
Efficient trimmed NURBS tessellation

Ákos Balázs

edhellon@cs.uni-bonn.de

Michael Guthe
University of Bonn

Institute of Computer Science II
Römerstraße 164

D-53117 Bonn, Germany

guthe@cs.uni-bonn.de

Reinhard Klein

rk@cs.uni-bonn.de

ABSTRACT

Interactive rendering of trimmed NURBS models is of great importance for CAD systems. For this the model
needs to be transformed into a polygonal representation. This transformation can be either performed in a
preprocessing step, at the cost of losing the capability to edit the surfaces, or on the fly during rendering. Since
the number of frames per second is usually critical, efficient on the fly tessellation of trimmed NURBS surfaces
is very important for interactive rendering and editing of such models.

In this paper we present an efficient – with respect to both runtime and to the number of generated triangles –
tessellation algorithm for trimmed NURBS surfaces that is capable of guaranteeing a specified geometric
approximation error. When affordable by the subsequent steps in the pipeline, an approximate error of the
tessellation can also be used leading to fewer triangles.

Keywords
Trimmed NURBS rendering, trimmed NURBS real-time tessellation

1. INTRODUCTION
In industry the design of models for prototyping and
production is performed with CAD systems that are
usually based on trimmed NURBS surfaces. They
have the advantage to describe almost every shape
conveniently. Since even today’s advanced graphics
hardware is unable to directly render trimmed
NURBS models, they need to be transformed into a
renderable (e.g. polygonal) representation. This
process is usually referred to as “tessellation.” Since
complex models may consist of several thousand
trimmed NURBS patches a fast, but nevertheless
triangle sparing tessellation algorithm is required.

Main Contribution
The main contribution of this paper is an efficient
trimmed NURBS tessellation algorithm that is
suitable for interactive editing and rendering, and it
usually produces much fewer triangles than previous
methods. Furthermore, our algorithm is able to either

guarantee a specified approximation error which is
required e.g. when the patches are stitched together
for rendering and/or further processing, or to
generate a mesh with approximately the specified
error for rendering only that consists of even less
triangles.

2. PREVIOUS WORK
The rendering of trimmed NURBS surfaces has
received a lot of attention from researchers over the
last decade due to its industrial relevance. Different
approaches emerged for visualization, e.g. ray-
tracing the surfaces (e.g. [Nis90]), pixel level
subdivision (e.g. [Sha88]) or polygon tessellation
(e.g. [For90, Kle95]), of which the triangle based
methods are generally much faster due to recent
advances in graphics hardware. E.g. Baxter et al.
[Bax02] developed a parallelized system for
interactive walkthroughs of huge triangulated models
(e.g. generated from trimmed NURBS models), but it
requires a multiprocessor system and massive
amounts of memory for storing the static hierarchical
levels of detail. Additionally they have developed
out-of-core techniques [Ali99] to handle complex
models on a cluster of standard PCs.

Another approach for rendering trimmed NURBS
models is tessellating the patches during runtime.
These methods can be divided into two categories:
adaptive uniform and fully adaptive subdivision.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

For the uniform subdivision [Rok89, Sán03], the
surface is tessellated using a regular grid in
parameter space. The fully adaptive subdivision was
first used by Forsey et al. [For90]. Kumar et al.
[Kum97] introduced the notion of super-surfaces to
close cracks between adaptively tessellated patches.
A drawback of this method is that a priori
connectivity information is required. This
information is generated by clustering sets of
trimmed NURBS patches into so-called super-
surfaces that need to be sewn at run-time. The
stitching was improved by Guthe et al. [Gut02]
introducing the Seam-Graph data structure. Recently
Balázs et al. [Bal03] developed a method to use
programmable graphics hardware to fill cracks
between adjacent patches and therefore supporting
the visualization of animated NURBS models. All
these methods have in common, that they require
knowledge of the exact approximation error along
the trimming curves. An approximation error over
the surface is not required for these algorithms to
work, but it may be required in a subsequent step of
the pipeline. Therefore, our algorithm is able to
guarantee a specific approximation error for both
trimming and surface or to use an approximate error
for the surface.

