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ABSTRACT 

Interactive rendering of trimmed NURBS models is of great importance for CAD systems. For this the model 
needs to be transformed into a polygonal representation. This transformation can be either performed in a 
preprocessing step, at the cost of losing the capability to edit the surfaces, or on the fly during rendering. Since 
the number of frames per second is usually critical, efficient on the fly tessellation of trimmed NURBS surfaces 
is very important for interactive rendering and editing of such models. 

In this paper we present an efficient – with respect to both runtime and to the number of generated triangles – 
tessellation algorithm for trimmed NURBS surfaces that is capable of guaranteeing a specified geometric 
approximation error. When affordable by the subsequent steps in the pipeline, an approximate error of the 
tessellation can also be used leading to fewer triangles. 
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1. INTRODUCTION 
In industry the design of models for prototyping and 
production is performed with CAD systems that are 
usually based on trimmed NURBS surfaces. They 
have the advantage to describe almost every shape 
conveniently. Since even today’s advanced graphics 
hardware is unable to directly render trimmed 
NURBS models, they need to be transformed into a 
renderable (e.g. polygonal) representation. This 
process is usually referred to as “tessellation.” Since 
complex models may consist of several thousand 
trimmed NURBS patches a fast, but nevertheless 
triangle sparing tessellation algorithm is required. 

Main Contribution 
The main contribution of this paper is an efficient 
trimmed NURBS tessellation algorithm that is 
suitable for interactive editing and rendering, and it 
usually produces much fewer triangles than previous 
methods. Furthermore, our algorithm is able to either 

guarantee a specified approximation error which is 
required e.g. when the patches are stitched together 
for rendering and/or further processing, or to 
generate a mesh with approximately the specified 
error for rendering only that consists of even less 
triangles. 

2. PREVIOUS WORK 
The rendering of trimmed NURBS surfaces has 
received a lot of attention from researchers over the 
last decade due to its industrial relevance. Different 
approaches emerged for visualization, e.g. ray-
tracing the surfaces (e.g. [Nis90]), pixel level 
subdivision (e.g. [Sha88]) or polygon tessellation 
(e.g. [For90, Kle95]), of which the triangle based 
methods are generally much faster due to recent 
advances in graphics hardware. E.g. Baxter et al. 
[Bax02] developed a parallelized system for 
interactive walkthroughs of huge triangulated models 
(e.g. generated from trimmed NURBS models), but it 
requires a multiprocessor system and massive 
amounts of memory for storing the static hierarchical 
levels of detail. Additionally they have developed 
out-of-core techniques [Ali99] to handle complex 
models on a cluster of standard PCs. 

Another approach for rendering trimmed NURBS 
models is tessellating the patches during runtime.  
These methods can be divided into two categories: 
adaptive uniform and fully adaptive subdivision. 
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For the uniform subdivision [Rok89, Sán03], the 
surface is tessellated using a regular grid in 
parameter space. The fully adaptive subdivision was 
first used by Forsey et al. [For90]. Kumar et al. 
[Kum97] introduced the notion of super-surfaces to 
close cracks between adaptively tessellated patches. 
A drawback of this method is that a priori 
connectivity information is required. This 
information is generated by clustering sets of 
trimmed NURBS patches into so-called super-
surfaces that need to be sewn at run-time. The 
stitching was improved by Guthe et al. [Gut02] 
introducing the Seam-Graph data structure. Recently 
Balázs et al. [Bal03] developed a method to use 
programmable graphics hardware to fill cracks 
between adjacent patches and therefore supporting 
the visualization of animated NURBS models. All 
these methods have in common, that they require 
knowledge of the exact approximation error along 
the trimming curves. An approximation error over 
the surface is not required for these algorithms to 
work, but it may be required in a subsequent step of 
the pipeline. Therefore, our algorithm is able to 
guarantee a specific approximation error for both 
trimming and surface or to use an approximate error 
for the surface. 

Independently of the actual algorithm used for 
tessellation, the surface itself has to be evaluated at 
the vertices of the generated mesh. A complete 
survey on different NURBS surface evaluation 
methods can be found in [Sán03]. Since the 
conclusion of this survey is that direct evaluation is 
the fastest of all methods we chose this approach. 

