
High-Quality Silhouette Illustration for Texture-

Based Volume Rendering

 Zoltán Nagy, Reinhard Klein
Institut für Informatik II, University

of Bonn
Römerstraße 164

53117 Bonn
Bonn, Germany

{zoltan|rk}@cs.uni-bonn.de

ABSTRACT

We present an accurate, interactive silhouette extraction mechanism for texture-based volume rendering.

Compared to previous approaches, our system guarantees silhouettes of a user controlled width without any

significant preprocessing time. Our visualization pipeline consists of two steps: (a) extraction of silhouettes with

a width of one pixel, and (b) image post-processing for broadening of silhouettes. Step (a) is a mixture of

object- and image-based- silhouette extraction models, maximally exploiting the screen resolution. This hybrid

approach is neither sensitive to accuracy in gradient representation nor to the precision of the depth-buffer, as in

earlier procedures. Step (b) is accomplished via smoothing and applying a threshold to the temporary result

obtained in (a). To keep the latter process efficient, we perform fast convolution using FFT. Our silhouette

extraction is conceptually similar to the corresponding method for polygonal representations, checking the front-

and back facing property of adjacent triangles.

Keywords

NPR, volume rendering, silhouettes, stylization, contours, FFTW.

1. INTRODUCTION
Volume rendering has become an important tool for

scientific visualization in the last decade. The major

focus in this area lies in the exploration of datasets as

obtained from Computer Tomography (CT),

Magnetic Resonance Imaging (MRI) or simulations.

Iso-surface extraction and direct volume rendering

(DVR) have proved themselves as interactive

exploration methods for input data in texture-based

volume rendering. These two methods are alike in

their objectives to approximate the look of the

analyzed objects as they would appear in reality: iso-

surface extraction describes an opaque-like look,

whereas DVR visualizes a semi-transparent

appearance.

Only recently, researchers have recognized the

impact of combining the two areas of (i) volume

rendering and (ii) non-photorealistic rendering

(NPR). NPR leaves freedom to guide the attention of

the observer to special features of the object, like

silhouettes, creases, cusps, or material edges. For an

overview of this topic and the terms mentioned

above, we refer to [StSc02], [MöHa02] and

[GoGo01].

This work deals with the question of how to detect

and illustrate silhouettes in volumetric datasets

efficiently and robustly. We address the problem of

capturing silhouettes with a guaranteed width of one

pixel and broadening of silhouettes either by a user-

defined, fixed width -or adaptively, depending on the

distance to the viewer.

Our paper is organized as follows. In section 2, we

review related work. In section 3, we describe our

method of finding silhouettes in the dataset from a

particular view. Section 4 explains how the

silhouettes can be broadened for advanced

stylization. The remaining sections summarize results

and conclude our work.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

2. PREVIOUS WORK

2.1 Polygonal Models
Detecting silhouettes for polygonal representations is

most simple. A well-established criterion is used,

which we call the front/backface property of two

adjacent polygons: an edge is called silhouette edge,

if exactly one of two triangles sharing an edge faces

the viewer [MöHa02], i.e.

(n0 · v > 0) ≠ (n1 · v > 0) (1),

must hold, where n0, n1 are the respective triangle

normals and v is the viewing vector.

The union of silhouette edges forms the silhouettes.

Raskar and Cohen [RaCo99] and Raskar [Ra01] used

this criterion for real-time silhouette rendering. Their

system is capable of illustrating silhouettes of

predefined width by enlarging back-facing triangles

by a depth-dependent factor. Although other

techniques, like e.g. the shell (or halo) method

[HaDa01] exist to render silhouettes in real-time,

Raskar and Cohens method is currently regarded as

being best concerning speed and robustness. As

mentioned above, this criterion cannot be used

directly for volumetric representations; however, we

shall exploit the robustness of the front/backface

property in our approach in a different way.