Independently of the actual algorithm used for
tessellation, the surface itself has to be evaluated at
the vertices of the generated mesh. A complete
survey on different NURBS surface evaluation
methods can be found in [Sán03]. Since the
conclusion of this survey is that direct evaluation is
the fastest of all methods we chose this approach.

3. ALGORITHM OVERVIEW
The overall algorithm to tessellate a NURBS surface
works as follows:

• Convert trimming curves into sequences of 3d
Bézier curves (section 4).

• Approximate 3d trimming loops (section 5.1)

• Approximate surface (section 5.2)

• Cut surface approximation with approximated
trimming curves (section 6)

• Triangulate resulting polygons (section 7)

• Evaluate surface at generated mesh vertices
(section 8)

4. CONVERSION OF TRIMMING
In order to be able to guarantee an error in Euclidean
space we have to measure the Hausdorff distance
[Kle96] between the 3d trimming curve and the
current approximation. To provide a tighter upper
bound for the approximation error of the trimming
curve by line segments than Kahlesz et al. [Kah02]

we elevate the trimming curves into Euclidian space.
We achieve this by first converting the trimming
curves into their Bézier form which is then degree
reduced by the following algorithm from [Far96]:

• Calculate new control points with:

()0 0

1 1

1

1

1 1

2 0
1

i i

i

n n

i i

i

P P

nP n i P
P ; i , ,n

i

P P

nP iP
P ; i n , ,

n

+ +

−
−

=
− −= = −

=
−= = −−

H
H

H
…

G
GG

…

• If i iP P≈H G
 for all 0 i n≤ ≤ then the curve was

losslessly degree reducible and the process is
repeated with the new control points ()1i i i i iP P Pλ λ= + −H G� with 0iλ = for 2

ni < ,
1
2iλ = for 2

ni = and 1iλ = for 2
ni > .

Since the blossom [Far96] of a Bézier curve results
in a 3d Bézier curve only if it lies completely on a
Bézier tensor product surface, the Bézier trimming
loops are cut at the spans of the NURBS surface in
order to restrict them to one Bézier surface patch.
The degree of a 3d Bézier curve which is constructed
by elevating a 2d Bézier curve of degree 2dd by a

NURBS patch can be at most ()3 2d d u vd d d d= + ,

where ud and vd are the degrees of the surface in

the u and v -direction. Since a Bézier curve of
degree n can be represented as three polynomes of
degree n, it is defined uniquely by 1n + arbitrary
points on the curve. For numerical stability we
therefore construct it by evaluating 3 1dd + equally

distributed parameter values (3

3 3 3

11 20 1d

d d d

d

d d d
, , , , ,

−…) on

the trimming curve and then calculating the 3d
Bézier curve defined by these points. This leads to a
linear system of equations with a nonsingular matrix
[Pie97]:

() ()
() ()

()
()

0 0 0
0 0

0

nn n n

n n n
n nn n n

B B P C

B B P C

         =            

"
% # #

"
,

where iB are the basis functions, iP the unknown

control points of the 3d Bézier curve, and ()C i are

the evaluated points of the curve sampled at the
regularly distributed parameter values. In order to
have numerical stability we use singular value
decomposition [Pre92]. Since the complexity of the
SVD for an n n× matrix is 2()O n log n , a maximum

degree (e.g. 20) can be used.

Finally the resulting 3d Bézier curve is degree
reduced using the above described algorithm and
stored along with its corresponding (cut) 2d trimming
curve. To guarantee lossless degree reduction we
only allow a very small epsilon when checking the

control points of the reduced curve with i iP P≈H G
 for

all 0 i n≤ ≤ . Note, that the generated 3d Bézier
curves exactly match the original trimming curves
– except for numerical inaccuracy – and are not an
approximation.

5. APPROXIMATION
As we calculated the 3d trimming curves (see section
4) this allows the independent approximation of the
trimming curves and the untrimmed surface. This
dual approximation technique reduces the total
number of triangles generated for a given error
bound.

