
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and
Engineering

Master Thesis

Data format for
electrophysiological

experiments

Pilsen 2015 Bc. Jǐŕı Vaněk

Acknowledgment

I would like to thank my supervisor Ing. Roman Mouček Ph.D. for his advice
and also I would like to thank to my whole family for their support.

Statement

I hereby declare that this master thesis is completely my own work and that
I used only the cited sources.

Pilsen, May 1 2015

Bc. Jǐŕı Vaněk

Abstract

V současné době neexistuje standard datového formátu pro ukládáńı elektro-
fyziologických dat. Tento standard je nutný pro rozš́ı̌reńı možnost́ı sd́ıleńı dat
s daľśımi výzkumńıky. Tato diplomová práce se zabývá úpravou modelu pro
reprezentaci ukládáńı dat z elektroencefalografických a experiment̊u využ́ıva-
j́ıćıch metodu evokovaných potenciál̊u a metadat těchto experiment̊u. Byly
prozkoumány existuj́ıćı datové formáty pro ukládáńı naměřených binárńıch
dat a metadat a jejich ontologie, byla definována terminologie, struktura a byl
vybrán vhodný formát pro ukládáńı těchto dat. Dále byl vytvořen program,
který umožňuje ukládat do vybraného formátu naměřená data a informace
o experimentu.

Abstract

Currently there is no standardized data format for storing electrophysiolog-
ical data. This standard is necessary for the improvement of sharing capa-
bility. This master thesis deals with the adjustments of data and metadata
model for measured data from Electroencephalography and Event-related po-
tentials experiments. The formats for storing electroencephalography data
and their ontology were examined. The adjusted file format for export of
measured binary data and metadata with experiment details was chosen.
Terminology and structure for the experimental metadata were defined. The
program that exports the measured data and information about the experi-
ment into the appropriate file format was also implemented.

Contents

1 Introduction 8

2 State of the Art 9
2.1 Electroencephalography (EEG) 9
2.2 Data Sharing . 9
2.3 Program on Standards for Data Sharing 11
2.4 Present formats for Storing EEG Data 12

2.4.1 Ovation . 12
2.4.2 European Data Format 14
2.4.3 NeXus Format . 15
2.4.4 NEO . 15
2.4.5 NeuroHDF . 16
2.4.6 NIX . 16
2.4.7 epHDF . 18
2.4.8 Brain Vision Format 19

2.5 Hierarchical Data Format . 20
2.6 Ontologies . 24

2.6.1 Neural ElectroMagnetic Ontology 24
2.6.2 Gene Ontology . 25
2.6.3 Phenotype And Trait Ontology 25
2.6.4 The Open Biomedical Ontologies Foundry 25
2.6.5 OBO Relations Ontology 25
2.6.6 NIFSTD . 25
2.6.7 Basic Formal Ontology 26
2.6.8 Computational Neuroscience Ontology 26
2.6.9 Ontology for Biomedical Investigations 26

2.7 Open Metadata Markup Language 26

3 Analysis and Design 29
3.1 Current Formats Comparison 29
3.2 Data Model . 31
3.3 Model Ontology . 32

5

CONTENTS CONTENTS

3.3.1 Data Part . 32
3.3.2 Metadata Part - odML 32
3.3.3 UWB Metadata Model 32
3.3.4 NIX Metadata Model 34
3.3.5 Metadata Terminology Extensions 35
3.3.6 EEGBase Metadata Model 37

3.4 HDFExport Program . 38
3.4.1 Program Specification 38
3.4.2 Architecture . 39

4 Implementation 41
4.1 HDF Libraries . 41
4.2 Used HDF5 Data Types . 44
4.3 EEGBase File Structure . 45
4.4 HDFExport Program Modules 46

4.4.1 Brain Vision Files Parser 46
4.4.2 Metadata Loader . 48
4.4.3 HDF5 Writer . 48
4.4.4 Graphical User Interface 50

4.5 EEGBase Portal Integration 50

5 Tests 52
5.1 Performance Tests . 52
5.2 File Size Test . 53

6 Evaluation and Summary 55

List of Figures 56

List of Tables 57

List of Listings 58

Acronyms 58

Bibliography 60

Attachments 65

A Brain Vision Files Examples 66

B Metadata Terminology 69

6

CONTENTS CONTENTS

C Metadata Scheme 72

D Export Program User Manual 73
D.1 Installation . 73
D.2 Data Export . 73
D.3 Metadata Export . 74
D.4 Compression . 74

7

1 Introduction

Brain research has been very popular recently. Tens of measurements are
conducted every year and it is very important to store measured data and
all known information about experiments and measuring conditions for later
use. It was common that experiments were designed, measured and analyzed
and after evaluation this recorded data was deleted. But during last years it
has become more important to store experiments for later use and to share
data with other researchers to provide further analyses.

At the University of West Bohemia (UWB) the research of Event-related
potentials (ERP) experiments are in progress. When this thesis was written,
all recorded electroencephalography (EEG) data were stored in the EEG-
Base portal at the UWB. These include experiment binary data in files de-
fined by recording software, and other information about the experiment,
measured subject and measuring conditions which are stored in the database
and recording system files. Because UWB cooperates with other universities
and research centers, there is a need for a file format that would allow easy
transfer of measured data between the EEGBase portal and other systems.
Therefore a file format for exporting and transporting raw binary EEG data
and metadata is needed. There is no such standardized format. Each uni-
versity or firm uses its proprietary format or format defined by recording
software. That complicates cooperation and sharing possibilities. Not all
formats support storing data and metadata and also some of formats strictly
define metadata which could be stored.

It is important to develop a standard for storing and exporting experimen-
tal data and metadata. If this standard is accepted by a larger community, it
will allow easy sharing and better understanding of conducted experiments.

At first I had to get familiar with formats for storing electroencephalogra-
phy and biomedical data. I explored their model, terminology and ontology.
I became acquainted with the International Neuroinformatics Coordinating
Facility (INCF) working group and their standard proposal. Then I checked
storing options of measured experiments at the UWB. I analyzed the file for-
mats containing data and stored metadata. Then it was necessary to search
for available formats for storing EEG data, compare them and choose the
best one or develop a new one. After that I had to figure out the best way to
export all relevant meta-data into the chosen format. Then I developed and
tested the program that exports data and metadata into the chosen format.