2.2 Surface Angle Silhouetting
For surface representations, where the criterion above

cannot be applied, often the right-angle criterion is

used: a point is called silhouette point, if the

inequality |<v,g>| < ε holds, where 0<ε<1 denotes a

threshold value and v and g are the normalized local

viewing direction and the gradient on the surface,

respectively [GoSl99]. Despite its applicability for

arbitrary shape representations, a drawback is that

silhouette lines are drawn with variable width,

depending on the curvature of the surface [MöHa02].

Csébfalvi et al. [CsMr01] and Rheingans and Ebert

[RhEb01] improved this formula by introducing a

constant k and checking the relation (1- |<v,g>|)
k
 < ε,

where k serves the purpose of controlling the contour

sharpness. By this means, above mentioned effects

get lessened, but not removed, since the curvature of

the surface still influences the silhouette width.

Kindlmann et al. [KiWh03] try to incorporate

curvature information in their model, but their

method is still not robust in general, e.g. in regions

where curvature is too low to be measured accurately.

2.3 Silhouettes by Image Processing
The methods mentioned so far operate on object

level, i.e. the object geometry is used for silhouette

detection. Discontinuities in screen-space, however,

can also be used for detecting boundaries. Saito and

Takahashi [SaTa90] first picked up this idea,

followed by Decaudins [De96] extension towards

toon rendering. Based on the simple idea that

silhouettes tend to be located rather at pixels where

discontinuities in the neighborhood in the Z-buffer

occur, the method works fairly well, even for non-

polygonal representations. Card and Mitchell

[CaMi02] and Mitchell [Mi02] improved this method

by taking normal discontinuities in image space into

account. There are some flaws with this technique

making it disadvantageous for volume rendering.

First, for nearly edge-on surfaces, the z-depth

comparison-filter can falsely detect silhouette edge

pixels. Second, if the differences in z-depth

comparison are minimal, then silhouette edges can be

missed [MöHa02]; in other words, the depth-

comparison is sensitive to the resolution of the depth-

buffer. Deussen and Strothotte [DeSt00] use the same

z-buffer trick to generate pen-and-ink trees, therefore

it is related to our silhouette extraction technique.

Their algorithm however, uses a fixed threshold to

determine discontinuities in z-space. Our algorithm

is not restricted to an arbitrarily chosen value, but

uses object-precision information to adaptively locate

the outlines.

2.4 Volumetric Models
Surface angle silhouetting has been approved in

volume rendering in various applications. Csébfalvi

et al. [CsMr01] used it for visualizing contours,

Rheingans and Ebert [RhEb01] for volume

illustrations, Lu et al. [LuMo02] for point-stippling

techniques, Svakhine and Ebert [SvEb03] for feature

halos, Nagy et al. [NaSc02] for hatching and Lum

and Ma [LuMa02] in parallel applications.

A very elegant method for extracting silhouettes,

tailored to volumes, was proposed by Schein and

Elber [ScEl02], who used a trivariate tensor product

B-spline representation of their data to obtain highly

accurate boundary renderings. Their method

however, demands tremendous amounts of memory

and disk space, with preprocessing times of more

than 20 minutes and about 10 seconds for a particular

view on a 800 MHz Pentium III for a dataset with

about 315.000 voxels. Our approach, in contrast,

requires no significant preprocessing, and allows for

interactivity.

3. ALGORITHM OUTLINE
Our algorithm takes the regular volumetric dataset as

input, without any additional information, like e.g.

gradients. The rendering of the dataset is

accomplished by using 3D texturing under the

constraint of slicing the polygons in front-to-back

fashion using iso-surface extraction.

Figure 1 summarizes the rendering process. In the

first stage the program renders the single slices,

detects the contours and propagates them through the

slices in order to capture silhouettes. This is

explained in the following subsections. Afterwards,

the content of framebuffer is read back to main

memory to broaden silhouettes. This is an optional

stage explained in section 4. Finally, the result is

output to the framebuffer.

Figure 1: Survey of the rendering pipeline. G

denotes the Fourier-transformed Gaussian kernel.

In the following subsection, we describe the idea of

the first stage of our algorithm first for the 2D case,

afterwards we elevate the method to 3D.

