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ABSTRACT

In this paper we describe a new method for improving the representation of textures in blends of multiple images

based on a Markov Random Field (MRF) algorithm. We show that direct application of an MRF texture synthesis

algorithm across a set of images is unable to capture both the "averageness" of the global image appearance as

well as specific textural components. To overcome this problem we vary the width of the Parzen window (used to

smooth the conditional probability distribution of the pixel's intensity) as a function of scale, thus making lower

pyramid resolutions closer to the Gaussian mean, while maintaining the high resolution textures.  We also show

that approximating the maxima of the conditional probability distributions with a weighted-average produces

very similar results with a significant increase in speed.
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1. INTRODUCTION
The ability to construct prototype images

(particularly facial images in our own work) has

found applications in medicine (e.g. [Tid99]) and

psychology (e.g. [Per98]).  Prototypes can be used to

identify typical characteristics of a given set of

images, and can also be used to define

transformations on individual images, such as ageing

or gender change [Row95]. Prototype images can be

created using a combination of warping and blending.

Warping is used to align matching features in

different images and blending finds the average

colour at each spatially aligned pixel. The random

nature of surface texture features (e.g. wrinkles, pores

or hair in facial images) means that it is impossible to

align surface texture components and so information

is lost in the blending process.

The analysis and synthesis of textures in images

has attracted a large amount of research from a wide

range of disciplines.  Computer vision researchers are

interested in image segmentation and object

localisation from textures, psychologists have

developed texture analysis and synthesis algorithms

to investigate the neurological basis of texture

recognition and computer graphics experts are

interested in replicating textures for wrapping

objects. In our research we are interested in studying

facial perception, often using prototypical or

"average" face images. Prototypes have previously

been created by blending faces together, after

normalising the shape to the average using image

warping. These "shape and colour" prototypes do not

have realistic textural detail i.e. the hair on the top of

the head, eyebrows, beards / stubble, wrinkles, pores,

spots, moles and liver spots do not have a realistic

appearance.

In our previous work aimed at improving the

representation of textures in prototype facial images

[Tid01] we based the work on the methods of Heger

and Bergen [Hee95] and Simomcelli and Portilla

[Sim98] who have used properties of the histograms

of wavelet subbands to synthesise textures from

examples. Because the textures vary across the image

we used a local approximation to the shape of the

histogram by recording the wavelet magnitude in a

small region about each point in each wavelet

subband. This method produced prototypes that were

perceived as having the correct age - the same as the

perceived age of the sample from which it was

constructed. Even so, the prototypes still lacked

realism, particularly in the more variable textures

such as the hair.
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In this work we take a completely different

approach, basing it instead on Markov Random Field

(MRF) methods.  Many of the proposed methods for

texture synthesis-by-analysis (e.g. Efros and Leung's

method [Efr99]) can be seen as approximations to

sampling from a probability distribution for the pixel

intensity. The probability distribution for each pixel

is conditional on the values in some neighbourhood

(a region of the pixels around the point) of the pixel.

By sampling from this distribution at each pixel a

copy of the original texture can be created.

Multiscale MRF based algorithms and

approximations to them have been shown to improve

both the quality and the speed of texture synthesis.

The quality is improved because the characteristic

scale(s) of the texture are unknown, and the

multiscale approach covers all scales from low to

high resolution. The speed is improved because a

large high-resolution neighbourhood is built up from

many smaller neighbourhoods at different resolutions.

The shape of the neighbourhood effects the

speed and quality of reconstruction.  The most

realistic assumption is that a pixel's neighbourhood is

symmetrical, but this acausal assumption requires the

use of slow iterative optimisation. In this work we use

a causal neighbourhood consisting of a non-

symmetrical half-plane (NSHP) neighbourhood at the

current resolutions and a square neighbourhood at the

previous (coarser) resolution. The use of a

symmetrical low-resolution neighbourhood in

addition to the NSHP high-resolution neighbourhood

helps to stabilise the reconstruction, without the need

for optimising the probabilities of the all the pixels

simultaneously.

