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Abstract

The paper deals with mathematical modelling of vibratiod amodal analysis of two-axled bogie of a railway
vehicle. In comparison with recent publications introsigcmathematical models of an individual wheelset drive,
this paper is focused on modelling of complex bogie vibratibhe bogie frame is linked by primary suspension
to the two wheelset drives with hollow shafts and by secondaspension to the car body. The method is based
on the system decomposition into three subsystems — twaidudil wheelset drives including the mass of the rail
and the bogie frame coupled with a half of the car body — and odetting of couplings among subsystems. The
eigenvalues of a linearized autonomous model and stabditglitions are investigated in dependence on longitu-
dinal creepage and forward velocity of the railway vehidlee nonlinear model will be used for investigating the
dynamic loading of bogie components caused by differergsygd excitation.
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1. Introduction

Dynamic properties of individual wheelset drives of raijweehicles are usually investi-
gated using torsional models, as it was shown e.g. in [4Jaf@] for drives with a hollow shaft
in [8]. These models however do not enable investigatiorpatial vibration of drives com-
ponents caused by the track irregularities, wheelsetslant@ and by polygonalized running
surface of the wheels. Hence, new and complex models ofagilxghicles or of their compo-
nents, presented e.g. in books [3], [7], in the latest wo2ks[b] and there cited papers, were
developed. None of mentioned works contains detailed nsaafelvheelset drive components
and of couplings among them e.g. gearing, clutches, elasfiports of engine stators and of
gear housings to the bogie frame etc. From this point of viegividual wheelset drives with
a hollow shaft embracing the wheelset axle (fig. 1) indicatees specific features. Their dy-
namic properties were investigated in [10] and the extemdedel including bending vibration
of the wheelset supported by elastic ballast is studied Jin The excitation caused by track
irregularities and wheel running surface is transmittedifboth wheelsets through the primary
and secondary suspension elements to the car body and toge foame, whose vibration
retroactively influences the motion of both individual wise¢s. The influence of visco-elastic
couplings among mentioned subsystems on modal propeftieteelset drives was not yet
investigated.

The aim of this article is to develop an original mathematioadel of the whole bogie
including two individual wheelset drives with a hollow shahd to parametrize the model for
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Fig. 1. Scheme of the individual wheelset drive.

particular bogie of the electric locomotive 109E which isngedeveloped for speeds about
200 km/h by the companysKODA TRANSPORTATION s. r. o. In this contribution, the lin-
earized model is derived and modal properties are invdstiga dependence on the longitu-
dinal creepage of wheels and on forward velocity of the loative. Further, such operational
conditions are studied, when the system becomes unstabkhamntislip protection has to be
activated.

2. The methodology of creation of complex mathematical model of the bogie

To develop the complex mathematical model of the bogie (figt i efficient to disassem-
ble the bogie into three subsystemmdividual drives(ID1 and ID2), that include couplings
among wheels, rails and ballast and are placed central synoaien the bogie, and further
into abogie framdinked by secondary suspension and dampers with a half dfazyr (BFCB)
(fig. 3).

In the first phase the conservative mathematical model of mutually isolateldsystems
in their local configuration spaces defined by generalizeatdinatesq;p1, Qsrcn, Arp2 1S
created. After defining global vector of generalized cawaitks of the system, couplings among
subsystems are modelled and are supposed to be ideallic el&specially, the support of
engine stators and drives housings of both individual driaee concerned. The individual
drives are linked with the bogie frame by rubber silent b®placed at pointsl,, B;, C; and
As, Bs, Cy representing centers of elasticity. The primary suspenseiween journal boxes
and bogie frame is placed at poirfes, P, Py, Pio.

The validity of physical structure is examined by eigenmaodkulation using conserva-
tive models of subsystems and of the whole system linked &stielcouplings. Eigenmodes
corresponding to zero eigenfrequencies are charactebge@motion with no couplings and
components deformation.

In thesecond phasef modelling, the conservative model is completed with thmding in-
fluence of internal couplings of subsystems (gearing dagygintch damping, ballast damping
and damping of secondary suspensions linked at p@intsi) and with damping of couplings
among subsystems (silent blocks, primary suspension, @joomal boxes and bogie frame at
point T —Tio).

In the lastthird phaseof modelling, the creep forces in the wheel-rail contaatedtorques
of engines, static load given by gravitational forces arelkimematic excitation representing
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Fig. 2. Scheme of the bogie.

track irregularities and wheel running surface are defimetithe mathematical model is com-
pleted by their influence.