3.1 Basic Idea
The main trick of our silhouette detection mechanism

is depicted in figure 2. First, we fix two terms. We

define a pixel to be a contour pixel, if the fragment

survives the α-test during rasterization, but not all

pixels in the 8-neighbourhood. A contour pixel is

called propagated, if a contour pixel was already

detected on the previous slice at the same screen

position.

Suppose we have a single visible contour pixel ck on

slice si+1 detected at a particular screen position (fig.

2, top left). To decide, whether ck is a silhouette

pixel, we check whether a pixel is rendered for slice

si+2 at the same screen position. If this is not the case,

we can assume to have a silhouette pixel detected. If

multiple contour pixels are found on successive slices

at the same screen position (i.e. we have propagated

contour pixels), the local viewer direction is

orthogonal to the iso-surface normal and we come to

a decision by means of the contour pixel found

farthest from the viewer at the same screen position

(fig 2, top right and bottom left). If a survived

fragment is found on the next slice at the

corresponding position, we do not have a silhouette,

otherwise we do.

Figure 2: Examples for silhouette pixel

determination. si, si+1 and si+2 are screen-parallel slices

after surviving the α-test. f, ck and i denote the

framebuffer, the regarded contour pixel and the iso-

surface, respectively. We color code passed

fragments bright grey, contour pixels grey and

silhouette pixels black. Top left: ck in si+1 is detected

as silhouette pixel, since it is visible and the

successor fragment in si+2 does not pass the α-test.

Top right: similar situation, where ck is a propagated

(see text for definition) contour pixel. Bottom left: ck

is not recognized as silhouette pixel, since the

subsequent fragment in si+2 passes the α-test. Bottom

right: importance for the decision of the definition on

the bottom left: if we would define a contour pixel to

be a silhouette pixel only because it is propagated, we

would get multiple silhouettes on the boundary of

highly curved surfaces (here: 2
nd

 and 3
rd

 row).

Premature classification of two successive contour

pixels at the same screen position as silhouette pixel

would lead to multiple silhouettes near to boundaries

of curved objects, which we want to prevent (fig. 2,

bottom right). This special case is not properly caught

by conventional methods, like by the z-buffer trick

(sec. 2.3) or the right-angle criterion (see figs. 7 left

and 8 and sec. 6). Figure 3 shows a simple example

for silhouette tracking in 3D. It remains now to

clarify the tracking of contour pixels through the

single slices.

3.2 Contour Propagation
The algorithm itself works like a standard front-to-

back iso-surface extraction pipeline, with extended

operations applied on a single slice. Since these rules

require an access to temporarily obtained results, we

keep three textures in the texture units (TU) of the

graphics board containing copies of the framebuffer

(see table 1).

 f

s1

sn

Figure 3: Silhouette determination in 3D. An object

(here: two melted spheres) is rendered in a front-to-

back (here: from top-to-bottom) fashion. Fragments

surviving the α-test are opaque and shown in gray.

When rendering the active slice, we assure not to

alter passed pixels in the framebuffer f. If a contour

pixel in slice si corresponds to an empty pixel in the

subsequent slice si+1 (at the same window position),

then it is considered a potential silhouette pixel (bold

outline). Due to this construction, only two

silhouettes appear in the framebuffer after rendering

all slices in the shown example.

TU Content Dim.

0 Volume Data 3D

1 Footprint 2D

2 Contour 2D

3 Intermediate Result 2D

Table1: Texture setup.

Initially, we clear texture units 1-3 with the

background color. We thereafter perform the

following steps, each associated with its own

fragment program, in a front-to-back manner (during

rendering we have depth-testing and depth-writing

disabled):

1. Render the active volume slice with the α-test

enabled. Store the content of the framebuffer in TU 1

and call it footprint. This way, we naturally obtain

two classes of pixels, defined here as empty () and

filled ().

2. Render a screen-filling quad, textured with the

footprint in TU 1. A filled pixel is altered here to a

contour pixel (), if not all pixels in the 8-

neighbourhood are filled. We store the result in TU 2

and call it contour.