3. ALGORITHM OVERVIEW 
The overall algorithm to tessellate a NURBS surface 
works as follows: 

• Convert trimming curves into sequences of 3d 
Bézier curves (section 4). 

• Approximate 3d trimming loops (section 5.1) 

• Approximate surface (section 5.2) 

• Cut surface approximation with approximated 
trimming curves (section 6) 

• Triangulate resulting polygons (section 7) 

• Evaluate surface at generated mesh vertices 
(section 8) 

4. CONVERSION OF TRIMMING 
In order to be able to guarantee an error in Euclidean 
space we have to measure the Hausdorff distance 
[Kle96] between the 3d trimming curve and the 
current approximation. To provide a tighter upper 
bound for the approximation error of the trimming 
curve by line segments than Kahlesz et al. [Kah02] 

we elevate the trimming curves into Euclidian space. 
We achieve this by first converting the trimming 
curves into their Bézier form which is then degree 
reduced by the following algorithm from [Far96]: 

• Calculate new control points with: 
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• If i iP P≈H G
 for all 0 i n≤ ≤  then the curve was 

losslessly degree reducible and the process is 
repeated with the new control points ( )1i i i i iP P Pλ λ= + −H G�  with 0iλ =  for 2

ni < , 
1
2iλ =  for 2

ni =  and 1iλ =  for 2
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Since the blossom [Far96] of a Bézier curve results 
in a 3d Bézier curve only if it lies completely on a 
Bézier tensor product surface, the Bézier trimming 
loops are cut at the spans of the NURBS surface in 
order to restrict them to one Bézier surface patch. 
The degree of a 3d Bézier curve which is constructed 
by elevating a 2d Bézier curve of degree 2dd  by a 

NURBS patch can be at most ( )3 2d d u vd d d d= + , 

where ud  and vd  are the degrees of the surface in 

the u  and v -direction. Since a Bézier curve of 
degree n can be represented as three polynomes of 
degree n, it is defined uniquely by 1n +  arbitrary 
points on the curve. For numerical stability we 
therefore construct it by evaluating 3 1dd +  equally 

distributed parameter values ( 3

3 3 3

11 20 1d

d d d

d

d d d
, , , , ,

−… ) on 

the trimming curve and then calculating the 3d 
Bézier curve defined by these points. This leads to a 
linear system of equations with a nonsingular matrix 
[Pie97]: 
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where iB are the basis functions, iP  the unknown 

control points of the 3d Bézier curve, and ( )C i  are 

the evaluated points of the curve sampled at the 
regularly distributed parameter values. In order to 
have numerical stability we use singular value 
decomposition [Pre92]. Since the complexity of the 
SVD for an n n×  matrix is 2( )O n log n , a maximum 

degree (e.g. 20) can be used. 



Finally the resulting 3d Bézier curve is degree 
reduced using the above described algorithm and 
stored along with its corresponding (cut) 2d trimming 
curve. To guarantee lossless degree reduction we 
only allow a very small epsilon when checking the 

control points of the reduced curve with i iP P≈H G
 for 

all 0 i n≤ ≤ . Note, that the generated 3d Bézier 
curves exactly match the original trimming curves  
– except for numerical inaccuracy – and are not an 
approximation. 

5. APPROXIMATION 
As we calculated the 3d trimming curves (see section 
4) this allows the independent approximation of the 
trimming curves and the untrimmed surface. This 
dual approximation technique reduces the total 
number of triangles generated for a given error 
bound. 

Trimming Loops 
Since each trimming curve segment is restricted to 
one surface span, subsequent curve segments (or 
curves) may be collinear in Euclidean space. In order 
to avoid redundant vertices we apply a standard line 
simplification algorithm – guaranteeing a given 
Hausdorff distance between the original and the 
simplified line segments – to each approximated 
trimming loop. Since this introduces an additional 
error, we approximate the trimming curves with 
fixed portion (γ ) of the desired error and then 

simplify each complete trimming loop with (1 )γ−  of 

the error as maximum Hausdorff distance. A good 
tradeoff between runtime and number of edges is 

3
4γ = , which we used for our tests. 

