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ABSTRACT

Due to differing optics, sensor characteristics, and hardware processing employed by video cameras, the resulting

colors produced by two cameras can be very different, thus complicating the task of computer vision applications.

While various color correction methods exist to deal with this problem, most involve strong assumptions, such as

constant illumination, that are, in general, unsatisfied in complex environments. To address the problem of color

correction in a less restrictive manner, we propose the use of neural networks, which can easily be trained and

which produce excellent results. We compare these results with other methods.
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1 INTRODUCTION

Color provides useful information for many vision ap-

plications. However, the video acquisition process is

dependent on a number of factors including illumina-

tion, optics, sensor characteristics, and hardware pro-

cessing. As a result, different cameras typically pro-

duce different color values for the same objects or

scenes, as illustrated in Fig. 1. These differences com-

plicate the task of computer vision applications involv-

ing the use of more than one camera. An approach is

thus required to correct the images so that colors of

the same object appear to be similar in the output from

each camera.

This correction typically takes one of two forms. In

the first, the mapping is found between the true color
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values (which may be unavailable in many cases) and

the observed colors for each camera, while in the sec-

ond, the transform between each camera and one refer-

ence camera is found. The latter approach is generally

simpler, as it is determined solely by the camera pa-

rameters and the mapping can be characterized by a

relatively small number of data samples. In this pa-

per, we will focus more on the second case, that is, we

concern about improving the color consistency among

cameras. We assume, in either case, that the cam-

eras focus on approximately the same portion of the

scene, and thus receiving very similar visual informa-

tion. However, we do not wish to impose additional

constraints, such as an assumption of uniform illumi-

nation or matte objects.

A closely related but different problem is that of color

constancy [Bar02a, Bar02b], in which a relationship

is sought between surface colors and illumination, in

order to map the observed color to the correct one

under some canonical illumination [For90]. Com-

mon solutions include the gray world approach, which

assumes that the average color in an image is gray,

the white patch approach, derived from retinex the-

ory [Lan77], which assumes that the maximum value

of each channel is white, and neural network meth-

ods [Car00], which estimate the illuminant chromatic-

ity of an image using a neural network, which usu-
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Figure 1: images captured by three different cameras.

ally needs a large database of illuminants and re-

flectances(surfaces) for training. They also assume

each image is taken under one uniform illuminant

which is not valid in our environment. [Fin95] con-

siders varying illumination, but it assumes a difference

in illumination can be identified. Other approaches in-

volving gamut mapping methods [For90, Fin96] and

Bayesian methods [Bra97] require either large datasets

of reflectance spectra from a wide variety of common

objects or knowledge of the camera sensor responses,

both of which are generally difficult to obtain. Some

other related works on color calibration and color re-

production can be found in [Jac97, Kan92, Vrh99,

Tom99]. In this paper, we focus on finding the re-

lationship between cameras, that is, we try to make

color appear consistent between them. Thus, we do

not need to estimate the chromaticity of the actual il-

luminant, nor do we require a large training set as the

problem can be addressed sufficiently with relatively

sparse data and a simple method.

For our specific application, we are interested in color

correction for an immersive environment employing

digital rear projection (see Fig. 4), in which the out-

put of several, possibly heterogeneous cameras, must

be correlated. In such an environment, the color of

any pixel as registered by each camera is affected

by many factors, including non-uniform background

lighting conditions, projector color gamut, uneven in-

tensity distribution over the screen, and differing cam-

era poses and sensitivities. As a result, the appearance

of colors obtained by the cameras can vary widely, as

pictured in Fig. 1. While an inter-projector calibration

that produces a uniform color response across projec-

tors would help reduce these effects, the problem of

different camera responses to these pixels remains. It

is this problem on which we focus here, leaving for

future work the question of projector calibration.

Following an overview of other color constancy meth-

ods, we investigate several options for dealing with

the color correction problem. We first examine linear

methods in Section 2 and then compare these with our

proposed approach of a neural network in Section 3,

concluding the paper with a summary of experimental

results in Section 4.

2 LINEAR COLOR CORRECTION

METHODS

In this section, several methods based on linear mod-

els are discussed. The RGB color space is used in

the paper because it is the most popular space used

in sensor and display devices. Most methods in the

paper should be applicable to other color spaces, but

a comparison of different color spaces is beyond the

scope of the current paper. The color transfer method

in section 2.4 converts the RGB space to an lαβ space

first, then works on that space, and converts back to

RGB at the final step. The least squares approxima-

tion method (section 2.3) requires the estimation of a

transform matrix, which is similar in approach to the

training of a neural network, as described in section

3. However, the remaining methods are based only on

single camera models, and as such, do not undergo any

training or estimation step.