2.1. Conservative mathematical model of individual uncedpVheelset drive

The conservative model of individual drive (fig. 1) is exmed under the assumption of
absolutely smooth rails in the configuration space

ap = [dp a5 aw]”, (1)
where the vectors of generalized coordinates

ap =[p" a;]" €R?, " =[p1 @2 3],

as=[qs q5 ... q5] €R®,  qf = [ug ¢y Jg Vo), (2)
aw = [‘711T0 T Q{ﬁ]T e R¥,

are assigned to single drive (D), which is assembled frompmmants 1 (engine rotor), 2 (drive
pinion), 3 (gear with the catch driver of the driven part of thisc clutch) and 4 (engine stator
linked with the gear housing), to composite hollow shaft\{@&h the driven part of the disc
clutch (DC) and with the driving part of the claw clutch (CC) andhe wheelset (W) including
the coupling among wheels, rails and ballast, respectividlg composite hollow shaft and the
wheelset are modelled as spatial vibrating one-dimenkmrginua discretized by finite ele-
ment method at nodal points 5 - 9 (S), 10 — 16 (W) with rigid discsinted at nodes 5 (DC),
9 (CC), 11, 15 (journals) and 12, 14 (wheels), respectivelye Jdctors of generalizes coordi-
natesy; in nodal points = 4, ..., 8,10, ..., 16 have the formy; = [u; v; w; @; 0; ¥;]T, where
u;, v, w; are translational deflections in the coordinate axes > andy;, 6;, v; are rotational
deflections around these axes shifted to corresponding Aodesversal displacemenigand
wg at the node 9 of the composite shaft are due to torque trasgmiby the claw clutch cou-
pled with displacements of the wheel centre at the node 12taardfore are not independent.
The components 1, 2, 3 rotate within the spatially vibratemgjine stator, which is wired in
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the gearbox housing whose displacements are describeg, by to 4 outspread to the mass
centreSp (fig. 1). Angular speeds of the engine rotor = wy and of the wheelseb;, = wyy,

i = 10 to 16, correspond to pure rolling of the wheelset by operatiopaks of the vehicle

v. In the above described configuration space, the consesvatdel of individual uncoupled
wheelset drive is described by symmetrical mass and stéfn@atrices [1]

M]D = dlag(MD MS Mw) —+ Mcc,

) 3
K[D = dlag(KD KS Kw) + KCC’ + KDC, ( )

of ordern;p = 79. The matrix indices correspond to before mentioned desgmnaf sys-
tem components. The matriK, displays the influence of discrete couplings compliance —
driven shaft, gearing and ballast — and matriBgs- andK ¢ involve compliance of disc and
claw clutch. The validity of physical structure of the unpted drive is examined by eigen-
mode calculation. Eight of zero eigenfrequencies have tespond to eigenmodes which are
characterized by a motion with no couplings and componegftsrchation.

2.2. Conservative mathematical model of bogie frame linkéid @ar body

Vibration of this subsystem is modelled under the assumpifospatial vibration of rigid
bogie frame (BF), which is described by the veotgyr = [upr vsr wpr ©pr Ipr Vpr|’
and linked by the secondary suspension (fig. 3) with a halaobody (CB). We assume, the car
body moves in the vertical direction only. This subsystemow displayed in the configuration
space

asres = [Ppr Ppr top) €RY, (4)
where the coordinates of vectatsr andr g express lateral, vertical and longitudinal displace-
ments of mass centres of corresponding bodies and the oatediof the vectopzr describe
angle displacements of the bogie frame (fig. 3).

Fig. 3. Scheme of the bogie frame with secondary suspension and dampers

Kinetic and potential energy of the subsystem is then giwefollowing terms

I ~ LI
Ey :imBFrgFrBF + §SOEFIBFSOBF + §mCBr(TJBrCB’

()

4
1
Ep = Z 2 (rhr —rép + e5pRe) Kp (ter —rep + R 95F)
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wheremgr, mcp are masses of componenks; is inertia matrix of the bogie frame expressed
in the coordinate systemygr, y5r, 25 Whose origin is identical to the centre of mass- (fig.
3), Kp is diagonal matrix of secondary suspension springs in tlbeal parallel coordinate
systems with the origin placed at points and antisymmetrical matricd3 5, correspond to
radiusvectors of cross product corresponding to the péints

Substituting the term (5) to Lagrange’s equations we oltaiservative model of the sub-
system described by symmetrical mass and stiffness mavige--z andK g5 of order 9.
Eliminating the 7. and 9. row and column, the model descrimtical vibration of the car
body only. The subsystem has one eigenmode with no sprirfgsnaition corresponding to
zero eigenfrequency.