8

2 State of the Art

2.1 EEG

EEG is a non-invasive method for measuring and recording electrical brain
activity along the scalp. This measurement is based on registering voltage
changes from the brain neurons using electrodes, which are attached on a
scalp. The ERP technique allows us to take raw EEG data, the electrical
activity recorded from the brain, and use it to investigate cognitive process-
ing. It is recorded a subject’s EEG while they perform a task designed to
elicit the proper cognitive response (e.g. attending to a certain type of ob-
ject). To accomplish this subjects wear a mesh cap embedded with electrodes
which record brain activity. [29] The position and designation of electrodes
is defined in the international system 10-20 (Figure 2.1), but the scheme
was extended and now defines positions for 70 electrodes. Signals from elec-
trodes are recorded and then analyzed. The research of driver’s attention,
children’s motor coordination disorder or mouse blindness is ongoing at Uni-
versity od West Bohemia. EEG measurement is not focused only on humans,
but is conducted also on animals or cells. Brain activity from electrodes is
recorded during measurements, and for ERP experiments, stimuli are also
recorded. Stimuli are synchronized with EEG recording to determine sub-
jects’ responses.

Each year, an increasingly vast amount of neuroscience electrophysiology
data is collected and reported in journal publications. However, almost none
of these data are accessible to the community of theorists building integrative
models of neuronal systems or to experimentalists planning new experiments.
[19]

2.2 Data Sharing

A trend toward increased sharing of neuroimaging data has emerged in recent
years. Nevertheless, a number of barriers continue to impede easy sharing
of experiment’s data. Many researchers and institutions remain uncertain
about how to share data or lack the tools and expertise to participate in
data sharing. The use of Electronic Data Capture (EDC) (Figure 2.2) meth-

9

State of the Art Data Sharing

Figure 2.1: The original
10-20 international system

- internationally
recognized method to
describe and apply the

location of scalp electrodes
in the context of an EEG
test or experiment. [43]

ods for neuroimaging greatly simplifies the task of data collection and has
the potential to help standardize many aspects of data sharing. [42] The
motivation for sharing is:

• to accelerate progress in understanding of the brain

Several researchers claim that more rapid scientific discoveries are pos-
sible with shared data [31] [41].

• to improve data quality

The sharing data helps uncover mistakes as missing data, noise, errors,
etc. and improves the quality of the data in the future experiments.

• to reduce cost of research

Neuroimaging research is costly both in terms of the data acquisition
costs and the time spent in data documentation. A significant amount
of money could be saved from redundant data acquisition if data were
shared with appropriate metadata descriptions. [42]

The situation is similar in electroencephalography. [42] [28] [19]

10

State of the Art Program on Standards for Data Sharing

Figure 2.2: Stages of Electronic Data Capture. [42]

2.3 Program on Standards for Data Sharing

INCF Program on Standards for Data Sharing was established for the pur-
pose of specification the standard for storing EEG data. INCF is an interna-
tional non-profit organization devoted to advancing the field of neuroinfor-
matics and was established in 2005 in Stockholm. INCF community consists
of 17 member countries and associated research groups, consortia, funding
agencies and publishers in the field. The National Nodes are institutions or
networks that represent each member country. The nodes are established to
coordinate neuroinformatics activity within a country. [23]

Program Standards for Data Sharing aims to develop generic standard
and tools to facilitate the recording, sharing, and reporting of neuroscience
metadata in order to improve practices for the archiving and sharing of neu-
roscience data. Metadata define the methods and conditions of data acquisi-
tion and subsequent analytical processing, Metadata also describe conditions
under which the actual raw-data were acquired.

The current focus of the Program on Standards for Data Sharing is in
two areas: neuroimaging and electrophysiology. [19]. The most important
requirement of such a standard is to accommodate common types of data
used in electrophysiology or neuroimaging and also the metadata required to
describe them. However we will focus on electrophysiology.

A standard way of storing metadata must be specified. The set of meta-
data required to describe electrophysiology data is difficult to determine a

11

State of the Art Present formats for Storing EEG Data

priori because the types of experiments are so varied. A flexible mechanism
must be used which allows referencing and specifying values for currently
existing ontologies and also accommodates information not currently sys-
tematized. Techniques to include post-experiment annotations of data, and
for relating different data parts, are also required. [25]

So far, the working group entertains two approaches towards defining a
standard, which may eventually be merged. One, currently named Pandora,
defines a generic data model that can be used with Hierarchical Data For-
mat 5 (HDF5) or other storage back-ends. Due to the generic nature, the
data model can be used to store various kinds of neuroscience data. The
other proposal, called epHDF, defines domain specific schemata for storing
electrophysiology data in HDF5. [25]

The Electrophysiology Task Force of the INCF Program on Standards
for Data Sharing is working on a document Requirements for storing elec-
trophysiology data. The last version is 0.72 from 3rd November, 2014. This
INCF internal document specifies all data that the standardized file format
requires, defining what it must, should and may support. An overview of the
stored data types is in Table 2.1. [11]

2.4 Present formats for Storing EEG Data

Most known formats for storing EEG data use the format HDF5. Also both
INCF proposals use HDF5 and the Electrophysiology Task Force of the INCF
Program on Standards for Data Sharing in Requirements for a standard rec-
ommends basing a standard on HDF5. [11] Some formats are proprietary
and even though some of them are well documented, is due to licenses com-
plicated to use them or edit them. So I focus on the open ones. For storing
EEG neuroinformatics data many types of formats exist. The most known
and used formats are Ovation [36], NeXus Format [34], NEO [32], NeuroHDF
[33], EDF+ [27] and NIX (Pandora) [38].