Trimming Loops
Since each trimming curve segment is restricted to
one surface span, subsequent curve segments (or
curves) may be collinear in Euclidean space. In order
to avoid redundant vertices we apply a standard line
simplification algorithm – guaranteeing a given
Hausdorff distance between the original and the
simplified line segments – to each approximated
trimming loop. Since this introduces an additional
error, we approximate the trimming curves with
fixed portion (γ) of the desired error and then

simplify each complete trimming loop with (1)γ− of

the error as maximum Hausdorff distance. A good
tradeoff between runtime and number of edges is

3
4γ = , which we used for our tests.

For the approximation we use the convex hull
property of the 3d Bézier curve which leads to the
following error bound:

() ()()
()()

1
1 0 02

0 0

2

0

1
1

2

0 1

n

line i i nn

i n

n

max P P P P

P P P P
max ,min ,

P P

ε λ

λ

−=−
 ≤ − − − −  

  − −  =   −  

If an approximation by a line is not sufficient we can
either use the control point jP that has the largest

distance to the linear approximation and subdivide at
i

subdiv n
t = or apply a midpoint subdivision.

Theoretically using arbitrary subdivision should
reduce the number of points required to approximate
the trimming curve (see Fig.1), but as it turned out
during our tests (see Section 9), the midpoint
subdivision produces slightly less trimming edges.

This is due to the fact that subdivision at control
points only is not fine grained enough.

Although in theory trimming curves should never
intersect, in practice due to modeling or other errors
they often do. To handle such models we must add a
correction step for the trimming loops. The algorithm
works similarly to the line sweep algorithm [Ben79].
At each intersection an intermediate point is inserted
and then intersection free trimming loops are built.

NURBS Surfaces
Traditional runtime tessellation algorithms either use
a grid or a quadtree to subdivide the surface for
approximation. Since even the quadtree is not
completely adaptive, we have developed a new
approximation algorithm based on kd-tree
subdivision.

The approximation error for the current subdivision
can be calculated using the distance between the
control points and the bilinear surface approximation.
Since the two triangles that would be generated for
this tree node cannot resemble a bilinear quad patch
an additional approximation error needs to be taken
into account which leads to the following estimated
error [Kah02]:

 1
00 0 04 , withconservative bilin m n mnP P P Pε ε≤ + − − +

 ()
0 0

 where
i m, j n

ji
bilin ij m n

i , j
max P S , ,ε ≤ ≤
= =≤ − �

() () ()()

()()00 0

0

1 1

 1

n

m mn

S a,b b a P aP

b a P aP

= − − + +
− +

�

Since this error measure is still a (sometimes
significant) overestimation, an approximate error
measure can also be used if the approximation inside
a patch has not to be guaranteed. In order to calculate
this approximate error we still use the above
equations, but replace the control point ijP with ()i j
S ,α β , where iα and jβ are the parameter

values corresponding to the control point ijP .

Figure 1. Curve approximation with midpoint

(top) and arbitrary (bottom) subdivision.

If the estimated approximation error exceeds the
desired error for the NURBS surface the tree node
needs to be subdivided. If a quadtree is used, the
node is split at the midpoint in the parameter domain.
On surfaces with high curvature in one direction of
the parameter domain and low curvature in the other
direction (e.g. a cylindrical surface) this leads to an
unnecessary high subdivision in the low curvature
direction. As shown in Fig.2, using a binary
subdivision solves this problem, but it still suffers
from the problem that unnecessary subdivisions are
applied if the curvature of the surface is highly
variant.

This can be solved by using arbitrary subdivision of
the surface. Since a NURBS surface can only be
subdivided either in the u or in the v direction, this
leads to a kd-tree subdivision. We subdivide at ()k l

m n
, for which the following holds:

() () ()
0 0

where
i m, j n

jk l k l i
ijm n m n m n

i , j
S , S , max P S , ,

≤ ≤
= =− = −� �

 0 , 0k m l n≤ ≤ ≤ ≤ and S� is the bilinear
approximation of S. For the direction of the
subdivision we choose the one for which the line
subdividing the kd-tree node is closer to ()k l

m n
S ,

(see Fig.3).

Since we already have the appropriate approximation
for the trimming loops of the surface, we can reduce
the number of unnecessary subdivisions by
restricting the parameter domain to the bounding box
of the trimming loop approximation in parameter
space.

6. TRIMMING
To perform the actual trimming we use an extended
version of the trimming algorithm developed by
Kahlesz et al. [Kah02].