Because the textures vary across the facial

images, prototyping multiple face images requires a

different approach than synthesising a new example

of a single texture.  In this work we build the

conditional probability distribution by sampling from

the same spatial location across multiple images,

rather than sampling from multiple locations in a

single texture image.  In addition, rather than

randomly sampling from this distribution, we select

the most probable greyscale value.

As we will see in the following sections, simply

picking the most likely pixel from the probability

distribution is not sufficient to synthesise prototypical

images, because the texture "locks" on to a single

image at a low resolution. Instead we use a method

for maintaining "averageness" at low resolutions, but

selecting increasingly specific texture components as

the resolution increases.

In the remainder of this paper we first describe

our new technique for synthesising images of a single

example texture and demonstrate its effectiveness on

a number of real and synthetic textures. We then

present the method modified to blend images with

spatially varying textures. Finally we present the

results of some experiments to demonstrate the

effectiveness of the new algorithms.

2. LITERATURE REVIEW

Image Prototyping Literature
Several methods have been proposed for the

construction of prototype images. The earliest simply

cross-dissolved a sample of facial images after

registering the eye centres and mouth

[Gal78][Lan90]. This technique produces facial

prototypes that become blurred with increasing

distance from the eyes and mouth because facial

features are not properly aligned before their

combination. Distorting the images in the sample

using image warping [Wol90][Rup95] can align

corresponding features leading to sharper prototypes

[Ben93].  Corresponding features can be labelled

manually [Ben93][Bre85] or recovered automatically

[Yui92][Coo95][Bey96][Vet97].

Figure 1. Basic image averaging. The input images

(top row) are delineated (middle row) and the

average shape is calculated from the delineated

feature points (middle-right).   The original

images are then warped into the average shape

(bottom row) and the average colour is found at

each pixel (bottom-right).

In this paper we extend the prototyping method of

Benson and Perrett [Ben93] (Figure 1). First,

delineation of salient features with points and lines is

performed by hand or automatically using active

shape models [Coo95]. The average shape is defined

as the average positions of each of these points. Each

image is then warped into the average shape using

one of the many available methods. Averaging the

colour at each pixel across the shape normalised

component images produces the prototypes that will

be referred to here as  ‘untextured prototypes’.



Texture synthesis-by-analysis literature
The problem tackled by most texture synthesis-

by-analysis methods can be stated as:

Given an example image that is perceived as a

single texture (e.g. grass, pebbles or wood), produce

a non-identical image that is perceptually of the

same texture.

This is useful in areas such as 3D modelling to

create large texture patches for wrapping around

complex 3D objects. The problem tackled in this

paper is somewhat different, i.e.

Given a set of spatially normalised images

containing a number of different textures (e.g. hair,

wrinkles and stubble) construct a prototype with

perceptually representative textures.

Nonetheless, the large body of literature on

texture synthesis-by-analysis provides many possible

methods that could be adapted for the problem of

creating appropriate textures in prototype images.

The most popular methods for modelling natural

textures are MRF-based methods [Efr99] [Che85a]

[Cro83] [Che85b] [Pag98] [Has81], wavelet-based

methods [Hee95] [Sim98] or a combination of the

two [DeB97][Zha98].

Julesz was among the first to suggest a statistical

model of texture based on N
th

 order pixel statistics

[Jul62]. MRF texture models are statistical models

that assume that the probability of a pixel having a

particular intensity is dependent only on the

intensities of the neighbouring pixels. The probability

distribution for a pixel, given the intensities of its

neighbours, can be calculated from the sample

texture. For example, a parametric Gaussian mixture

model or a non-parametric model such as the Parzen

window method can be used to estimate the

probability density function. The task of image

synthesis is then to optimise the probabilities across

the synthetic image to match the probability

distributions of the sample or training image.  This is

often achieved by using an iterative scheme, for

example by simulated annealing.