2.4.1 Ovation

Ovation is a commercial system for managing laboratory scientific data. The
Ovation natively stores data in a database, but the data can be exported in

12

State of the Art Present formats for Storing EEG Data

Data type Description
Signal source The origin of the recorded data; for example, the

identity, position, etc. of the recording. This typ-
ically refers to information about a channel name,
description, and location, or the target recorded.
There are at least two kinds of sources, includ-
ing actors doing the recording (e.g. an electrode)
and objects/actors being recorded (e.g. an subject,
brain region, or neuron (real or putative))

Time series An ordered collection of values given at defined
points in time; for example, a recorded voltage
signal. It may correspond to raw data, recorded
from “electrodes” or “channels”. Alternatively,
they could be derived from a data processing step.
The sampling may be done at regular time inter-
vals (the sampling rate) or at irregular intervals (in
which case a time point is required for each value).

Signal events The Signal events identify changes in a signal;
for example, spikes, synaptic potentials, artifacts.
They could be raw data, for example, output of
a hardware device that detects, and provides the
times of spikes. They may also be generated as the
result of processing data, for example, applying a
spike detection algorithm on a time series signal.

Image stacks Image stacks are an ordered collection of images;
the meaning of stack dimensions must be specified.
For example, a z-stack of images, a time series of
images, a time-series of z-stacks, movies which are
in standard formats.

Experimental events The Experimental Events data type consists of
times of events, along with values that correspond
to the times. This data type can be used to de-
scribe: stimuli, trials or sweeps, time intervals, be-
haviors, and other events or conditions that occur
during the experiment.

Other / Generic array Other data types and a mechanism for storing data
types which have not been included in the stan-
dard.

Table 2.1: Overview of data types required by Requirements for storing
electrophysiology data, Version 0.72. [11]

13

State of the Art Present formats for Storing EEG Data

Figure 2.3: Ovation work model - Researchers upload their data into
Ovation portal and describe them. Then they could work with data with

existing analyze tools or work directly with project with linked
version-controlled data. [37]

HDF5 container. Ovation is cloud based data management and collabora-
tion portal. It organizes files by projects and experiments while maintaining
relationships between files and subjects, devices, and protocols used in ex-
periment. [37] The description of the work model of Ovation is in Figure 2.3.
Although Ovation is a commercial system, the data model of Ovation is open
[40].

2.4.2 European Data Format

European Data Format (EDF) is a format for storing multichannel biological
and physical signals. This format has limitations for application in a field
of evoked potentials, cardiology etc. A major limitation is that EDF can
store only uninterrupted recordings. EDF+ was specified for that reasons.
The EDF+ specification is incompatible with EDF only in allowing storage
of several non-contiguous recordings. The EDF format support annotation
for text, event and stimuli. An EDF and EDF+ data file consists of a header
record followed by data records. The variable-length header record identifies
the patient and specifies the technical characteristics of the recorded signals.

14

State of the Art Present formats for Storing EEG Data

[26] Information about signals, subject and whole measurements is defined
and could not be changed. EDF+ format contains this information: version
of format, patient identification (sex, birth date, subjects name), record iden-
tification (start date, start time, hardware identification, a code specifying
the responsible investigator, a code specifying used equipment), number of
data records, duration of records and number of signals in data record.

2.4.3 NeXus Format

NeXus is a format for data from Neutron and X-ray facilities. The format is
also used for muon experiments. NeXus uses HDF5 as a default file container,
but for compatibility reasons it is possible to use also Hierarchical Data For-
mat 4 (HDF4) or Extensible Markup Language (XML) for special use cases.
This format supports saving data and metadata into a single file. Several
schemes are available for storing metadata sections, but the terminology is
not defined and informations are stored in general structures as note, log,
parameter or characterization. [34]

2.4.4 NEO

Neo is a package for representing electrophysiology data in Python. This
software package is able to load data from closed manufacturers’ formats
as Axon, Spike2, AlphaOmega, BlackRock and others. Neo implements a
hierarchical data model and supports exporting to several neutral formats
including HDF5, MATLAB .mat file with NEO structure (NeoHDF5, Neo-
Matlab,..) or other open source tools WinEdr, WinWcp, PyNN, etc. The
recommended way of use of this package is converting a closed format into
more standard and open formats - NeoHDF5 or NeoMatlab.

The goal of Neo is to improve interoperability between Python tools for
analyzing, visualizing and generating electrophysiology data by providing a
common, shared object model. In order to be as lightweight a dependency as
possible, Neo is deliberately limited to presentation of data, with no functions
for data analysis or visualization. Neo implements a hierarchical data model
well adapted to intracellular and extracellular electrophysiology and EEG
data with support for multi-electrodes. [32]

15

State of the Art Present formats for Storing EEG Data

2.4.5 NeuroHDF

This format also uses HDF5 as the main container for storing data. Neuro-
HDF is an effort to combine the flexibility and efficiency of HDF5 for neu-
roscience datasets through the specification of a simple layout for different
data types with minimal metadata. [33]

2.4.6 NIX

This format also uses HDF5 as a data container. This format specification
closely defines an inner structure of file, especially the data part. The meta
data part is defined by the The open metadata markup language (odML).
The NIX project (previously called Pandora) started in the context of the
Electrophysiology Task Force which is part of the INCF Datasharing Pro-
gram.

NIX is one approach to this problem: it uses highly generic models for
data as well as for metadata and defines standard schemata for HDF5 files
representing these models. Last but not least NIX aims to provide a conve-
nient C++ library to simplify the access to the defined format. The design
principle of the data model used by NIX was to create a rather minimalistic,
generic, yet expressive model that is able to represent data stored in other
widely used formats or models like Neuroshare or NEO without any loss of
information. Due to its generic approach, the data model is also able to rep-
resent other kinds of data used in the field e.g. image data or image stacks.
[38]

This format’s scheme (Figure 2.4) was taken as inspiration for my file for-
mat, because it is discussed within the INCF Datasharing Program (Chap-
ter 2.3) and it is recommended to use the file model of NIX. The measure-
ments are stored in blocks. Each block identifies measurement and related
metadata section. Raw data (signals, stimuli) are saved in DataArrays and
they are specified by Dimension, Sample, Set, Representation and Range
(Figure 2.4) and could be specified by DataTag. The stimuli and artifacts are
stored in SimpleTag (one stimulus) or MultiTag (more stimuli). The source of
DataArrays or Tags could be specified by Source. Each section could contain
link to the metadata part with measurement information. Closer description
is available in Section 3.2.