2.1 Gray world (GW)

The gray world approach assumes the average color

of an image is some predefined value of “gray,” for

example, half the value of the maximum intensity for

each color component, i.e., (128,128,128). Based on

this assumption, image colors are corrected through

the following normalization:

Rn = Ro ∗ 128/R̄

Gn = Go ∗ 128/Ḡ

Bn = Bo ∗ 128/B̄ (1)

where, (Ro, Go, Bo) is the original color, (R̄, Ḡ, B̄) is

the average color, and (Rn, Gn, Bn) is the corrected

color. One might also consider the use of the average

color components (R̄, Ḡ, B̄) from an arbitrary refer-



ence camera, and use these, rather than the fixed value

(e.g. 128) as the normalizing term. However, this may

suffer problems if the reference camera’s color distri-

bution is not well balanced.

2.2 White patch (WP)

The white patch approach is similar to the gray world

method but assumes that the maximum value of each

channel should correspond to full white, i.e. (255, 255,

255). Image colors are corrected through the following

normalization:

Rn = Ro ∗ 255/Rm

Gn = Go ∗ 255/Gm

Bn = Bo ∗ 255/Bm (2)

where, (Ro, Go, Bo) is the original color,

(Rn, Gn, Bn) is the corrected color, and Rm,

Gm, and Bm are the maximum observed color

components in the three channels, respectively.

Again, we may consider using one camera as a refer-

ence, with the same caveats as earlier.

2.3 Least squares (LS) approximation

The gray world and white patch approaches use di-

agonal matrix transforms, assuming that the different

channels are independent. While various research sug-

gests that diagonal transforms should suffice [Fin93],

or suffice with sensor sharpening [Fin94], this is not

the case in general with complex scenes. Worse

still, sensor sharpening techniques may be unstable

[Bar01].

Instead, we consider the use of a full matrix transform,

i.e.,

(C′

1
,C′

2
, . . . ,C′

n
) = T · (C1,C2, . . . ,Cn) (3)

in which C
′

i
and Ci (i = 1, . . . , n) are colors from

two different cameras and T is the transformation ma-

trix between them. From a set of corresponding colors

from two cameras, T can be estimated by least squares

approximation methods. Here, we use the color from

the first row of Fig. 2 to estimate T. The image from

Fig. 2c) is taken as the standard color or reference,

from which we estimate transforms between it and the

images produced by the other two cameras. These

transforms are then used to correct the colors.

2.4 Color transfer between images

Reinhard et al. [Rei01] proposed a color transfer

method that can be applied to color correction. It first

decorrelates the RGB values to an lαβ color space

and then computes the statistics (mean and standard

deviation) of source and target images. The source col-

ors are corrected by scaling and offsetting according to

the mean and standard deviation of the target image, as

follows:

l′s = (ls − ls) ∗
σl

t

σl
s

+ lt

α′

s = (αs − αs) ∗
σα

t

σα
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+ βt (4)

Where, c̄i, σ
c
i , c = l, α, β is the mean and standard de-

viation of an image for each channel, respectively, and

i = s, t refers to the source and target, respectively.

Following this transform, the image is converted back

to RGB space. The conversions between lαβ and

RGB spaces can be found in [Rei01].

We also consider the use of color transfer, followed by

the gray world method, in order to normalize the re-

sults of the transfer. The results of this combination,

as illustrated later in Fig 5 and Fig 6 appear to be su-

perior than the color transfer itself.

3 NEURAL NETWORK COLOR COR-

RECTION

The previous methods are all based on linear models1,

which, for complex scenes, sometimes prove inade-

quate to correct colors from different cameras. While

it is often difficult to find a suitable, explicit, nonlinear

representation neural network methods [Car00] have

been shown capable of performing similar tasks, such

as estimating the illumination of an image, given a

large database of known illuminations and surface col-

ors.

3.1 Neural Network Architecture

The network architecture used was a simple two layer

backpropagation network (BPNN) with 10 hidden

layer neurons, as shown in Fig. 3. The inputs are the

source RGB values, and the outputs are the corrected

RGB values. The network tries to minimize errors

between the estimated colors and the true colors. The

general theory about BPNN training can be found in

many neural network books, e.g., [Hay99]. Since we

need only find the relation between colors from dif-

ferent cameras, assuming the same lighting is applied

to the views of each camera, a simpler training set

proves to be sufficient. The training data consists of

216 color checkers, uniformly distributed in the RGB

1Color transfer is linear in lαβ space.
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Figure 2: 1st row: training data; 2nd row: validation data.