For the approximation we use the convex hull 
property of the 3d Bézier curve which leads to the 
following error bound: 
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If an approximation by a line is not sufficient we can 
either use the control point jP  that has the largest 

distance to the linear approximation and subdivide at 
i

subdiv n
t =  or apply a midpoint subdivision. 

Theoretically using arbitrary subdivision should 
reduce the number of points required to approximate 
the trimming curve (see Fig.1), but as it turned out 
during our tests (see Section 9), the midpoint 
subdivision produces slightly less trimming edges. 

This is due to the fact that subdivision at control 
points only is not fine grained enough. 

Although in theory trimming curves should never 
intersect, in practice due to modeling or other errors 
they often do. To handle such models we must add a 
correction step for the trimming loops. The algorithm 
works similarly to the line sweep algorithm [Ben79]. 
At each intersection an intermediate point is inserted 
and then intersection free trimming loops are built. 

NURBS Surfaces 
Traditional runtime tessellation algorithms either use 
a grid or a quadtree to subdivide the surface for 
approximation. Since even the quadtree is not 
completely adaptive, we have developed a new 
approximation algorithm based on kd-tree 
subdivision. 

The approximation error for the current subdivision 
can be calculated using the distance between the 
control points and the bilinear surface approximation. 
Since the two triangles that would be generated for 
this tree node cannot resemble a bilinear quad patch 
an additional approximation error needs to be taken 
into account which leads to the following estimated 
error [Kah02]: 
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Since this error measure is still a (sometimes 
significant) overestimation, an approximate error 
measure can also be used if the approximation inside 
a patch has not to be guaranteed. In order to calculate 
this approximate error we still use the above 
equations, but replace the control point ijP  with ( )i j
S ,α β , where iα  and jβ  are the parameter 

values corresponding to the control point ijP . 

Figure 1. Curve approximation with midpoint 

(top) and arbitrary (bottom) subdivision. 

 



If the estimated approximation error exceeds the 
desired error for the NURBS surface the tree node 
needs to be subdivided. If a quadtree is used, the 
node is split at the midpoint in the parameter domain. 
On surfaces with high curvature in one direction of 
the parameter domain and low curvature in the other 
direction (e.g. a cylindrical surface) this leads to an 
unnecessary high subdivision in the low curvature 
direction. As shown in Fig.2, using a binary 
subdivision solves this problem, but it still suffers 
from the problem that unnecessary subdivisions are 
applied if the curvature of the surface is highly 
variant. 

This can be solved by using arbitrary subdivision of 
the surface. Since a NURBS surface can only be 
subdivided either in the u or in the v direction, this 
leads to a kd-tree subdivision. We subdivide at ( )k l

m n
, for which the following holds: 

( ) ( ) ( )
0 0

where
i m, j n

jk l k l i
ijm n m n m n

i , j
S , S , max P S , ,
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= =− = −� �  

 0 , 0k m l n≤ ≤ ≤ ≤ and  S� is the bilinear 
approximation of S.  For the direction of the 
subdivision we choose the one for which the line 
subdividing the kd-tree node is closer to ( )k l

m n
S ,   

(see Fig.3). 

Since we already have the appropriate approximation 
for the trimming loops of the surface, we can reduce 
the number of unnecessary subdivisions by 
restricting the parameter domain to the bounding box 
of the trimming loop approximation in parameter 
space. 

6. TRIMMING 
To perform the actual trimming we use an extended 
version of the trimming algorithm developed by 
Kahlesz et al. [Kah02]. 

By inserting the approximation of trimming curves 
into the mesh as (directed) half-edges (the orientation 
is the same as the direction of the trimming curve) 
and replacing all faces from the mesh with 
appropriate new faces we essentially create a directed 
graph of half-edges. This graph spans the whole 
parameter space of the surface, and has directed 
edges exactly where the trimming curves are in the 
parameter space. 

The trimming is performed by traveling along the 
half-edges. The pseudo-code of the traversal is: 

findDirectedEdge() 
while there are directed edges left 
  while we have a valid edge 
    store start node 
    handleEdge() 

    getNextEdge() 

    if we are back at the start node 
      handleEdge() 

      triangulate() 

      getOutGoingEdge() 

  findDirectedEdge() 

The functions used in the pseudo code are the 
following: 

• findDirectedEdge() Find an arbitrary directed 
edge in the graph. 