16

State of the Art Present formats for Storing EEG Data

Figure 2.4: NIX data scheme. [38]

17

State of the Art Present formats for Storing EEG Data

2.4.7 epHDF

This format is discussed within the INCF Program on Data Sharing stan-
dard. It uses HDF5 and deals with two issues. It is virtually impossible to
anticipate all of the types of data and metadata that will need to be stored
and no standard scheme exists for specifying how data in HDF5 files should
be organized. [24] To address both of these difficulties, a layered approach
is proposed. The first layer, which is called Hierarchical Data Format – data
sharing (HDFds), provides domain-independent conventions for specifying
how the data in HDF5 files are organized. Main features of HDFds are as
follows:

• Enables associating external schemata to components of an HDF5 file in
a manner similar to how name spaces in an XML file identify elements.

• Specifies locations and a format for storing arbitrary metadata in a
HDF5 file.

• Allows linking metadata to particular data parts within a file and to
external files. [24]

The second layer builds on the conventions in HDFds to specify schemata
for storing basic electrophysiology data types. It is called second layer elec-
trophysiology HDF (epHDF). The data types defined in epHDF (time series,
time series segment, neural event and experimental event) are based on the
entities defined in Neuroshare [7] for covering the most commonly used data
types in electrophysiology. For each type, the data can be stored in whatever
HDF5 numeric format is most efficient (for example 16 bit integer). For all
of the data types, a metadata schema is specified to include the fields needed
to make a plot of the data with correct units. [24]

The epHDF for storing metadata uses odML. An example of data an-
notation using odML and JavaScript Object Notation (JSON) encoding is
bellow in listing 2.1. The listing shows description of amplifier hardware and
its parameters. [24]

18

State of the Art Present formats for Storing EEG Data

Listing 2.1: Example of data annotation using odML and JSON encoding.

{
”schema ” : ”odml:hardware / a m p l i f i e r . xml ” ,
”model ” : <s t r i n g v a l u e> ,
”manufacture ” : <s t r i n g v a l u e> ,
” s e r i a l n o ” : <s t r i n g v a l u e> ,
” inventory no ” : <s t r i n g v a l u e> ,
”owner ” : <s t r i n g v a l u e> ,
” a m p l i f i e r t y p e ” : <s t r i n g v a l u e> ,
”measurement type ” : <s t r i n g v a l u e> ,
”operation mode ” : <s t r i n g v a l u e> ,
” sw i t ch ing f r equence ” : <numeric value> ,
”duty cyc l e ” : <numeric value> ,
”ga in ” : <numeric value> ,
”h i g h p a s s c u t o f f ” : <numeric value> ,
” l o w p a s s c u t o f f ” : <numeric value> ,

}

2.4.8 Brain Vision Format

EEG data at UWB are recorded by BrainVision Recorder [14] (Figure 2.5).
This program records raw data and saves it to three files, which are described
in the next chapter.

The BrainVision Recorder does not allow natively recorded data in any
other format. Most recordings consist of three files. The format of these files
is defined in the BrainVision Recorder User Manual [13]:

• data file

This is binary file which contains recorded values from recording device.
The data are stored as double numbers.

• vhdr file

This text file is Brain Vision Data Exchange Header File Version 1.0
and includes basic information about measurements. The format of
the header file is based on the Windows INI format. It consists of
various named sections containing keywords/values. The file stores
basic information about measuring: coding, name of data file, name

19

State of the Art Hierarchical Data Format

of marker file, number of channels, sampling interval in microseconds,
information about binary format (IEEE FLOAT 32) and information
about channels (Channel number, channel name, resolution of unit,
unit). The sample file of stored data and metadata is in listings 2.2
2.3 A.1 A.2 and table A. The sample file shows data saved in the
EEGBase format.

• vmrk file

This is Brain Vision Data Exchange Marker File, Version 1.0. The
marker file is based upon the same principle of sections and keywords
as the header file. This text file contains information about markers.
The file stores marker number, type of the marker, description, position,
size and channel number. The example of file is in Listing A.3.

Listing 2.2: The header file example - Information about the file format.

Brain Vision Data Exchange Header File Version 1.0

; Data created by the Vision Recorder

Listing 2.3: The header file example - Information about coding, created
files, data orientation, number of recorded channels and sampling interval.

[Common Infos]

Codepage=UTF-8

DataFile=000007.eeg

MarkerFile=000007.vmrk

DataFormat=BINARY

; Data orientation: MULTIPLEXED=ch1,pt1, ch2,pt1 ...

DataOrientation=MULTIPLEXED

NumberOfChannels=48

; Sampling interval in microseconds

SamplingInterval=5000

2.5 Hierarchical Data Format

Hierarchical Data Format (HDF) is a data model, file format and library for
storing extremely large and complex data collections. [22] This technology is
able to store any kind of data and is used all over the world in research centers
and government agencies. For example the format HDF5 is used by Cardiff

20

State of the Art Hierarchical Data Format

Figure 2.5: Software used for
EEG recording at University

of West Bohemia -
BrainVision Recorder. [14]

University for resolving their problem with grid computing, Deutsche Bank
for financial engineering, Diamond Light Source in synchrotron science (using
NeXus format- Section 2.4.3), Laboratory for Neural Computation for bio-
engineering and many others. A lot of formats for storing electrophysiology
data use HDF5. The adopters are able to solve variety of problems with HDF
format. (Figure 2.6). ”The grouping structure in HDF5 enables applications
to organize data objects in HDF5 to reflect complex relationships among
objects. The rich collection of HDF5 datatypes, including datatypes that
can point to data in other objects, and including the ability for users to
define their own types, lets applications build sophisticated structures that
match well with complex data. The HDF5 library has a correspondingly rich
set of operations that enables applications to access just those components
that are important.” [22]

HDF is similar to XML documents, HDF files allows to specify complex
data relationships and dependencies and are self-describing. Several APIs

21

State of the Art Hierarchical Data Format

for programing languages C, C++, Fortran 90, Java and others are available
for this format. HDF is open-source (Berkeley Source Distribution (BSD)
license), stored data are human readable and the metadata model is easily
customized.