2.3. Modelling of couplings among subsystems

To model couplings among subsystems, it is efficient to defiegglobal vector of gener-
alized coordinates of the whole system in the block form.(tBb Subvectors containing one

aip; ngCB ngl
T —_T —_T —T T Zr —1 =1 =T
a=[% q Qs Gw dpr Ve P d ds dw |
IL ) |
@06 |
@l g

1... KW1,BF1 2 ... KDl,BFa 3 ... KDQ,BF! 4 ... KW1,BF

Tab. 1. Table of generalized coordinates.

(two) bars are assigned to individual drive ID1 (ID2) and eveefined in (2).

The matrixKp gr = Kp, sr + Kp, sr describes the support of engine stators with gear
housings to the bogie frame at silent blocks, B;, C; for ID1 and A,, B,, C5 for ID2
(fig. 2) and is derived by the methodology presented in [9].e Bliffness of primary sus-
pension at pointd’s, Fs, Py, Pio and longitudinal wheelset guide of both whelsets between
journal boxes and bogie frame at poirfts, P, P11, P> (fig. 2) is modelled by the matrix
Kwsr = Kw, sr + Kw, sr. All coupling stiffness matrices are symmetrical of ordéskand
their nonzero elements correspond to coupling displac&sriinked components according
to their position in the global vector of generalized conades, as mentioned in tab. 1.

2.4. Conservative model of the railway vehicle bogie

In the configuration space

a = [q]p1 Apres Aipa)’ € R', (6)

which is in detail described in tab. 1, the conservative rhoflthe bogie (system) is defined by
symmetrical mass and stiffness matrices of order 165, heoimm

M = diag(M;p Mprcs Mip),

. (7)
K = diag(K;p Kpres Kip) + Kp gr + Kw.sr.

Chosen eigenfrequencies of conservative models of uncoupdividual drive and of the
whole bogie together with the characteristic of eigenmoitbeation are presented in tab. 2.
According to analysis of eigenfrequencies, a number ofdndtequencies from the 22. for ID
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Individual drive Bogie
v | /. [HZ] v | /, [Hz] || eigenmode characterization
18 0 1,2 0 torsion of ID1 or ID2 with no deformation

9 0.459 3 0.990 || vertical of CB in phase with BF and ID

10 0.615 4 1.59 | lateral of BF in phase with ID

11 4.31 5 1.60 | longitudinal of BF in phase with ID

12 12.16 6 1.75 || yaw of BF in phase with ID and lateral of
ID1 in opposite phase with ID2

13 13.77 7 3.88 | torsion of IDs in phase, in opposite phase
with Ws

14 29.20 8 3.96 | torsion of IDs in opposite phase and in oppo-
site phase with Ws

15 48.97 9 6.01 || tilting of BF about lateral axis in phase with
stators

43,44 1604 10 6.72 | vertical of BF in phase with ID
7679 | 44132 11 9.65 | longitudinal of Ws in opposite phase

— — 12 10.95 | tilting of BF around longitudinal axis

— — 13 11.01 | yaw of Ws and of stators in phase with BF

— — 14 12.11 || yaw of Ws in opposite phase

— — 15 12.84 | tilting of BF around longitudinal axis

— — 28,29 48.97 | torsional twisting of Ws

— — 92 - 95 1604 | bending of Ws between wheels

— — 158+ 165 | 44132 | bending of wheelset ends

* double number of the bogie natural frequencies compardtetmtividual wheelset drive

Tab. 2. Natural frequencies of the individual wheelset drives dlgecbogie.

and couples of eigenfrequencies from the couple of 43. andigénfrequency for the ID repeat
in the mathematical model of the bogie. This property is gibg the wheelset symmetry and
by two identical individual drives in the bogie. Because @& linkage of the drives to the bogie,
such single eigenmodes exist, which correspond to lateragjtudinal, roll or yaw motion of
the bogie (e.g. 4. ,5., 6., 9., 12. and 15. eigenmode).