3. Finally, we render a screen-filling quad, textured

with the contour in TU 2 and the intermediate result

in TU 3. The decision table shown in table 2, with

denoting a silhouette pixel, tells us how to combine

two pixels at the same texture (here: (yet) screen)

coordinate from TU 2 and TU 3 to a new one, using

the operator : (see fig. 4 for an example).

Table 2: Decision table defining how single color

values in TU 2 and TU 3 are combined to a new one,

stored as a new intermediate result in TU 3. The color

coding used here is defined in the text.

Figure 4: Example for tracking of silhouettes.

The idea behind the decision table (tab. 2) is the

following:

• 1
st
 column: Since empty pixels in si are

transparent, they are always overdrawn by pixels

in si+1.

• 2
nd

 column: Since filled pixels in si are opaque,

they are never overdrawn by pixels in si+1.

• 3
rd

 column: Here we actually detect silhouette

pixels the first time, if existent. 1
st
 row: detection,

as explained on top of fig. 2. 2
nd

 row: no

silhouette pixel, as explained on bottom of fig. 2.

3
rd

 row: contour pixel propagation.

• 4
th

 column: Silhouette pixels determined on si are

unconditionally propagated to all subsequent

slices.

The new result after step 3 is stored in TU 3 as the

new intermediate result t’. We repeat steps 1-3 until

all slices are processed. We may render an additional

empty slice, if the iso-surface of the object cuts the

parametric domain of the volume to ensure that

contours on the last slice are discovered as

silhouettes, if necessary. Due to the decision table

(see first row), the final result in TU 3 contains only

empty, filled and silhouette pixels, which are finally

swapped into the front buffer.

Using this procedure, artifacts can occur if the

interslice distance is chosen too high, emanating from

places, where the slope of the surface over the image

plane is too high. These artifacts can be removed by

increasing the slicing density completely or

adaptively; latter issue is not integrated in our

framework yet.

We might also shorten the rendering cycle by using

fewer steps than the described three. This would

result in much longer fragment programs, which we

wanted to circumvent in our current implementation

for reasons of clarity and implementation ease. Even

more, fewer fragment programs would not guarantee

better performance, since a workaround would lead to

a massive increase of fragment instructions executed

per pixel.

So far we have discussed how we can precisely locate

and extract silhouettes with a thickness of exactly one

pixel. With a slight modification in the fragment

program and by extending the rendering pipeline on

the CPU, this method can be expanded to process

more sophisticated silhouettes.

4. SILHOUETTE BROADENING
In the previous section, we have generated silhouettes

with a guaranteed width of exactly one pixel. For

many types of illustrations, especially in stylization, it

is required to have silhouettes with a thickness either

predefined, or depending on the distance to the

viewer, to create exact controllable depth-cues or

atmospheric effects [StSc02]. In this section, we

insert a post-processing filtering step into the

rendering pipeline, which accomplishes this task.

After rendering steps 1-3 in the previous section, the

content of the framebuffer is low-pass filtered. This

leads to a diffusion of silhouette lines by a clearly

defined amount, in direction of the image-space

gradients of the silhouettes. This can be done simply

by applying a Gaussian filter on the source image

using convolution:

'(,) : (,) (,)f x y f x y g x y= ⊗ (2),

where f’ is the new smoothed version of f using the

two-dimensional Gaussian kernel

2 21
()

2
1

(,)
2

x y

g x y eπ
+= (3).

The resulting image f’ is not a bi-level image any

more. By carefully converting the grayscale image f’

back into a bi-level one, we can exploit the

continuous run of the co-domain in f’ to query the

width of the silhouette at a particular pixel position.

Since (3) is radial symmetric, we can rewrite it in

polar coordinate representation as

21
()

2
1

()
2

r

g r eπ= (4).

Furthermore, g(r) is monotonically decreasing (and

thus invertible with inverse function g
-1

) in the

respective intervals (0,±∞), so we can retrieve the

distance r of a pixel with gray tone h from the center

of a silhouette by testing the relation

1= () < thr g h r−
 (5),

where rth is half of the width of the silhouette. This

solution is appealing for two reasons.