Figure 2.6: Detailed descriptions of some of the data challenges facing HDF
adopters. [22]

The advantages of using HDF5: [33]

• Compact binary data storage, extensible metadata

The HDF5 container could use software lossless compression. Szip and
Gzip are a stand-alone libraries that are configured as optional filters
in HDF5. An Application is using Szip or Gzip compression when a
dataset is created and if Szip (Gzip) encoder is enabled, data is au-
tomatically compressed and decompressed by Szip (an implementation
of the extended-Rice lossless compression algorithm) or Gzip compres-
sion. (Figure 2.7). HDF5 allows to use third party compression filters
too.

22

State of the Art Hierarchical Data Format

Figure 2.7: Comparison of
compression performance in tests
with HDF4. Size of compressed
output with Szip in HDF4. The
test were conducted with HDF4

format, but the compression
algorithms are the same in HDF5.

• Fast random and parallel access, efficient, scalable

The HDF already supports parallel I/O and there is project of the
European synchrotron particle accelerator community on developing
the capability for multiple reader processes to read from an HDF5 file
while another process writes to the file. The HDF container supports
compression.

• Widely used in High Performance Computing

• Open source and cross-platform

The HDF5 format is open source and the HDF Group offers API in
many languages (C, Java, Python, Fortran,..) for a various platforms.

• Possible speed up the query [20]

Possible limitations of HDF5: [33]

• Difficulty to store variable-length string properties.

Storing of string properties is not simple, especially for strings with
variable length.

• Deleting a dataset does not free the space on disk.

The deletion of a dataset from HDF5 file does not free the space and
the dataset stays in the file (but is inaccessible). The release of the
space on disk requires rewriting the file.

• Evaluating HDF5

There is no tool to evaluate HDF5 files. The HDF allows storing of any
data and it is complicated to evaluate it.

23

State of the Art Ontologies

• Delete or update a dataset in HDF5

The size of the dataset cannot be reduced after it is created. The
dataset can be expanded by extending one or more dimensions, with
function H5Dextend. It is not possible to contract a dataspace, or to
reclaim allocated space.

2.6 Ontologies

Ontologies are formalized vocabularies of terms. Yann Le Franc defined on-
tologies this way: ”Ontologies are formal models of knowledge in a particular
domain and composed of classes that represent concepts defining the field
as well as the logical relations that link these concepts together.” [18] The
model of ontology is in Figure 2.8.

Figure 2.8:
Ontology

model. [18]

2.6.1 Neural ElectroMagnetic Ontology

Neural ElectroMagnetic Ontology describes classes of event-related brain po-
tentials and their properties, including spatial, temporal, and functional (cog-
nitive/behavioral) attributes, and data-level attributes (acquisition and anal-
ysis parameters). [6]

24

State of the Art Ontologies

2.6.2 Gene Ontology

This project provides an ontology of defined terms representing gene product
properties. The ontology covers three domains: cellular component, molecu-
lar function and biological process. [15]

2.6.3 Phenotype And Trait Ontology

”Phenotype And Trait Ontology is an ontology of phenotypic qualities in-
tended for use in a number of applications, primarily defining composite phe-
notypes and phenotype annotation, Phenotypic qualities (properties). This
ontology can be used in conjunction with other ontologies.” [15]

2.6.4 The Open Biomedical Ontologies Foundry

The open biomedical ontologies (OBO) Foundry is a collaborative experiment
involving developers of science-based ontologies who are establishing a set
of principles for ontology development with the goal of creating a suite of
orthogonal interoperable reference ontologies in the biomedical domain. [10]

2.6.5 OBO Relations Ontology

Relations Ontology is a collection of relations intended primarily for stan-
dardization across ontologies in the OBO Foundry and wider OBO library.
It incorporates core upper-level relations such as part of as well as biology-
specific relationship types such as develops form. [44]

2.6.6 NIFSTD

Neuroscience Information Framework Standard ontology (NIFSTD) is a core
component of Neuroscience Information Framework (NIF) project, a seman-
tically enhanced portal for accessing and integrating neuroscience data, tools
and information. NIFSTD includes a set of modular ontologies that provide

25

State of the Art Open Metadata Markup Language

a comprehensive collection of terminologies to describe neuroscience data and
resources. [8]

2.6.7 Basic Formal Ontology

The Basic Formal Ontology (BFO) is a small, upper level ontology that is
designed for use in supporting information retrieval, analysis and integration
in scientific and other domains. BFO is a genuine upper ontology designed
to serve data integration in scientific and other domains. Thus it does not
contain physical, chemical, biological or other terms which would properly
fall within the coverage domains of the special sciences. [1]

2.6.8 Computational Neuroscience Ontology

Computational Neuroscience Ontology (CNO) is a controlled vocabulary of
terms used in Computational Neurosciences to describe models of the nervous
system. This first release of CNO is an alpha version and should be further
aligned with other ontologies accessible on Bioportal and should be made
compliant with the OBO foundry recommendations. [17]

2.6.9 Ontology for Biomedical Investigations

Ontology for Biomedical Investigations is an ontology of investigations, the
protocols and instrumentation used, the material used, the data generated
and the types of analysis performed on it. [35]

2.7 Open Metadata Markup Language

The metadata in electrophysiology domain providing information about stim-
uli, data acquisition, and experimental conditions are indispensable for the
analysis and the management of experimental data within a lab. How-
ever, only rarely are metadata available in a structured, comprehensive, and
machine-readable form. This poses a severe problem for finding and retriev-
ing data, both in the laboratory and on the various emerging public data

26

State of the Art Open Metadata Markup Language

Figure 2.9: Open metadata Markup Language Entity-Relation diagram.
[21]

bases. [21] The odML defines the format, not the content, so that it is in-
herently extensible and can be adapted to the specific requirements of any
laboratory. For data sharing a correct understanding of metadata and data
is only possible if the same terminology is used or if mappings between ter-
minologies are provided. For this purpose were assembled terminologies with
definitions of commonly used terms. [12]

Listing 2.4: Example of odml XML file.