The computational complexity of the MRF

methods increases with the size of the neighbourhood

considered. Therefore, in order to represent large as

well as small-scale features accurately and efficiently,

multiscale MRF methods have been proposed. Even

so, the iterative nature of the image synthesis makes

MRF methods prohibitively slow given current

computing.  An alternative speed enhancement

adopted by several algorithms approximate the local

conditional probability distribution function (LCPDF)

using stochastic sampling, selecting the k nearest

matches and selecting a texture element (i.e. a pixel)

from among them. These methods are usually

implemented using a causal neighbourhood, thus

eliminating the need to use slow iterative methods, at

the possible expense of accuracy and stability in the

reconstruction.

An alternative to iterative MRF optimisation is to

decompose the image using basis functions that give

it a simpler statistical description. In wavelet analysis

an image is decomposed using basis functions that are

well localised in both the spatial and frequency

domains.  This means that the wavelet analysis can

represent efficiently both high and low frequency

texture components without losing spatial

localisation. In addition, wavelet style decomposition

is thought to play an important part in the early stages

of visual processing in mammals [Dau80] [Mar82].

Wavelet-based methods have been used to

synthesise textured images from a relatively small

number of parameters from the source texture, such

as correlations within and between different

subbands.  In this work we are not trying to

synthesise a single texture image so there is no

advantage to having a concise parametric texture

model i.e. we would require a different set of texture

parameters at each pixel, rather than a single set for

the whole image.   Therefore wavelet-based methods

are unlikely to offer a significant time or space

complexity improvement for blending textured

images over direct MRF synthesis.  It is possible that

wavelet-based methods might give a quality

improvement, but we leave this as a topic for future

research.

3. METHOD

Single Texture Synthesis
Our method for synthesising textures is based on

the non-causal non-parametric multiscale method of

[Pag98] with some modifications, most notably that it

is a causal variation of the original algorithm.   The

algorithm starts by making a low-resolution

approximation to the texture by randomly sampling

from the low-resolution version of the example

texture. This could be as small as a single pixel. Each

successively finer resolution version of the texture is

then built up by iteratively optimising each pixel's

probability by sampling from the local conditional

probability distribution for the pixel given the

greyscale values in a local neighbourhood of the

pixel.

One possible drawback to the original algorithm

is that the multiresolution pyramid was created by

simply subsampling the example texture at each

scale. The next finer resolution image was then

initialised by expanding the coarser scale image by

pixel doubling. During the MRF optimisation the



greyscales of the even indexed pixels were fixed to

the values calculated at the coarser resolution. This

use of subsampling could lead to aliasing of the

textures at coarser resolutions.  Instead we low-pass

filter the image before subsampling. When the

multiresolution pyramid is constructed with low-pass

filtering the even pixel greyscales are no longer valid

estimates of the finer resolution pixel values.

Instead of using a non-causal neighbourhood we

use a causal neighbourhood that includes information

from both the current scale and the previous

resolution scale.  A square neighbourhood

surrounding the pixel at the coarser resolution is

combined with a NSHP neighbourhood at the current

scale.  Hence our algorithm is causal i.e. the next

pixel's value is determined by its neighbourhood, but

the pixels in the neighbourhood are not dependent on

the current pixel.  The use of an accompanying low-

resolution neighbourhood helps to stabilise the

reconstruction and eliminates the need for very slow

iterative methods such as simulated annealing.

Figure 2. The pixel neighbourhoods used in this

paper span two levels in the multiresolution

pyramid. On the left is the square neighbourhood

in the coarse resolution approximation to the

solution that has already been calculated. On the

right is the NSHP neighbourhood at the current

resolution. This image has been calculated in

scanline order up to the pixel we are trying to

estimate (shown in black).

At each pixel the conditional probability

distribution is estimated from the example image

using a Parzen window method (Algorithm 1). The

probability distribution can be thought of as a 1D

"slice" through an N-dimensional distribution, where

there is one dimension for each pixel in the

neighbourhood. The non-parametric distribution is

estimated by smoothing the N-dimensional histogram

using a kernel function. We use the multidimensional

Gaussian function as the kernel. The shape of the

distribution is also critically dependent on the kernel's

smoothing parameter, h, in this case the width of the

Gaussian.  The "optimal" value, h0, given in [Pag98]

for the smoothing parameter is only optimal if the

true underlying distribution is Gaussian [Sil86].