By inserting the approximation of trimming curves
into the mesh as (directed) half-edges (the orientation
is the same as the direction of the trimming curve)
and replacing all faces from the mesh with
appropriate new faces we essentially create a directed
graph of half-edges. This graph spans the whole
parameter space of the surface, and has directed
edges exactly where the trimming curves are in the
parameter space.

The trimming is performed by traveling along the
half-edges. The pseudo-code of the traversal is:

findDirectedEdge()
while there are directed edges left
 while we have a valid edge
 store start node
 handleEdge()

 getNextEdge()

 if we are back at the start node
 handleEdge()

 triangulate()

 getOutGoingEdge()

 findDirectedEdge()

The functions used in the pseudo code are the
following:

• findDirectedEdge() Find an arbitrary directed
edge in the graph.

• handleEdge() If this edge was directed, delete it
from the graph. Otherwise, make it a directed
edge, with the orientation being the opposite of
the one in which we traversed this edge.

• triangulate() Given a sequence of nodes defining
a polygon, triangulate it. (See Section 7.)

• getNextEdge() Given a node and an edge, find
the leftmost edge which is not equal to the given
edge.

• getOutGoingEdge() Given a node, find the
outgoing edge: that is, an edge which is directed
and is pointing out of this node. Note that the
construction of the graph guarantees that there
can be at most one such edge.

Whenever the graph traversal algorithm finds a
closed polygon, we have to triangulate it. Note that
the polygon may not be convex if a trimming curve
is part of it.

This algorithm has the problem that it cannot handle
holes inside a mesh face. Therefore, each clockwise
trimming loop is checked if it is contained
completely inside a face. If this is the case two
additional half-edge pairs are inserted to connect the

Figure 2. Quadtree and binary subdivision on a

cylindrical surface.

Figure 3. Finding the subdivision direction and

parameter for the kd-tree.

worst point

approximations

upper left and lower right vertices of the face to their
nearest vertex of the trimming loop.

7. TRIANGULATION
As the constrained triangulation of point clouds is a
non-trivial problem, practically all NURBS
tessellation algorithms generate the final
triangulation in the parameter domain of the surface.
This is reasonable as long as the surface does not
deform the polygon too much, which using our
algorithm cannot happen due to the error control.

Since polygons created from kd-tree or octree cells
are always convex (they are essentially rectangles
with additional points inserted along the edges), we
are able to use a simple linear time triangulation
algorithm:

• Find the upper left vertex of the polygon and
build a triangle with the left and right
neighboring vertices.

• Iteratively take the current edge and build a
triangle with the upper left of the two adjacent
vertices.

Since polygons containing trimming curves may be
non-convex, we must check if this condition holds.
Since a polygon is non-convex if at least one angle is
greater than 180 degrees, we can perform a simple
check that has the complexity of ()O n . If the

polygon is convex the above algorithm can be
applied. If this is not the case, we use the ()O nlog n

algorithm developed by Garey et al. [Gar78] to
triangulate the polygon.

To decide if a polygon contains a part of the
trimming curve, we mark all trimming half-edges in
the directed edge graph during construction and
during triangulation we just have to check if the
current polygon contains at least one marked edge
and thus may be non-convex.

8. EVALUATION
As shown by Sánchez [Sán03] direct evaluation of
the NURBS surface is faster than any other
evaluation method.

() () ()()
()

()
() 1 1u u v v

u v

span a d span b d

u ,i v , j i , j

i span a j span b

S a,b B a B b P

+ + + +

= =
= ∑ ∑ (1)

The direct evaluation algorithm can be further
improved by exploiting the coherence between mesh
vertices. If a vertex to be evaluated has the same u or
v coordinate as the previous, the corresponding basis
function does not have to be recalculated. If the v

coordinate does not change and the u coordinate lies
in the same span as for the previous vertex all inner
sums in (1) can be reused. All together this reduces

the complexity from ()2 2
u v

O d d+ to ()2
u u v

O d d d+ ⋅

if the v basis functions can be reused and to ()2
u

O d

if additionally the u span does not change and
therefore, the u sums can be reused. Since the
vertices are already lexicographically sorted in (v,u)
no additional overhead occurs. If u vd d> the surface

is reparameterized by substituting u v′ = and
v u′ = − . Note that this optimization also works for
regular grid tessellations with even better results
since v sums can be reused more often.