<?xml version="1.0" encoding="ISO-8859-1"?>

<?xml-stylesheet type="text/xsl" href="odmlTerms.xsl"

xmlns:odml="http://www.g-node.org/odml"?>

<!-- *** -->

<!-- Subject section -->

<!-- *** -->

<odML version="1">

<repository>

http://portal.g-node.org/odml/terminologies/v1.0/terminologies.xml

</repository>

<version>1.0</version>

<date>2011-01-21</date>

<section>

<type>subject</type>

<name>Subject</name>

<definition>The investigated experimental subject (animal or

27

State of the Art Open Metadata Markup Language

person). May contain the Cell and Preparation sections as

subsections.</definition>

<property>

<name>Comment</name>

<value>

<type>text</type>

</value>

<definition>A general comment on a specific subject. </definition>

</property>

odML stores data as extended key-value in hierarchical (tree) structure
(Figure 2.9). The main concept of odML is to separate the content and the
structure. The big benefit of odML is that it is highly flexible and allows to
save any kind of data.

”Property and Section entities are the core of the odml. A Section contains
Properties and can further have subsection thus building a tree-like structure.
The model further does not control the content which is a risk, on the one
hand, but offers the flexibility.” [21]. So far is the odML model is implemented
as a XML schema. Listing 2.4 shows the XML file structure and provides
example of odML file.

28

3 Analysis and Design

The file format is divided into the two autonomous parts DATA and META-
DATA, which relate to each other, but could be read or written separately.
The both parts are stored in one HDF5 container.

The data part stores all recorded binary data and the basic information
about measuring for correct representation of measured data (Sampling in-
terval, resolution and resolution unit). This section includes data from the
eeg 2.4.8, vhdr 2.4.8 and vmrk 2.4.8 files. The file structure is defined by
the NIX file model - (Figure 2.4). I also use the same terminology and the
file structure. However our model - EEGBase model was simplified for our
needs. More specific description follows in Section 3.2.

Java was selected as a programming language for program developing,
because there is already parser of Brain Vision formats developed and also
the EEGBase portal is written in Java. There is effort to include the export
program into the EEGBase portal for easy export.

3.1 Current Formats Comparison

The comparison of the selected file formats is in Table 3.1. Formats in the
comparison were selected, because they use HDF5 and their model is open.
The close models could be limited by licenses and their modifications could
be limited. The valuated criteria are:

• Proprietary - the format is open source / closed

• Data terminology - terminology for data (and necessary metadata)
is defined

• Data ontology - ontology for data is defined

• Metadata terminology - terminology for metadata is defined

• Metadata ontology - terminology for metadata is defined

• Portability - the format has an application programming interface
(API) for different languages, platforms

29

Analysis and Design Current Formats Comparison

• Java API - the format has Java API (my program is in Java)

• Extensibility of model - the data and metadata models are extensible

• Documentation of format - the file format documentation and its
availability

I evaluated formats with three grades compared to our needs. One is best,
minus one is worst. The evaluation is subjective even though I tried to be as
objective as possible.

Table 3.1: The current formats comparison.

Format Ovation EDF+ NeXus NEO neuroHDF NIX epHDF

Proprietary -1 1 1 1 1 1 1
Data
terminology

1 1 0 1 0 1 1

Data
ontology

1 1 0 1 1 1 1

Metadata
terminology

1 1 -1 0 -1 1 1

Metadata
ontology

1 1 -1 0 -1 1 1

Portability 0 1 1 1 1 0 -1
Java API -1 1 1 -1 -1 -1 -1
Extensibility 0 -1 -1 0 0 1 1
Documentation 1 1 1 1 0 1 0

NIX and epHDF look like the best models. Both these models are sup-
ported by INCF.The NIX project offers only C++ API and epHDF is only a
standard for file format. Because my effort was integrate program for export-
ing measured data into the EEGBase portal [2], which is in Java, I choose
Java as the programming language for my program. The HDF Group pro-
vides Java API for read and write HDF files so I was able to create my own
program that writes data in the HDF5 container. Because the NIX model is
better commented and provides API, I choose NIX as a initial solution for
EEGBase format.

30

Analysis and Design Data Model

HDF5 file root

created_at: string - date ISO8061
format: string
updated_at: string - date ISO8061
version: float

DataArray: electrode name: string

ID: String
positon: array: double
resolution: float
resolution unit: String
sampling interval in microseconds: String

DataArray: marker name: string

ID: String
position: array: int

Group: SIGNALGroup: MARKER

Group: block_id

ID:string

Group: DATA

Figure 3.1: The final data model of proposed data format. The data are
stored in tree structure with fixed terminology and structure. Each Group
MARKER and SIGNAL could contain zero or more DataArrays with raw

data.

3.2 Data Model

The data model is based on the NIX data model (Figure 2.4 and Sec-
tion 2.4.6). The NIX model is able to save data from any electrophysiology
experiment. But for EEG experiments the NIX model is too general. So I
used only necessary parts of the model and other sections were omitted. The
omitted parts are in the NIX model optional, so my format is compatible
with the NIX definition. My data model is described in Figure 3.1. The
data model uses the NIX scheme of Block, DataArray, MultiTag, DataTag
and SimpleTag. The Block is used to divide measuring, DataArray stores
raw data of signals and stimuli and MultiTag stores stimuli information and
DataTag contains EEG channel information. DataArrays are divided for
better distribution in my model to SIGNAL and MARKER parts. Also, the
names of DataArrays correspond to names of channels. These adjustments
allow better human readability and do not influence information or the model
compatibility.

31

Analysis and Design Model Ontology

3.3 Model Ontology

3.3.1 Data Part

Ontology and terminology of the data part is based on the NIX model that
is described above in Section 3.2 - Data model and in Figure 3.1.