• handleEdge() If this edge was directed, delete it 
from the graph. Otherwise, make it a directed 
edge, with the orientation being the opposite of 
the one in which we traversed this edge. 

• triangulate() Given a sequence of nodes defining 
a polygon, triangulate it. (See Section 7.) 

• getNextEdge() Given a node and an edge, find 
the leftmost edge which is not equal to the given 
edge. 

• getOutGoingEdge() Given a node, find the 
outgoing edge: that is, an edge which is directed 
and is pointing out of this node. Note that the 
construction of the graph guarantees that there 
can be at most one such edge. 

Whenever the graph traversal algorithm finds a 
closed polygon, we have to triangulate it. Note that 
the polygon may not be convex if a trimming curve 
is part of it. 

This algorithm has the problem that it cannot handle 
holes inside a mesh face. Therefore, each clockwise 
trimming loop is checked if it is contained 
completely inside a face. If this is the case two 
additional half-edge pairs are inserted to connect the 

Figure 2. Quadtree and binary subdivision on a 

cylindrical surface. 

Figure 3. Finding the subdivision direction and 

parameter for the kd-tree. 
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upper left and lower right vertices of the face to their 
nearest vertex of the trimming loop. 

7. TRIANGULATION 
As the constrained triangulation of point clouds is a  
non-trivial problem, practically all NURBS 
tessellation algorithms generate the final 
triangulation in the parameter domain of the surface. 
This is reasonable as long as the surface does not 
deform the polygon too much, which using our 
algorithm cannot happen due to the error control. 

Since polygons created from kd-tree or octree cells 
are always convex (they are essentially rectangles 
with additional points inserted along the edges), we 
are able to use a simple linear time triangulation 
algorithm: 

• Find the upper left vertex of the polygon and 
build a triangle with the left and right 
neighboring vertices. 

• Iteratively take the current edge and build a 
triangle with the upper left of the two adjacent 
vertices. 

Since polygons containing trimming curves may be 
non-convex, we must check if this condition holds. 
Since a polygon is non-convex if at least one angle is 
greater than 180 degrees, we can perform a simple 
check that has the complexity of ( )O n . If the 

polygon is convex the above algorithm can be 
applied. If this is not the case, we use the ( )O nlog n  

algorithm developed by Garey et al. [Gar78] to 
triangulate the polygon. 

To decide if a polygon contains a part of the 
trimming curve, we mark all trimming half-edges in 
the directed edge graph during construction and 
during triangulation we just have to check if the 
current polygon contains at least one marked edge 
and thus may be non-convex. 

8. EVALUATION 
As shown by Sánchez [Sán03] direct evaluation of 
the NURBS surface is faster than any other 
evaluation method. 
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The direct evaluation algorithm can be further 
improved by exploiting the coherence between mesh 
vertices. If a vertex to be evaluated has the same u or 
v coordinate as the previous, the corresponding basis 
function does not have to be recalculated. If the v 

coordinate does not change and the u coordinate lies 
in the same span as for the previous vertex all inner 
sums in (1) can be reused. All together this reduces 

the complexity from ( )2 2
u v

O d d+  to ( )2
u u v

O d d d+ ⋅  

if the v basis functions can be reused and to ( )2
u

O d  

if additionally the u span does not change and 
therefore, the u sums can be reused. Since the 
vertices are already lexicographically sorted in (v,u) 
no additional overhead occurs. If u vd d>  the surface 

is reparameterized by substituting u v′ =  and 
v u′ = − . Note that this optimization also works for 
regular grid tessellations with even better results 
since v sums can be reused more often. 

9. RESULTS 
For testing the improvements we made to the 
NURBS tessellation algorithm, we compare different 
combinations of our optimizations with the quadtree 
based algorithm. The computation times were 
obtained using an Athlon 3000+ with 1 GB memory. 

Table 1 gives an overview of the models used to 
compare our optimisations with the standard methods 
from literature. The tessellated models are shown in 
Fig.4-6. 