First, due to the convolution, we can accomplish the

filtering process fast, and independently of the size of

the convolution kernel using the well-known identity

1(() ())f g f g−⊗ = iF F F (6),

where F and F
–1

 denote the Fourier transform and

its inverse, respectively. In this way, we can low-

pass-filter the image with a performance independent

of the size of the (discretized) Gaussian kernel. This

proceeding clearly outperforms the

glConvolutionFilter2D function of OpenGL,

which permits interactivity for yet small kernel sizes.

For small kernel sizes (like e.g. 8x8), however,

hardware-based filters -as described e.g. in [ViKa03]

or [HaBe03] - might perform better.

Second, we can control the thickness of the

silhouettes adaptively, depending on the distance of

the fragment to the viewer, producing the desired

atmospheric effects. Thus, we abandon the idea that

f(x,y) is bi-level and code the aforementioned

distance of a fragment to the viewer in grayscale. The

convolution process therefore induces a faster

decrease of intensity in direction of the screen-space

gradient in f’(x,y), where the original silhouette pixel

color in f(x,y) resembles more the background color.

Applying a constant threshold over the whole image

f’(x,y) gives the desired atmospheric effect.

5. IMPLEMENTATION DETAILS
Our implementation is based on the OpenGL, GLUT

and FFTW [FFTW98] libraries in C/C++.

Since rasterization remains the main bottleneck in our

application (see also table 3), we do not lay special

emphasis on experimenting with a hardware

implementation of the FFT, as e.g. done in

[MoAn03], but use FFTW instead, which is a

convenient and sophisticated substitute. By

comparing our approach with [MoAn03], we found

that a pure hardware implementation is not

necessarily a gain, especially if a powerful CPU used

in combination with large screen sizes. The

performance measurements below show further, that

post-processing plays only a negligible role in

rendering speed. Furthermore, we can smoothly

integrate zero-padding [PrTe92] in the filtering

process without special implementation efforts. Zero-

padding is required to prevent wrap-around and thus

periodic filtering of the image signal using Fourier-

based, fast convolution. This is especially important

when the rendered result of the object with its

broadened silhouettes is not fully contained in the

window.

6. RESULTS AND DISCUSSION
We have tested typical datasets (most of them

available from [VoRe]) on our target platform, a

Windows XP PC with a 3 GHz Pentium P4, 1 GByte

RAM and an ATI Fire GL X1 graphics card. Table 3

shows performance evaluations of our method,

comparing traditional right-angle criterion (RA) with

our method for one-pixel width (OPS) and with post-

processed, broadened silhouettes (BS). We can

observe a performance loss of factor >6 on average,

compared to the traditional method (last column).

We recall that our goal is to extract and visualize the

exact position of the silhouettes on a given object and

viewpoint. We do not intend to include additional

clues into the rendition, like e.g. half-toned shading,

etc. The bonsai tree in the left of figure 7 might

convey the curvature of the local surface in a superior

manner, but it does not have an exact controlled

width.

Figures 5 and 6 show the Engine and the NegHip

datasets, respectively, rendered (i) with the

conventional right-angle criterion, (ii) with our

method and (iii) with additional silhouette

enhancement. Figure 7 shows the Bonsai and Skull

datasets, rendered using the right-angle criterion and

our method, respectively.

Dataset Size
Win.

Size

RA

(fps)

OPS

(fps)

BS

(fps)

RA/

OPS

2562 39.37 5.82 3.24 6.76
Bonsai 2563

5122 10.00 1.60 1.04 6.25

2562 54.13 8.47 4.27 6.39
Engine

2562·

128 5122 13.78 2.30 1.27 5.99

2562 39.37 5.98 3.51 6.58 Hydrog.