9. RESULTS
For testing the improvements we made to the
NURBS tessellation algorithm, we compare different
combinations of our optimizations with the quadtree
based algorithm. The computation times were
obtained using an Athlon 3000+ with 1 GB memory.

Table 1 gives an overview of the models used to
compare our optimisations with the standard methods
from literature. The tessellated models are shown in
Fig.4-6.

 Golf1 vent. con.2 Beetle1

#NURBS 8,036 4,419 31,040

εapprox. 0.2 mm 0.2 mm 0.2 mm

Table 1. Models used for testing.

Figure 4. Volkswagen Golf.

Figure 5. Mercedes ventilation-console.

1 Model provided by Volkswagen AG.
2 Ventilation console; Model provided by DaimlerChrysler

AG.

Figure 6. Volkswagen Beetle interior parts.

The different algorithms that can convert the NURBS
trimming curves into polylines are compared in
Table 2. The superiority of the 3d Bézier curves with
midpoint subdivision and line distance error measure
is clearly visible. Although the subsequent
simplification slightly increases the approximation
time, the number of generated edges is drastically

reduced and thus allows faster trimming and
rendering. In Table 2 po intε refers to the

approximation method used in [Kah02] for
approximating the 3d trimming curves, while

lineε refers to our new method, with the optional

simplification step added. The top line refers to the
original approximation method used in [Kah02]
which tries to approximate the trimming curves in
parameter space, while also taking into account the
distortion that comes from the elevation into
Euclidean space. Since this method sums up partial
errors the overestimation is usually large which
explains the huge number of generated edges.
Furthermore, the method is not invariant under
reparametrization of the curves which makes it
unstable in some cases.

 conversion approx. #edges

2d Bézier 1.2 sec 77.3 sec 824,791

3d Bézier curves, midpoint subdivision

ε point 23.9 sec 4.4 sec 178,475

ε line 23.9 sec 4.4 sec 170,484

ε line+simpl. 23.9 sec 5.9 sec 151,234

3d Bézier curves, arbitrary subdivision

ε point 23.9 sec 4.5 sec 181,280

ε line 23.9 sec 4.6 sec 172,925

ε line+simpl. 23.9 sec 6.2 sec 153,680

Table 2. Comparison of trimming curve

approximation algorithms (Golf model).

Table 3 gives a comparison between the different
surface approximation algorithms: conservativeε refers to

the guaranteed geometric approximation error, while

approx.ε refers to the approximate error. This table also

shows the superiority of our new kd-tree based

approach. Although the computation time for the
approximate error measure is slightly higher, this
method generates far less triangles and thus the
higher computation time is compensated in the
subsequent steps by a lower triangulation and
evaluation time.

 time time3 #triangles

quadtree

εconservative 183.6 sec 175.2 sec 1,511,056

εapprox. 191.7 sec 184.6 sec 1,008,457

kd-tree

εconservative 100.1 sec 96.9 sec 796,438

εapprox. 101.3 sec 97.3 sec 464,354

Table 3. Comparison of surface approximation

algorithms (Golf model).

Finally we compare our optimized algorithm to the
quadtree based technique from [Kah02] (Table 4).
All three models show both a significant speedup of
tessellation time and a great reduction in the number
of both generated triangles and boundary edges.

 Golf vent. con. Beetle

quadtree based algorithm [Kah02]

Time 348.3 sec 64.9 sec 547.3 sec

#triangles 2,058,739 562,949 3,153,954

#edges 824,791 562,434 2,888,198

our algorithm

Time 97.3 sec 11.6 sec 152.9 sec

#triangles 464,354 29,113 593,652

#edges 151,234 34,054 385,767

Table 4. Comparison of the quadtree method with

our new algorithm for different models.

The resulting tessellations with 0.2 mm accuracy for
the models using our algorithm are shown in Fig.7-9.
A tessellation generated by the quadtree based
algorithm is shown in Fig.10 for comparison.

Figure 7. Tessellation of the Golf car body.

3 Exploiting the coherence between mesh vertices during

evaluation.