 Golf1  vent. con.2 Beetle1 

#NURBS 8,036 4,419 31,040

εapprox. 0.2 mm 0.2 mm 0.2 mm

Table 1. Models used for testing. 
 

 
Figure 4. Volkswagen Golf. 

 

Figure 5. Mercedes ventilation-console. 

                                                           
1  Model provided by Volkswagen AG. 
2  Ventilation console; Model provided by DaimlerChrysler 

AG. 



 

Figure 6. Volkswagen Beetle interior parts. 

The different algorithms that can convert the NURBS 
trimming curves into polylines are compared in 
Table 2. The superiority of the 3d Bézier curves with 
midpoint subdivision and line distance error measure 
is clearly visible. Although the subsequent 
simplification slightly increases the approximation 
time, the number of generated edges is drastically 

reduced and thus allows faster trimming and 
rendering. In Table 2 po intε  refers to the 

approximation method used in [Kah02] for 
approximating the 3d trimming curves, while 

lineε refers to our new method, with the optional 

simplification step added. The top line refers to the 
original approximation method used in [Kah02] 
which tries to approximate the trimming curves in 
parameter space, while also taking into account the 
distortion that comes from the elevation into 
Euclidean space. Since this method sums up partial 
errors the overestimation is usually large which 
explains the huge number of generated edges. 
Furthermore, the method is not invariant under 
reparametrization of  the curves which makes it 
unstable in some cases. 

 conversion approx. #edges 

2d Bézier 1.2 sec 77.3 sec 824,791

3d Bézier curves, midpoint subdivision 

ε point 23.9 sec 4.4 sec 178,475

ε line 23.9 sec 4.4 sec 170,484

ε line+simpl. 23.9 sec 5.9 sec 151,234

3d Bézier curves, arbitrary subdivision 

ε point 23.9 sec 4.5 sec 181,280

ε line 23.9 sec 4.6 sec 172,925

ε line+simpl. 23.9 sec 6.2 sec 153,680

Table 2. Comparison of trimming curve 

approximation algorithms (Golf model). 

Table 3 gives a comparison between the different 
surface approximation algorithms: conservativeε  refers to 

the guaranteed geometric approximation error, while 

approx.ε  refers to the approximate error. This table also 

shows the superiority of our new kd-tree based 

approach. Although the computation time for the 
approximate error measure is slightly higher, this 
method generates far less triangles and thus the 
higher computation time is compensated in the 
subsequent steps by a lower triangulation and 
evaluation time. 

 time time3 #triangles 

quadtree 

εconservative 183.6 sec 175.2 sec 1,511,056

εapprox. 191.7 sec 184.6 sec 1,008,457

kd-tree 

εconservative 100.1 sec 96.9 sec 796,438

εapprox. 101.3 sec 97.3 sec 464,354

Table 3. Comparison of surface approximation 

algorithms (Golf model). 

Finally we compare our optimized algorithm to the 
quadtree based technique from [Kah02] (Table 4). 
All three models show both a significant speedup of 
tessellation time and a great reduction in the number 
of both generated triangles and boundary edges. 

 Golf  vent. con. Beetle 

quadtree based algorithm [Kah02] 

Time 348.3 sec 64.9 sec 547.3 sec

#triangles 2,058,739 562,949 3,153,954

#edges 824,791 562,434 2,888,198

our algorithm 

Time 97.3 sec 11.6 sec 152.9 sec

#triangles 464,354 29,113 593,652

#edges 151,234 34,054 385,767

Table 4. Comparison of the quadtree method with 

our new algorithm for different models. 

The resulting tessellations with 0.2 mm accuracy for 
the models using our algorithm are shown in Fig.7-9. 
A tessellation generated by the quadtree based 
algorithm is shown in Fig.10 for comparison. 

 
Figure 7. Tessellation of the Golf car body. 

                                                           
3 Exploiting the coherence between mesh vertices during 

evaluation. 



  

Figure 8. Tessellation of the Beetle interior. 

 
Figure 9. Tessellation of the ventilation-console. 

 
Figure 10. Quadtree based tessellation of the 

ventilation-console. 
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