Atom
1283

5122 9.84 1.60 1.02 6.15

2562 19.95 3.05 2.26 6.54
NegHip 643

5122 9.85 1.58 1.07 6.23

2562 39.41 5.82 3.61 6.77
Skull 2563

5122 9.85 1.58 1.06 6.23

2562 44.0 5.41 3.37 8.13
Teddy

1282·

64 5122 11.12 1.47 0.94 7.56

Table 3: Performance measurements for various

datasets.

The results for the conventional method show also

that undesired effects (non-silhouette areas) appear in

the images. These artifacts appear as we are not able

to determine the exact position of silhouettes due to

the limitations of discrete gradient representation.

This is especially perceivable in figure 8, where the

gradient-method fails at near-silhouette positions on

the nose of the teddy. The arrows on the right of

figure 8 indicate the viewing direction and show that

silhouettes must not be drawn around the nose of the

teddy. The example also demonstrates the resistance

of our method against inaccuracy due to coarse

discretization of the dataset. The examples confirm

the robustness of the special case explained in fig. 2

bottom right.

Based on the results we found our method to be more

appealing as the silhouettes appear exactly at the

positions we expect them to be. Furthermore, since

the silhouettes initially have a width of one pixel,

with the extension presented in section 4 the user can

exactly control the thickness. In figure 9 we show

how the widths of the silhouettes of the Hydrogen

Atom dataset alter as the viewer moves closer to the

object. Since broadening of silhouettes works in

image-space, silhouettes can be washed out, as their

density increases, e.g. when the distance of the object

to the viewer becomes high.

7. CONCLUSIONS
In this paper, we have introduced a new methodology

of silhouette extraction for texture-based volume

rendering. It serves the purpose of visualizing

silhouettes with an accurate width of one pixel. In a

subsequent step, we can optionally broaden

silhouettes, either by a fixed pixel width, or

depending on screen-space depth using image-

processing. Our algorithm is in particular insensitive

to coarse discretization in the dataset.

Silhouette detection is solved using a new paradigm,

which combines accuracy at object- and screen-space

resolution. We can perform silhouette enhancement

in a subsequent image processing step and illustrate

even exaggerated thick silhouettes –independently of

their width at constant, interactive framerates.

The proposed method helps to illustrate iso-surfaces

of scientific datasets in a fast fashion, allowing high

degree of interactivity in rendering and modification

of iso-values.

8. REFERENCES
[CaMi02] Card, D. and Mitchell, J. Non-

Photorealistic Rendering with Pixel and Vertex

Shaders. In Engel, Wolfgang, ed. ShaderX,

Wordware, 2002.

[CsMr01] Csébfalvi, B. and Mroz, L. and Hauser, H.

and König, A. and Gröller, E. Fast visualization

of object contours by non-photorealistic volume

rendering. Computer Graphics Forum 20(3), pp.

452-460, 2001.

[De96] Decaudin, P. Cartoon-Looking Rendering of

3D-Scenes. TR INRIA 2919 Université de

Technologie de Compiègne, France, 1996.

[DeSt00] Deussen, O. and Strothotte, T. Computer-

Generated Pen-and-Ink Illustration of Trees.

Computer Graphics (SIGGRAPH ’00

Proceedings), pp. 13-18, 2000.

[FFTW98] Frigo, M. and Johnson, S.G. FFTW: An

Adaptive Software Architecture for FFT. ICASSP

conference proceedings (vol. 3, pp. 1381-1384),

1998. http://www.fftw.org

[GoGo01] Gooch, B. and Gooch, A. Non-

Photorealistic Rendering. A K Peters, 2001.

[GoSl99] Gooch, B. and Sloan, P.-P. and Gooch, A.

and Shirley, P. and Riesenfeld, R. Interactive

Technical Illustration. Symposium on Interactive

3D Graphics. pp. 31-38, 1999

[HaBe03] Hadwiger, M. and Berger, C. and Hauser,

H. High-Quality Two-Level Volume Rendering of

Segmented Data Sets on Consumer Graphics

Hardware. IEEE Visualization 2003.

[HaDa01] Hart, E. and Gosselin, D. and Isidoro, J.