3. Complex mathematical model of the bogie

3.1. Modelling of damping

According to the methodology of bogie model creation, inflees of internal coupling
damping are appended to models of subsystems. The strodtdaenping matrix of individual
drive has a similar structure as the stiffness matrix dbedrin (3)

B;p = diag(Bp Bs By/) + Bpe + Bee, (8)

whereas the matriB, includes the gearing dampirg. Further, we suppose the material
damping of the composite shaft, disk and claw clutches torbpgstional to corresponding
stiffness matrices

Bs = 6sKs, Bpec = 0BpcKpe, Beeo = BocKee. 9)
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The damping matrix of the wheels&, includes damping influence of the rail ballast and
is diagonal with nonzero elements, 14 = by 26 = bg. Particular form of matrixBrc s is
similar to stiffness matriXX 3¢5, which is derived using Lagrange’s equations. The matrix
respects damping coefficients of each damper of the segpsdapension mounted at points

Damping matrix of the bogie has a structure which is simiathe structure of stiffness
matrix defined in (7)

B = diag(B;p Bgrcs Bip) + Bp.sr + Bwsr. (10)

Proportional damping matriBp s = SKp pr expresses the damping influence of silent
blocks which support engine stators and their housingsgeeldoame. MatrixByy s describes
damping of primary suspension among journal boxes and lh@gies at pointd~ to 71, (fig. 2).

3.2. External and adhesion (creep) forces acting on thedogi

To analyze the modal properties of the bogie we neglect sadkwheel irregularities which
are source of kinematic excitation((t) = 0,7 = 1,2, 3,4). Let us suppose an operational state
of the railway vehicle running on the straight track whiclgirgen by the longitudinal creepage
so of all wheels, by forward velocity of the vehicle and by vertical wheel ford€,. To all
mentioned operational parameters correspond enginedasyragnawing force of the bogie and
longitudinal creep forces at the contact between rails ameklg given by

1
M(So, U) = 2M0N07“Z—?> Fo = 4poNo, 1o = poNo, (11)

wherepuy = u(so,v) is longitudinal creep coefficient [10, L}, = wg/ww is speed ratio and
is the wheel radius.

If the static equilibrium is disturbed by any of possible igxtton sources, the bogie vibrates
and the vector of generalized coordinates can be expressadsam of static and dynamic
displacements

q(t) = qo + Aq(?), (12)

where before the disturbance, the velocity ve¢tphas nonzero coordinates corresponding to
rotation of system components with forward veloaityTherefore other coordinates of vector
Aq(t) are identical withq(t), that is why we delete the designatidy; in there.

LongitudinalT; .4, lateral A; .4 creep forces and spin torqué; ., act at the contact patches
between rails and wheels and their magnitude can be exprassalowing way (index: cor-
responds to nodes designation to which wheels are fixed caxtbs)

Tiaa = p(si,v)N;
A ag = boa(1; + Twz) + basd, (13)
M; qq = —bag(1; + 7‘%) + bygt;.

In the term concerning longitudinal creep forces, longitatladhesion coefficient was intro-
duced [6], [8], which depends on longitudinal creepage delffiny

+w; FrAg; rWW
s; = Sp — S0 = o

(14)
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Upper signs correspond to wheel3&t and lower signs to wheelsét,, which rotate with
angular velocitywy, before the system disturbance. Coefficigntsagree with Kalker’s coeffi-
cients [3] computed for constant wheel fordg.

To analyze modal properties and stability conditions oflibgie, torque characteristics of
engines and creep characteristics are linearized in tlghbeurhood of the state before the
disturbance. We obtain

M = M(So,v) — bMAgbl,

0 15
1(siv) = po + |:a‘i:|s—<:(? 50) (15)

Linearized longitudinal creep forces can be then exprefsedl; = IV, in the form
T aa = ptoNo + bri(£w; F rAY;) (16)

and according Kalker’s theory we have defined the coeffi@éhhearized longitudinal damp-

ing at the contact patch
No [0
bnzzg[ﬁ} . (17)

After expressing the engine torque according (15) and daeps according (13) and (16),
the vector of external and creep forces can be written iofotig form

f(t) = £ + Af, (18)

wheref; is vector of static force effects before the disturbancéndd in (11), including gravi-
tational forces. The disturbance vector of linearized eagorques and creep force effects have
form

Af = — [BM + Bad<80, U)] Aq, (19)

where the structure of mentioned matrices results froméfiaition of the vector of generalized
coordinates in tab. 1.