3.3.2 Metadata Part - odML

Metadata are organized according to odML terminology. The German Neu-
roinformatics Node (G-Node) odML scheme and terminology was used for
the metadata part of file, but there was some more information in the meta-
data scheme used at UWB, which was difficult to save with existing odML
terminology. Therefore the odML model and terminology were extended.
The changes and adjustments are described in Section 3.3.5 - Metadata ad-
justments. We also decided that it would be useful to store some more data,
which are more specific and could help to describe experiments better. The
existing ontologies were also searched, for example Ontology for biomedical
investigations [10] [16]. However, I decided to use odML because I was able
to extend odML to perfectly fit our needs and it is already used by the NIX
model.

3.3.3 UWB Metadata Model

This section shows all collected metadata, which are saved with experiments
at UWB and stored in the EEGBase portal [2]. The summary and comparison
between the EEGBase portal information and original odML (without our
changes) model is in Table 3.2.

32

Analysis and Design Model Ontology

Table 3.2: The comparison between the EEGBase portal metadata model
and terminology used by the odML model (without my adjustments).

EEGBase odML

Digitization Gain HW/Amplifier Gain
Digitization Filter HW/Filter
Digitization Sampling rate HW/DataAcq SampleRate
Pharmaceutical1 Title -
Pharmaceutical Description -
Artifact Compensation -
Artifact Reject condition -
Disease Title -
Disease Description Subject HealthStatus
Weather Description -
Weather Title -
Artifact rem meth2 Title -
Artifact rem meth3 Description -
Software Title -
Software Description -
Hardware Title HW/type Model
Hardware Description -
Hardware Type -
Project type Title Experiment Type
Project type Description -
Subject group Title -
Subject group Description -
Exper opt par4 Param name -
Exper opt par5 Param type -
Exper opt par val6 Param value -
Electrode conf Impedance Electrode Impedance
Electrode conf Desc img ID -
Electrode system Title -
Electrode system Description Electrode ElectrodeCount

Continued on next page

1Specification of pharmaceutics used by subject.
2Name of the used artifact remove method.
3Description of the used artifact remove method.
4Name of optional experiment parameter.
5Data type of optional experiment parameter.
6Value of optional experiment parameter.

33

Analysis and Design Model Ontology

Table 3.2 – Continued from previous page
EEGBase odML

Electrode location Title -
Electrode location Shortcut -
Electrode location Description -
Electrode fix Title Electrode
Electrode fix Description Electrode
Electrode type Title Electrode Type
Electrode type Description Electrode
Scenario Title -
Scenario Scenario Length -
Scenario Description experiment/type Protocol
Scenario Scenario name -
Scenario Mimetype -
Stimulus Description Stimulus Desc/Start/End
Stimulus type Description -
Person Givenname Person FirstName
Person Surname Person LastName
Person Date of birth Person Birthday
Person Gender Person Gender
Person Email Subject ContactInfo
Person Phone number Subject ContactInfo
Person Note Subject Comment
Person Laterality -
Education level7 Title -
Experiment Start time Recording Start
Experiment End time Recording End
Experiment Temperature -
Experiment Env note -
Experiment Res group id Recording ExperimenterID

3.3.4 NIX Metadata Model

The metadata model of NIX is using odML. odML is described in section
3.3.2. The whole odML terminology is too general and too extensive to
list it here. So I chose the basic and most used sections which are related

7Highest ducation level of person.

34

Analysis and Design Model Ontology

to our model and EEG measurements and added it in Appendix B in Fig-
ures B.1 B.2 B.3 B.4. The EEGBase model contains modifications which are
described below.

3.3.5 Metadata Terminology Extensions

In order to save all our metadata into the HDF5 container I extended the
odML model for our metadata. These modifications were committed to G-
Node respective INCF GitHub repository [9]. New sections Environment,
Protocol and Software and several attributes to the existing sections Per-
son and Electrode were added. All suggested changes were included into
odML. All modification are listed in Table 3.3. Several attributes do not have
descriptions, because their names are self-describing.

Table 3.3: Modifications of the odML model.

Name Property Value Definition

Electrode Usage Ground Usage of electrode. 8

Electrode Usage Reference Usage of electrode.8

Electrode Usage Channel Usage of electrode.8

Electrode Description String
Environment Weather String
Environment RoomTemperature String
Environment AirHumidity float The air humidity in %.
Environment Description String
Protocol Description String Description of the experi-

ment
Protocol Author person The persons who create this

protocol.
Protocol ProtocolFile binary Protocol File.
Protocol ProtocolFileURL URL URL of protocol file.
Protocol Version String Version of the protocol.
Person Education level String Highest archived education

level of the person.
Person Role Subject The role of this person.
Person Email String Person’s e-mail.
Person PhoneNumber String Person’s phone number.

Continued on next page

8Added terminology that describes usage of electrode.

35

Analysis and Design Model Ontology

Table 3.3 – Continued from previous page
Name Property Value Definition

Person Laterality String Handedness - The dominant
hand of the subject.

Software Name String The software name.
Software Owner String The owner of software.
Software Developer String Developer or developers

firm of the software.
Software Version String Version of the software.
Software License String License type.
Software LicenceStart date The start date of time lim-

ited license.
Software LicenceExpiration date The end date of time limited

license.
Software LicenceDuration String Duration of the license for

the software.
Software LicenceCount int Number of the software li-

cense.9

Software Distribution String Distribution type.
Software Description String
Software LicenceDuration String Duration of the license for

the software.

I also made some recommendations, which data would be useful to store
a time zone, detail information about hardware and software and details
about the project and experiments. The distribution of experiments by type
in odML is very useful and could be used in the EEGBase portal. The
information about the project could be also helpful to identify a specific
type of experiment. odML is able to save most of these metadata and has
a terminology for it so the EEGBase model is able to save them into the
HDF5 container. When the current metadata model at University of West
Bohemia will be extended it would not be problem to save it in EEGBase
format. I suggested also that terminology of UWB metadata model could use
odML terminology, because odML have terminology for all currently saved
information.

