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Abstract

The work focuses on light-weight sandwich structures made of carbon-epoxy skins and foam core which have

unique bending stiffness compared to conventional materials. The skins are manufactured by vacuum autoclave

technology from unidirectional prepregs and the sandwich is then glued together. The resulting material properties

of the structure usually differ from those provided by manufacturer or even those obtained from experimental tests

on separate materials, which makes computational models unreliable. Therefore, the properties are identified using

the combination of experimental analysis of the sandwich with attached piezoelectric transducer and corresponding

static and modal finite element analyses. Simple mathematical optimization with repetitive finite element solution

is used. The model is then verified by transient analysis when the piezoelectric patch is excited by harmonic signals

covering the first two eigen-frequencies and the induced oscillations are measured by laser sensor.
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1. Introduction

Light-weight structures are nowadays necessary components in modern state-of-the-art prod-

ucts in all sorts of industries. The increasing requirements on structural performance call for the

usage of embedded sensors and actuators, resulting in the construction of the so-called adaptive,

smart or even intelligent structures that can thus respond to loading conditions in real time [10].

This enables for instance to monitor the condition of the structure [5], suppress vibrations or to

adapt the desired shape [1, 8], provided that proper electronic control circuits are applied.

Sandwich structures are one of the most practical forms of composite light-weight struc-

tures. Their use has spread in many industrial branches, e.g. in building and transport industries,

but especially in aircraft industry and in shipbuilding. Their main advantage over the conven-

tional materials are the high ratio of the flexural stiffness to weight, reasonable price and service

life, or damping properties. Sandwich structures consist of a core of soft flexible material en-

closed in two outer skins. The skins carry the bending load, while the core transfers the shear

forces and thus increases the flexural stiffness by holding the outer coating layers together [4].

The finite element modeling of the piezoelectric materials began with the first implementa-

tion in 1970 [2]. Many models have then been developed to simulate the piezoelectric effect,

ranging from the simple ones using the similarity to the theory of thermo-elasticity to mod-

els [3], multi-purpose elements programmed for commercial software [11, 12], up to complex

models with full piezoelectric coupling incorporating layerwise approach for electric potential

across layers [7] or quadratic variation of electric potential across the layer thickness [6].
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The purpose of this work is to set up numerical model of hybrid sandwich and to use the

piezoelectric actuator to identify the structural properties using experiment and corresponding

simulation. This should be further extended for the application of monitoring the structural

health in the future.

2. Analogy between piezoelectricity and thermal expansion

Let us consider the theory of piezoelectricity which assumes symmetrical hexagonal piezo-

electric structure and only the laminar piezoelectric effect (also called d31 effect, both direct

and converse), i.e., the material is polarized in the thickness direction and the electric potential

varies linearly across the thickness [9].

The classical stress-strain law (Hooke’s law)

σ = C ε , (1)

σ being the stress vector, C stress-strain matrix and ε the strain vector, is extended in this case

by the piezoelectric coupling, hence

σ = C ε − eE

D = e
T
ε + εE ,

(2)

where e is the piezoelectric coupling matrix, E is the electric field vector, D is the vector of

electric flux density (electric displacement), and ε is the dielectric permittivity matrix.

In many applications, the electric potential can be considered known (the piezoelectric ma-

terial is in the actuator mode) and, therefore, the second equation in (2) does not need to be

solved for the electro-mechanical behavior. This allows to model the problem of piezoelec-

tricity using the analogy with thermal expansion [3]. This can prove very helpful if the used

software does not contain the piezoelectric features.

The stress-strain law with thermal expansion for one-dimensional problem can be written as

σ = E(ε − α∆T ) , (3)

where E is the Young’s modulus, α the coefficient of thermal expansion and ∆T the change in

temperature. The corresponding piezoelectric equation is

σ = Eε − e
U

d
(4)

with U being the voltage across electrodes and d the distance between the electrodes. The

analogy is obvious and it is possible to write directly the resemblance between

α ∼
e

E
and ∆T ∼

U

d
. (5)

3. Experiment

Experimental investigation of oscillations caused by harmonic excitations of hybrid sandwich

cantilever beam was carried out. The beam consists of foam core and composite skins and there

is a piezoelectric patch glued to its upper surface (see fig. 1). The foam is Rohacell 71, the

composite is made of Panex unidirectional carbon-epoxy prepregs with fibers running along the
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axial direction, the patch is DuraAct P876.A12 attached with HBM Z70 glue. The thickness

of the core is 5.6 mm, each skin is 0.7 mm thick and the beam’s length and width are 450 mm

and 50 mm, respectively. The dimensions of the patch are 61 × 35 × 0.5 mm but the size of the

active material (PIC155), enclosed in a protective foil, is only 50 × 30 × 0.2 mm (see fig. 2).