Experiments using the Gaussian assumption for

single texture synthesis proved unsuccessful in many

cases because the distribution is smoothed too much.

(Figure 3). This may be because of the high degree of

correlation between the same pixels at neighbouring

resolutions.

Approximations to the MRF method such as

[Efr99] select randomly from the samples having the

closest match to the neighbourhood i.e. they will

never choose an intensity or wavelet coefficient that

is not present in the original image.  This behaviour is

approximately equivalent to choosing a relatively

small value for the smoothing parameter. We have

experimented with various multiples of h0 and have

found that h =0.25 h0 produces good results with a

range of textures. We use a 5 by 5 pixel

neighbourhood at the coarser resolution combined

with a 7 by 4 NSHP neighbourhood at the current

resolution about the position of the target pixel.

Algorithm 1: Calculate LCPDF at output pixel (x,y)

inputs:

Array of source images S, destination image D,

smoothing parameter h, sample size M

begin:

1. Create array p of length L (the number of

greyscales) and initialise to 0

2. Array u = values of pixels in neighbourhood N of

(x,y) in D

3. For each example image k = 0 to M

3.1 Array v = values of pixels in

neighbourhood N of (x,y) in image S[k]

3.2 p[S[k](X,Y)] += Gaussian(v, w, h)

4. Smooth p with 1D Gaussian of width h and re-

normalise

5. Return probability distribution p

end

It should be noted that the use of this algorithm

in the form presented here is extremely slow because

of the need to sample the entire image to build up an

accurate LCPDF for each pixel at each scale.

Optimisations are possible e.g. by using a k-nearest

neighbours approach, but these are not applicable to

the case of blending multiple textured images.  This

is because the sample size is typically much smaller

i.e. the number of images passed to the blending

algorithm is far less than the number of pixels in the

single texture synthesis algorithm.

Blending Textured Images
We can extend the MRF single texture synthesis

method described above to blending textured images

by estimating the conditional probability density at a

point by sampling from a fixed location across

multiple images rather than from different locations



in a single image.  We then have the option of

sampling randomly from this distribution, which

would result in a typical, if not necessarily

prototypical, facial image from the set. An alternative

is to pick the highest probability greyscale at each

pixel, which should lead to a prototypical image.  We

have tried this algorithm with both real and synthetic

images containing multiple textures, in which each

texture to be blended is aligned with a different

example of the same texture. This method appears to

work well, but there is a problem in that it often

"locks" on to a single image at a low resolution

resulting in a final image that is a patchwork of areas

copied from a small number of different images in the

sample.

In order to improve on this method we have

experimented with varying the Parzen window width

as a function of scale. We choose a function that

switches smoothly from a wide to a narrow

smoothing window as the level decreases.  By

smoothing the distribution with a wider Gaussian at

low-resolutions we force the overall appearance of

the prototype to be closer to the original average. As

the scale decreases we use a narrower Gaussian to

allow the selection of more specific texture

components at the finer scales.

In this paper we use a linear function of the pyramid

level to scale the width of the smoothing parameter.

We choose h to be the same as in the single texture

synthesis examples (i.e. 0.25 h0) at the finest scale to

ensure that the textures are accurately reproduced in

the final image. We then use a linearly increasing

function of scale with level i.e. hl = (0.25+α l) h0,

where l is the current pyramid level (starting at 0) and

α is the rate of increase of the smoothing parameter.

We have found that large values of α can destroy the

continuity of the more structured textures, such as the

hair. In this paper we use α = 0.5 as this appears to

give a good trade off between average appearance

(i.e. similarity to the untextured averages) and texture

quality.  More systematic selection of α will require a

range of perceptual experiments that we leave as a

topic for future experimentation.