Figure 3: the BPNN architecture

space while the validation data is provided by the Mac-

beth 24-color checkers,2 as shown in Fig. 2, . The sam-

ples are collected manually by clipping a rectangle in

each color square and then computing its mean value.

The values obtained from one of the cameras (Fig. 2c)

are taken as the reference and the color values from the

remaining cameras are corrected accordingly.

2The industry-standard color checking chart.

3.2 Empirical Results

To evaluate the performance of these methods empir-

ically, we measure the error both as absolute differ-

ences of the individual color components, δr, δg , and

δb, as well as the Euclidean distance between the com-

ponents of the true object color, xt, and the estimated

color, xe, as follows:

Err =

√

(rt − re)2 + (gt − ge)2 + (bt − be)2

255
∗100%

(5)

where 255 is the maximal value for each color compo-

nent.

The error statistics for a corrected camera correspond-

ing to the image of Fig. 1a are provided in Table 1.

Since both corrected camera images exhibited similar

results, we only list one of these here. For compari-

son purposes, we include the results obtained by the

other methods described in section 2. Since the least

squares approximation method involves the estimation

of a transform matrix based on observed data, this is

similar in approach to the training session of the neu-

ral network, so it is also meaningful to compare per-

formance on independent test data. However, the other

methods do not include such training steps, so no com-

parison with test data is relevant.

The results obtained demonstrate, both quantitatively

and qualitatively, the superiority of the backpropaga-

tion neural network. Complex images, such as those

shown in Fig. 5, exhibit significantly better correction

by the BPNN method than with the other approaches.



training set validation set

average error standard deviation average error standard deviation

GW 6.53
(4.43,2.05,3.31)

3.26
(3.17,1.62,2.39) - -

WP 8.89
(6.25,3.16,3.86)

4.65
(4.61,2.30,3.17) - -

COL TRANS 7.33
(4.84,2.62,3.67)

3.39
(3.65,2.28,2.67) - -

COL TRANS+GW 6.14
(3.39,2.43,3.03)

3.30
(3.82,1.72,2.92) - -

LS 7.22
(5.02,1.87,3.76)

3.58
(3.35,1.65,2.87)

15.75
(12.13,5.37,6.43)

5.53
(5.46,3.81,4.28)

BPNN 3.69
(1.89,1.38,2.25)

2.15
(1.63,1.11,1.95)

14.03
(9.94,6.50,5.89)

7.02
(5.30,4.62,4.68)

Table 1: Error statistics for color correction applied to one of the cameras. The top row of each cell corresponds to

the Euclidean error metric, whereas the bottom row corresponds to the individual component differences, δr, δg, δb.

Figure 4: Illustration of the rear projection environ-

ment used for our application.

3.3 Digital Projection Results

We applied the various color correction methods de-

scribed previously to a set of sample images taken by

video cameras in our environment. The results are

shown in Fig. 5 and Fig. 6. Since some of the sim-

ple methods are based on strong assumptions such as

constant illumination, which are not satisfied in our

environment, these often fail to perform adequately.

Again, the neural network method outperforms other

strategies. This is particularly evident in Fig. 6, in

which the presence of a person standing in the scene

changes the illumination level from that used during

training. In this example, all of the methods apart

from the neural network approach exhibit noticeable

degradation. While the transform matrix, T , used for

the least squares and the neural network methods were

estimated or trained using the data of Fig. 2, i.e. inde-

pendent of both test scenarios, only the neural network

method proved to be robust to the change in illumina-

tion.

4 CONCLUSIONS

We have considered the problem of color correction

for a set of heterogeneous cameras in a general en-

vironment, in which constant illumination cannot be

assumed. Various methods, based on solutions to the

color constancy problem, were applied to this task and

their results compared. We found that under non-

idealized conditions, our proposed use of a simple

backpropagation neural network achieves results that

are superior to other methods for correcting images

from different cameras to produce results that appear

similar to each other in color. The neural network

method allows for simple training and proves to be ro-

bust to significant scene variations.

Although we have only evaluated these approaches

within our rear projection environment described pre-

viously, we see no reason why the neural network ap-

proach would not succeed equally well in other envi-

ronments or on natural scenes, provided suitable train-

ing data, such as the Munsell color checkers, can be

used.

An interesting avenue for ongoing research that are

now considering is how to extend these results to the

far more challenging problem of color correction for

heterogeneous projection equipment and cameras that

are no longer viewing the same portion of the scene.
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