The beam was clamped at one end so that the gap between the fixture and the active piezo-

electric area was 10 mm, i.e., the free length of the beam was 400 mm. The piezoelectric patch

was loaded by sine signal from the generator connected to voltage multiplier with final ampli-

tude of 100 V. Laser sensor was used to measure the deflections of the free end. The scheme of

the experimental setup is shown in fig. 3.

Firstly, the two lowest eigen-frequencies of the structure were found by sweeping the gen-

erator frequency and searching for the largest steady oscillations. The values are f1 = 52 Hz

and f2 = 318 Hz. Secondly, using constant voltage 100 V the static deflection was measured

to be u = 0.37 µm. The last analysis investigated the response to frequencies around the two

eigen-frequencies, namely the intervals 〈1, 70〉Hz and 〈290, 340〉Hz. The amplitudes of the

steady oscillations A were measured for each frequency using the laser sensor.

Fig. 1. Detail of sandwich beam with applied piezoelectric patch

Fig. 2. Top and bottom view of the DuraAct P876.A12 piezoelectric transducers (patches)
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Fig. 3. Scheme of experimental setup
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4. Numerical analysis

Finite element model of the investigated structure was designed in MSC.Marc/Mentat software

utilizing the analogy between piezoelectricity and thermal expansion. The beam consisted of

eight-node solid elements (with assumed strain option) as shown in fig. 4. The detail of how

the materials were modeled within the structure is obvious from the cross-section in fig. 5. The

prescribed boundary conditions for the simulation of the clamped part are shown in fig. 6.

Fig. 4. Finite element model of sandwich and attached piezoelectric patch

Fig. 5. Detail of sandwich and patch cross-section
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Fig. 6. Applied boundary conditions

Fig. 7. Deflection induced by static load (voltage)

In the beginning, the material properties obtained from data sheets or previous static tests

were used. The modal analysis, however, did not results in good agreement with experimental

eigen-frequencies even after mesh refinement. As the properties of the composite were trustwor-

thy and the influence of the piezoelectric patch could be considered negligible in this case, the

Young’s modulus of the foam was sought. Simple optimization loop with interval partitioning

was used to minimize the error

∆ =

2
∑

i=1

{

(

fEXP

i − fFEA

i

)2
}

(6)
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where fEXP

i are the measured eigen-frequencies and fFEA

i are the calculated values. The re-

sulting frequencies differed by less than 0.1 %.

Another unknown was the piezoelectric constant e of patch. As the bending mechanical

behavior of the model could be considered reliable now, the piezoelectric constant was obtained

by comparing the static deflection of the beam which was found in the experiment. The resulting

static deflection of the numerical model is shown in fig. 7. The optimal values of all material

properties used are displayed in tab. 1. Since only the bending behavior is of interest it is

possible to assume the composite and piezoelectric materials to be isotropic (i.e. the elasticity

constants correspond to axial components).

Table 1. Material properties

Composite Foam Foil PIC155

E [MPa] 107 950 69 8 241 61 800

ν 0.322 5 0.3 0.3 0.3

ρ [kg/m3] 1 468 76.89 1 528 7 760

e [C/m2] −15.6

The main part of the investigation was to compare the measured frequency characteristics

of the hybrid sandwich beam with the results of the numerical model. The transducer was

excited by harmonic signals covering similar spectra as those in the experiment. The calculated

and measured amplitudes of steady oscillations A are shown in fig. 8 and 9. As it showed to be

difficult to reach fully steady oscillations in both cases, two types of results are used for each set

of data. The symbol FFT denotes the amplitude (of a frequency being the same as the excitation

frequency) obtained from the signal by Fast Fourier Transform and the symbol P2P denotes the

maximum amplitude in the signal (corresponding to peak-to-peak values).

Fig. 8. Amplitude characteristics around first eigen-frequency
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Fig. 9. Amplitude characteristics around first eigen-frequency

5. Conclusions

Experimental analysis of frequency characteristics of hybrid sandwich cantilever beam was car-

ried out. The beam consists of foam core, composite skins and a piezoelectric patch glued to

its surface. Corresponding finite element model was designed in MSC.Marc/Mentat software

using the analogy between piezoelectricity and thermal expansion. The material properties of

the foam were sought by modal analysis using simple optimization loop with interval partition-

ing. Also, the proper value of the piezoelectric constant of the patch active material had to be

identified by comparing the calculated static deflection with experiment.

The main part of the investigation was to compare the calculated and measured frequency

characteristics when the transducer material was excited by harmonic signals around the first

two eigen-frequencies and the resulting steady oscillations were measured by laser sensor pla-

ced at the free end.

The following study will focus on simplified macro model of the piezoelectric patch, and

the influence of material and numerical damping.
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