9. Gales, M.J.F.: The Generation and use of Regression classfarddisLR Adaptation, Cam-
bridge University Engineering Department (1996).

10. Pollak, P., et al.: SpeechDat(E) - Eastern European Telephpeex!$ Databases, XLDB -
Very Large Telephone Speech Databases (ELRA), Paris (2000).

11. Praak, A., Psutka, J., Hoidekr, J., et al.: Automatic online subtitling of thedBiparliament
meetings, Lecture Notes in Atrtificial Intelligence, pp. 501-508 (2006).

12. Machlica, L., Zdg, Z., Praak, A.: Methods of Unsupervised Adaptation in Online Speech
Recognition. In: Specom, St.Petersburg (2009).

13. Visweswariah, K., Gopinath, R.: Adaptation of front end pararaéiea speech recognizer,
In: Interspeech, pp. 21-24 (2004).