Vertex Shading with Direct3D and OpenGL.

Game Developers Conference. 2001.

[KiWh03] Kindlmann, G. and Whitaker, R. and

Tasdizen, T. and Möller, T. Curvature-Based

Transfer Functions for Direct Volume Rendering:

Methods and Applications. IEEE Visualization

2003.

[LuMo02] Lu, A. and Morris, J. and Ebert, D. and

Rheingans, P. and Hansen, C. Non-photorealistic

rendering using stippling techniques. IEEE

Visualization, pp. 211-217, 2002.

[LuMa02] Lum, E. and Ma, K.-L. Hardware-

accelerated parallel nonphotorealistic volume

rendering. International Symposium on

Nonphotorealistic Rendering and Animation

(NPAR 02’), 2002.

[MoAn03] Moreland, K. and Angel, E. The FFT on a

GPU. Graphics Hardware 2003.

[Mi02] Mitchell, J. Image Processing with Pixel

Shaders in Direct3D. In Engel, Wolfgang, ed.

ShaderX, Wordware, 2002.

[MöHa02] Akenine-Möller, T. and Haines, E. Real-

Time Rendering, 2nd Ed. A K Peters, pp. 289-

312, 2002.

[NaSc02] Nagy, Z. and Schneider, J. and

Westermann, R. Interactive Volume Illustration.

Vision, Modeling and Visualization 2003, pp.

497-504, 2002.

[PrTe92] Press, W.H. and Teukolsky, S.A. and

Vetterling, W.T. and Flannery, B.P. Numerical

Recipes in C, 2
nd

 ed. pp. 496-608, 1992.

[Ra01] Raskar, R. Hardware Support for Non-

Photorealistic Rendering. ACM SIGGRAPH/

Eurographics Workshop on Graphics Hardware,

pp. 41-46, 2001.

[RaCo99] Raskar, R. and Cohen, M. Image Precision

Silhouette Edges. Symposium in Interactive 3D

Graphics, pp. 135-140, 1999.

[RhEb01] Rheingans, P. and Ebert, D. Volume

illustration: Nonphotorealistic rendering of

volume models. IEEE Transactions on

Visualization and Computer Graphics, 7(2), pp.

109-119, 2001.

[SaTa90] Saito, T. and Takahashi, T.

Comprehensible Rendering of 3-D Shapes.

Computer Graphics (SIGGRAPH ’90

Proceedings), pp. 197-206, 1990.

[ScEl03] Schein, S. and Elber, G. Extraction of

Silhouette Curves from Volumetric Data Sets. The

4
th

 Israel-Korea Bi-National Conference on

Geometric Modeling and Computer Graphics, pp.

100-104, 2003.

[SvEb03] Svakhine, N.A. and Ebert, D.S. Interactive

Volume Illustration and Feature Halos. Pacific

Graphics 2003.

[StSc02] Strothotte, T. and Schlechtweg, S. Non-

Photorealistic Computer Graphics: Modeling,

Rendering and Animation. Morgan Kaufman.

[ViKa03] Viola, I. and Kanitsar, A. and Gröller, E.

Hardware-Based Nonlinear Filtering and

Segmentation using High-Level Shading

Languages. IEEE Visualization 2003.

[VoRe] www.volren.org

Figure 5: Engine dataset. Left: Right-angle method. Middle: our method. Right: our method with silhouette enhancement

Figure 6:NegHip dataset. Left: Right-angle method. Middle: our method. Right: our method with silhouette enhancement

Figure 7: From left to right: bonsai tree with right-angle- and our method, same comparison for the skull dataset. We recall

that the thick silhouette on the lower portion on the bonsai tree on the left is an unintended feature here (see text above).

Figure 8: From left to right: teddy with right-angle- and our method; side view illustrating that silhouettes around the nose

must not be drawn when the teddy is viewed from front.

Figure 9: Effect of depth-cueing on close-up, exemplified on the Hydrogen Atom dataset. Note the silhouettes becoming

thicker as the object gets magnified.