The above method is also rather slow because of the

need to smooth the 1-D distribution at each pixel, in

order to build up the non-parametric probability

distribution. As an approximation to this method we

have experimented with using a weighted-average

approach, where the weightings are chosen so that

images with a more similar neighbourhood are given

a higher weight (Algorithm 2).  The weightings we

use are equivalent to assuming that the peak of the

non-parametric LCPDF is the same as its Gaussian

mean.

 Algorithm 2: Estimate greyscale mean of LCPDF

at output pixel (x,y)

inputs:

Array of source images S, destination image D,

smoothing parameter h, sample size M

begin:

1. Initialise variables sum=0 and weight=0

2. Array u = values of pixels in neighbourhood N of

(x,y) in D

3. For each example image k = 0 to M

3.1 Array v = values of pixels in

neighbourhood N of (x,y) in image S[k]

3.2 P = Gaussian(v, w, h)

3.3 sum += P*S[k](x,y)

3.4 weight += P

4. sum = sum/weight

5. Return sum

end

4. RESULTS
Figure 3 shows the results of synthesising patches of

singles textures from a single example texture.  The

choice of a narrow Parzen smoothing window clearly

gives superior results in these examples. Figure 4

shows the results of blending an image consisting of 4

different textures using no texture processing,

wavelet-based texture processing, full MRF-based

texture processing and the approximate MRF method

based on weighted-averaging.  The two MRF based

methods appear to reproduce the textures more

faithfully than either no texture processing or the

wavelet magnitude method.

The problem of texture "locking" is demonstrated in

figure 5.  The MRF blend with h = 0.25 h0 is clearly

just a patchwork of examples from the set. Increasing

the smoothing parameter (to h = 2.5 h0 ) at all scales

does not help as the textures become blurred, even

when the global appearance becomes more

"average".  Varying the Parzen window width as

described in the text can retain the global averageness

as well as realistic textures.

Figure 6 shows some further examples of male and

female facial prototypes of different ages together

with the untextured prototypes and the wavelet-based

textured prototypes.   Both the full MRF and the

Gaussian approximation produce more realistic

results than the untextured or wavelet processed

versions.



Figure 3. Single texture synthesis. Top row:

Original textures.  Second row: MRF synthesised

using the Gaussian "optimal" smoothing width.

Bottom row: MRF synthesised using one quarter

the Gaussian "optimal" smoothing width.

5. CONCLUSIONS
We have demonstrated the effectiveness of applying

MRF texture algorithms to the problem of creating

prototypes from collections of images.    We have

discovered the problem of textures "locking" when

using a straightforward application of the original

algorithm to multiple images, and have solved it by

increasing the Parzen window width as a function of

spatial scale.  In addition we have shown that the

Gaussian approximation to the LCPDF (i.e. the

weighted average approach) achieves results

comparable to the full non-parametric MRF method.

The results show that the adapted MRF texture

method works for blending multiple images and has

produced highly realistic and plausibly "average"

images.  Our next task is to validate both the realism

and the prototypicality of the new prototypes using

perceptual experiments.  We will also attempt to

adapt our existing transformation methods, for

example prototype-based facial ageing

[Row98][Tid01], to use the new texture model.
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Figure 4. Multi texture-blending examples. Top:

an example of the one of the input images from the

set, all of the images contained the same texure in

each corner shifted by a random amount. Centre

left: Blending of the 17 images without texture

processing. Centre right: Blending of the images

using the wavelet-based method of [1]. Bottom

left: Blending using the full MRF method.  Bottom

right: Blending using the weighted average

approach.

Figure 5. Effect of varying the width, h, of the

Parzen window. Left: h= 0.25 h0, the image has

large areas that are just direct copies of

individual's in the sample.  Centre: h= 2.5 h0, the

image has burred textures, but an overall

appearance closer to the expected mean. Right: h=

(0.25 + 0.5 l)h0 varying h with image pyramid

level, l, produces a good mixture of global

appearance and appropriate textures.



Figure 6. Prototype male and female face examples of two age groups. First column - untextured blends.

Second column - wavelet processed blends. Third column - full MRF textured blends. Fourth column -

weighted average approximate MRF method.
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