3.3. Linearized model of the bogie

By completion of linearized model derived in chap. 2.4 witle ihfluence of damping
(chap. 3.1) and with external and creep forces (chap. 3.2pbtain full linearized model
of the bogie. It has the from

Mq(t) + Bq(t) + Kq(t) = £(2), (20)

where matrices are given by terms (7) and (10). When we expezter of generalized coor-
dinatesq(¢) in the form (12) and vector of external and creep forfjes according to (18) and
(19) with respect to the static equilibrium conditiBiy, = f;, we obtain

MAG(t) + [B + By + Bua(so, 0)]A4(1) + KAq(t) = 0. (21)

The matrixB,; = diag(by; 0 ... 0 by, 0 ...) is diagonal with nonzero elements on positions
1,1 and 87,87, matrix

Bad(So,’U) = dlag( .. Ead . Ead c. Ead . Ead) (22)
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is block diagonal with nonzero nonsymmetrical blocks

[ b22 0 0 0 b23 Tbgg
0 0 0 0 0 0
= 0 0 b11 —Tbll 0 0
Bad o 0 0 —T’bll T2b11 0 0 (23)
—b23 0 0 0 b33 —Tb23
| ’f’bgg 0 0 0 T’bgg T2Z722 ]

localized at positions corresponding to displacementsaafah points: = 12,14 for both
wheelsets (fig. 2).

4. Spectral properties and stability conditions of the bogie

It is efficient to investigate spectral properties in deparee on operational parameters
s0, v, Nog. The adhesion coefficient, is expressed according terms (28) and (29) in [10] in
dependence on longitudinal creepagand on forward velocity. All coefficientsb;; in matrix
B., depend further on vertical wheel foré&. To perform the analysis of spectral properties,
the coefficients were evaluated for standard wheel-raitazzirtonditions, see [8], [10], and for
Ny = 1.055-10° [N].

Eigenvalues of linearized model of the bogie (21) are deflmedigenvalue problem solu-
tion

[\ N(sg,v) + Plu, =0 (24)
in the state space = [Aq” Aq’]?, defined by matrices
0 M -M 0
Niso-v) =] v B+BM+Bad(50,v>]’ P:[ 0 K} )

10 6 2f ‘ ‘ ‘ ‘ ‘
N QR 1. 4. 2. 5 %
8 Ve E g 0 £ 5
—_— 4. 5 ~ _..,.-
N resoggfaeesetbiose:
T of / T E w
— = -2 K
-~ ~< 6 \ &
= 4t ] O] \ 3
= 2" 3 X k=
L /\
2 |
\ : 6
T
02 3 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Creepage <10 Creepage <10°

Fig. 4. Dependence of real and imaginary parts of eigenvalues on ldimgticreepagay.

For an illustration, in fig. 4 we present the dependence dfaieé imaginary parts of eight
lowest eigenvalues on the longitudinal creepagehich are calculated for the forward velocity
v = 200 kmph. According to the analysis, we can conclude that the stabdidetermined by
a pair of complex conjugate eigenvalues. The stability ldawy is defined by the creepage
so = 0.0086 for v = 100 kmph and by the creepagg = 0.0067 for v = 200 kmph. This type
of unstability is known as flutter and for higher values ofegrage the type of system unstability
changes to divergence stability.
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5. Conclusion

This paper presents an original methodology of mathematiodelling of the railway bogie
including two individual drives with hollow shafts embragiwheelset axles. The methodology
is based on the system decomposition to three subsystenwvidiral drives and the bogie
frame linked with the car body — and on modelling of coupliegsong subsystems. Models
of individual drives described in mutually revolved cooralie systems are identical. From the
analysis of modal properties ensues, that the elastic suppengine stators and gear drives
housings to spatial vibrating bogie frame influences dyeahproperties of drives. Therefore,
itis necessary to investigate dynamic loading of drivespomnents caused by excitation sources
(track irregularities, ballast properties, unbalance bkeeis and their ovality), which cause
spatial vibration of the bogie frame, using bogie model thatesents a linked system.

The linearized model expressed in perturbance coordimatesespect to operational state
of static equilibrium before the perturbation in dependenic operational parameters is used to
analyze eigenvalues which are further used to detect rasstates with periodical excitation
sources or stability conditions of the system. In a closerytthe nonlinear model of the rail-
way bogie completed with excitation will be used for simigdatof vibration and of dynamical
loading of drives components caused by different excitesiources.
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