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Abstract

One dimensional finite element is developed for the analysis of structures with applied piezoelectric sensors
and actuators, i.e. smart structures, mechanical behavior of which can be controlled in real-time. The element is
based on Euler-Bernoulli theory and it assumes bilinear distribution of electric field potential. Mathematical model
was implemented in MATLAB environment. Sensitivity analysis is carried out for the case of modal analysis with
and without piezo patches.
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1. Introduction

Light-weight structures are nowadays necessary components in modern state-of-the-art pro-
ducts in all sorts of industries. The increasing requirements on structural performance call for
the usage of embedded sensors and actuators, resulting in the construction of so-called smart
or adaptive structures that can thus respond to loading conditions in real time. This enables for
instance to suppress vibrations or to adapt the desired shape, provided that proper electronic
control circuits are applied.

Since the first finite element implementation of the piezoelectric phenomenon by Allik and
Hughes [1] in 1970, many researches have ‘equipped’ the standard structural finite elements
with the piezoelectric capability to simulate the piezoelectric effect – sometimes using the
similarity to the theory of thermo-elasticity. These early models concerned mainly 3D-solid
elements, which are not suited for efficient analysis of laminated shell structures. In the recent
years, the piezoelectric, beam, plate and shell elements are used more frequently. Cen et al
[3], for example, developed a four-node plate element for laminated structures based on first-
order shear deformation theory while Lee et al. [7] introduced a nine-node assumed strain
element allowing, unlike other elements, for variable thickness. Hybrid laminated piezo plates
are studied by Mitchell and Reddy [8] using higher-order shear deformation theory and layerwise
approach for electric potential. Saravanos et al. [9] study dynamic behavior of smart laminated
plates using the layerwise approach. Tzou et al. [11] investigate the control of smart conical
shells using triangular finite elements. Kögl and Bucalem [6] introduced a MITC based element
suitable for modeling of moderately thick sandwich smart structures. They stress the importance
of quadratic variation of electric potential across the layer thickness to accurately model the
electric field. Other various finite element approaches are summarized for example in the survey
by Benjeddou [2]. Zhou et al. [12] study free vibrations of piezoelectric bimorphs by means of
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analytical solution. Heyliger [4] and later Heyliger and Wu [5] present exact analytical solution
for laminated piezoelectric cylinder and sphere, respectively. Zemčı́k et al. [13] developed
four-noded piezoelectric shell element and implemented into commercial code ANSYS.

The element proposed in this paper is two-noded and has two structural degrees of freedom
(DOFs) at each node plus two DOFs for electric potential. The piezoelectric coupling is full and
direct (i.e. non-iterative), and it is intended for the simulation of applied piezoelectric layers –
patches.

2. Mathematical model

2.1. Constitutive equations

The theory of piezoelectric materials used here assumes symmetrical hexagonal piezoelectric
structure – class 6mm (C6v). Only the laminar piezoelectric effect (so-called d31 effect [10]) is
considered, i.e., the material is polarized in the thickness direction.

The stress-strain law for each piezoelectric element can be written as

σ = C ε − eTE ,
D = eε + εE ,

(1)

where D is the vector of electric flux density, ε is the dielectric permittivity matrix, e is the
piezoelectric coefficient matrix and E is the electric field vector.

The permittivity matrix ε is defined as

ε =

 ε11 0 0
0 ε22 0
0 0 ε33

 (2)

and the piezoelectric matrix e as

e =

 0 0 0 0 e15 0
0 0 0 e24 0 0
e31 e32 e33 0 0 0

 . (3)

2.2. Analytical formulation

The beam element is based on Euler-Bernoulli theory. It has two nodes with one deflection
wi and one rotational ϕi DOF at each node (see fig. 1). Let the deflection w(x) across the length
be approximated by the polynomial:

w(x) = a0 + a1x+ a2x
2 + a3x

3 = Nw , (4)

whereN is matrix of approximation functions and the structural DOF vector is ordered as

w = [wn, ϕn, wn+1, ϕn+1]
T . (5)

Then, the axial displacement can be written as

u(x, z) = zϕ(x) = z
∂w

∂x
(6)
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Fig. 1. Element geometry example. Piezo material (dark grey) and its supporting structure (light grey)
sharing common nodes (degrees of freedom).

and, consequently, the axial strain is

ε(x, z) =
∂u

∂x
= z

∂2w

∂x2
= Bw , (7)

where B is strain-displacement matrix consisting of shape functions derivatives.
Similarly, let the electric field potential φ(x, z) be approximated by bi-linear function

φ(x, z) = a4 + a5x+ a6z + a7xz . (8)

Hence, the electric field intensity vector E is

E = −∇φ = Φφ , (9)

where Φ is the electric field intensity-potential matrix and the electrical DOF vector is ordered
as

φ = [φn, ψn, φn+1, ψn+1]
T (10)

with φi and ψi being the potential values on the lower and upper surfaces, respectively (see
fig. 1).