Figure 8. Tessellation of the Beetle interior.

Figure 9. Tessellation of the ventilation-console.

Figure 10. Quadtree based tessellation of the

ventilation-console.

10. ACKNOWLEDGMENTS
This project was partially funded by the German
Ministry of Education and Research (BMBF) under
the project of OpenSG Plus.

We thank Volkswagen and DaimlerChrysler for
providing us with the trimmed NURBS models. We
would also like to thank Hector Sánchez for
providing us with a preprint of his yet unpublished
paper.

11. REFERENCES
[Ali99] Aliaga D. G., Cohen J., Wilson A., Baker E.,

Zhang H., Erikson C., Hoff K. E., Hudson T.,
Sturzlinger W., Bastos R., Whitton M.C., Brooks F. P.,
and Manocha D., MMR: an interactive
massive model rendering system using geometric and
image-based acceleration, Symposium on
Interactive 3D Graphics, pp. 199-206, 1999.

[Bal03] Balázs Á., Guthe M., and Klein R., Fat
Borders: Gap Filling for Efficient View-dependent
LOD Rendering, Technical report, No. CG-2003-2,
University of Bonn, 2003.

[Bax02] Baxter W. V., Sud A., Govindaraju N. K., and
Manocha D., Gigawalk: Interactive
walkthrough of complex environments, 2002.

[Ben79] Bentley J. L., and Ottmann T. A.,
Algorithms for reporting and counting geometric
intersections, IEEE Trans. Comput., C-28, pp. 643-
647, 1979.

[Far96] Farin G., Curves and Surfaces for Computer-Aided
Geometric Design, Academic Press, 1996.

[For90] Forsey D. R., and Klassen R. V., An adaptive
subdivision algorithm for crack prevention in the
display of parametric surfaces, Graphics Interface ’90,
pp. 1–8, 1990.

[Gar78] Garey M. R., Johnson D. S., Preparata F. P., and
Tarjan R. E., Triangulating a simple polygon, Inform.
Process. Lett., vol. 7, pp. 175-179, 1978.

[Gut02] Guthe M., Meseth J., and Klein R., Fast and
Memory Efficient View-Dependent Trimmed NURBS
Rendering, Proceedings of Pacific Graphics 2002, pp.
204-213, 2002.

[Kah02] Kahlesz F., Balázs Á., and Klein R., NURBS
rendering in OpenSG Plus, Proceedings of OpenSG
Symposium 2002, 2002.

[Kle95] Klein R., and Straßer W., Large Mesh
Generation from Boundary Models with
Parametric Face Representation, Proc. of ACM
SIGGRAPH Symposium on Solid Modeling, pp. 431-
440, 1995.

[Kle96] Klein R., Liebich G. and and Straßer W., Mesh
Reduction with Error Control, Proc. of IEEE
Visualization, pp.311-318, 1996.

[Kum97] Kumar S., Manocha D., Zhang H., and Hoff K.
E., Accelerated walkthrough of large spline models,
1997 Symposium on Interactive 3D Graphics, pp. 91–
102, 1997.

[Nis90] Nishita T., Sederberg T. W., and Kakimoto M.,
Ray tracing trimmed rational surface patches,
Computer Graphics (Proceedings of Siggraph 90), vol.
24, pp. 337-345, 1990.

[Pie97] Piegl L., and Tiller W., The NURBS Book,
Springer, 1997.

[Pre92] Press W., Teukolsky S., Vetterling W., and
Flannery B., Numerical recipes in C - The art of
scientific computation, 2nd Edition, Cambridge
University Press, 1992.

[Rok89] Rockwood A., Heaton K., and Davis T., Realtime
rendering of trimmed surfaces,
Computer Graphics(Proceedings of Siggraph ‘89), vol.
23(3), pp. 107-117, 1989.

[Sán03] Sánchez H., Moreno A., and García Alonso A.,
Evaluation of NURBS surfaces for uniform dynamic
tessellation, unpublished.

[Sha88] Shantz M., and Chang S.-L., Rendering trimmed
NURBS with adaptive forward
differencing, Computer Graphics (Proceedings of
SIGGRAPH ‘88), vol. 22, pp. 189-198, 1988.