2.3. Variational principle

The equations of motion of a piezoelectric structure can be derived from the Lagrangian
and the virtual work which must include both the mechanical and the electrical contributions.
The potential energy density P of a piezoelectric material includes contributions from the strain
energy and from the electrostatic energy, hence

P = 1
2σ
Tε = 1

2ε
TCε− ETeε− 1

2E
TεE (11)

while the kinetic energy density is simply

K = 1
2ρ(ẇ)

2 . (12)

Let us confine to case without external mechanical forces and electric charge. The Lagrangian
can then be written in the form

L =
∫
V

(K − P ) dV . (13)

Using the variation principle, the condition

δL = 0 (14)
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R. Zemčı́k et al. / Applied and Computational Mechanics XX (YYYY) XXX - YYY

must be satisfied for any arbitrary variation of the displacements and electrical potentials, thus
the resulting equations of motion with the assumptions made above are assembled as[

Muu 0
0 0

] [
ẅ
φ̈

]
+

[
Kuu Kuφ

KTuφ Kφφ

] [
w
φ

]
=

[
0
0

]
, (15)

where the submatrices (element stiffness, piezoelectric coupling, capacitance and mass matrix)
are

Kuu =
∫
V

BTCB dV [4× 4] ,

Kuφ = −
∫
V

BT eΦ dV [4× 4] ,

Kφφ = −
∫
V

ΦT εΦ dV [4× 4] ,

Muu = ρ

∫
V

NTN dV [4× 4] .

(16)

2.4. Modal analysis

In order to perform the modal analysis the system must be statically condensed, hence the
set of equation is modified to

Muuẅ +
(
Kuu −KuφK−1φφK

T
uφ

)
w = 0 (17)

and the problem reduces to the eigenvalue analysis of the matrix

A =Muu
−1 (Kuu −KuφK−1φφK

T
uφ

)
. (18)

The corresponding values for electrical DOFs can be retrieved using

φ = −K−1φφK
T
uφw . (19)

The set of equations in eq. (15) for single element is expanded accordingly in finite element
analysis when joining element with common nodes (see fig. 1).

3. Numerical tests

Two types of sensitivity analyses were carried out using MATLAB code. One for pure
structural behavior and one for fully coupled piezoelectric (hybrid) system. The first test concer-
ned simple steel cantilever beam clamped at x = 0. Up to three lowest eigenfrequencies were
obtained for total length l = 1m modeled with 1 , 2, 4, 8 and 16 elements, respectively. The
thickness was h = 0.01m, width b = 0.1m and material properties are shown in tab. 1.

PVDF (polyvynilidene fluoride) piezopatch of thickness hp = 1mm was modeled across the
whole length of the steel beam in the second test. The lower surface of the patch was grounded,
i.e. φi = 0V, while the upper surface was left open. The piezoelectric properties are again in
tab. 1.

The resulting values of obtained eigenfrequencies are summarized in tab. 2 and 3. Very good
convergence is obvious from the results in both cases. The shapes for the first three eigenmodes
are shown in fig. 2.
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Steeel Piezo
E [GPa] 210 2
ρ [kg/m3] 7850 1800
e31 [N/m2] - 0.044
ε11 = ε33 [nF/m] - 1.062

Tab. 1. Material properties.

Elements ω1 [Hz] ω2 [Hz] ω3 [Hz]
1 8.39 82.71 -
2 8.36 52.81 178.60
4 8.36 52.42 147.74
8 8.36 52.37 146.70

16 8.36 52.36 146.61

Tab. 2. Summary of lowest eigenfrequencies for steel beam.

Elements ω1 [Hz] ω2 [Hz] ω3 [Hz]
1 8.35 82.29 -
2 8.32 52.53 177.69
4 8.31 52.16 147.00
8 8.31 52.10 146.96

16 8.31 52.10 145.88

Tab. 3. Summary of lowest eigenfrequencies for hybrid steel/piezo beam.

Fig. 2. First three normalized eigenmodes.
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4. Conclusion

One dimensional beam element suitable for the analysis of structures with applied piezo-
electric sensors and actuators, i.e. smart structures, is developed and implemented in MATLAB
code. The element is based on Euler-Bernoulli theory and it assumes bilinear distribution of
electric field potential. Sensitivity analysis is carried out for the case of modal analysis of steel
beam with and without applied piezo patches. The results of the analysis in terms of the first
three lowest eigenfrequencies show very good convergence of the element.
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