9For floating licenses

36

Analysis and Design Model Ontology

3.3.6 EEGBase Metadata Model

The model tree structure of EEGbase model metadata is in Appendix C. Be-
cause odML scheme is not mandatory but only recommended, it is possible
to save, for example, experiments on mice which are also performed at UWB
in cooperation with The Faculty of Medicine - it is not necessary use both
person and subject model, but it is possible to use only a subject’s model.
(Figure 3.2). The EEGBase model will store the tree structure of meta-
data into the EEGBase portal for easier, complete and adjustable metadata
export.

Measurement of a mouse

Measurement of a person

Subject
-	Comment	:	text
-	Species	:	string
-	Genus	:	string
-	TrivialName	:	string
-	Gender	:	string
-	Birthday	:	date
-	Age	:	string
-	Strain	:	string
-	CellLine	:	string
-	Population	:	string
-	Label	:	string
-	HealthStatus	:	string
-	DevelopmentalStage	:	string
-	ConactInformation	:	text
-	Size	:	float
-	Weight	:	float

Recording
-	Comment	:	string
-	Experimenter	:	person
-	ExperimenterID	:	person
-	Start	:	datetime
-	End	:	datetime
-	StartDate	:	date
-	EndDate	:	date
-	StartTime	:	time
-	EndTime	:	time

Person
-	FirstName	:	string
-	LastName	:	string
-	FullName	:	person
-	Gender	:	string
-	Birthday	:	date
-	Role	:	string
-	E-mail	:	string
-	PhoneNumber	:	string
-Laterality:		string

Subject
-	Comment	:	text
-	Species	:	string
-	Genus	:	string
-	TrivialName	:	string
-	Gender	:	string
-	Birthday	:	date
-	Age	:	string
-	Strain	:	string
-	CellLine	:	string
-	Population	:	string
-	Label	:	string
-	HealthStatus	:	string
-	DevelopmentalStage	:	string
-	ConactInformation	:	text
-	Size	:	float
-	Weight	:	float

Recording
-	Comment	:	string
-	Experimenter	:	person
-	ExperimenterID	:	person
-	Start	:	datetime
-	End	:	datetime
-	StartDate	:	date
-	EndDate	:	date
-	StartTime	:	time
-	EndTime	:	time

Figure 3.2: The comparison of metadata sections for saving experiments
with a person or a mouse.

37

Analysis and Design HDFExport Program

3.4 HDFExport Program

3.4.1 Program Specification

I chose the Java programing language because I was hoping to implement this
program as a part of the EEGBase portal so it will be possible to export the
data directly from the portal through an internet browser. This approach is
similar to what Ovation uses (store information in database and allows export
to HDF5). The problems with HDF libraries came up. Closer information
about the EEGBase portal integration is in Section 4.5. The other option
was to create a desktop application that uses Simple Object Access Protocol
(SOAP) web services of EEGBase portal for loading data and metadata for
export.

The program is designed for several use cases divided by data and meta-
data location (Figure 3.3):

• data and metadata export from locally stored Brain Vision files only

• data and metadata export from locally stored Brain Vision files and
metadata from EEGBase portal

• data and basic metadata export from in EEGBase postal stored Brain
Vision files without experiments metadata

• data and metadata export from EEGBase portal and Brain Vision files
stored in EEGBase portal

Other division is by type of exported data (Figure 3.4):

• Only raw EEG data and basic metadata are exported

Only data and metadata from the Brain Vision files are exported. Stim-
uli are not exported (not all measurements uses stimuli).

• Raw EEG data, basic metadata and stimuli are exported

All data, metadata and stimuli from Brain Vision files are exported.

• Raw EEG data, basic metadata, stimuli and experiments metadata are
exported

38

Analysis and Design HDFExport Program

Figure 3.3: Use cases of
HDFExport Program.

All data, metadata and stimuli from the Brain Vision files and experi-
ments metadata from EEGBase portal are exported.

• Raw EEG data, basic metadata and experiments information are ex-
ported

All data, metadata and experiments information are exported.

3.4.2 Architecture

The program for export is based on the three layer architecture. The Brain
Vision files parser (EEGDataTransformer), web service client (EDEDClient),
HDF5 writer (uses HDF Group libraries for work with HDF5 container) and
Graphical user interface (GUI) are the most important parts of the program.
Some supportive classes were written (IDGenerator, IsoTime). These gener-
ate unique IDs and date in ISO format.

39

Analysis and Design HDFExport Program

Figure 3.4: Use cases of
HDFExport Program.

HDFExport program

EEGBase portal

HDD

web service
downloadDataFile

Load files
from file system

HDF5/HDF5file

EEGDataTransformer
eeg, vhdr,
vmrk files

HDF5
container

raw data,
basic metadata and

amplifier information

IDGenerator

nextSessionId()

IsoTime

getISODate()

convertDateTimeToIso()

GUI

DataWriter

AddDataset

AddMultiTag

MetaDataWriter

AddProject()

web service
UserDataService

Controls
source of data

EDEDClient

getExperimentsMetadata

Sets ID of experiment
 for Metadata load

Figure 3.5: The diagram of EEGBase HDF5 export program

40

4 Implementation

This chapter describe the EEGBase format implementation and the EEG-
Base Export program implementation.

4.1 HDF Libraries

This section explains which libraries and HDF5 structures I used for HDF
file operation.

The disadvantage is that the NIX project has no Java API so it was nec-
essary to use the HDF5 Java API [4], but this API is not native. The HDF
Group creates several libraries for Java. The HDF-Java wrappers consist of
the Java HDF Object Package, related HDF4 and HDF5 Object Packages,
and the native interface for Java HDF (JHI) and The Java HDF5 Inter-
face (JHI5). The native interface includes the Java classes and C interface
libraries.

The most intuitive way is using the HDF Object Package [3]. But I wrote
my application with JHI5 which is used by HDF Object Package, because
it calls directly native C functions. Therefore the program should be more
quick and also more examples are available (the Java functions are similar to
C and Python functions).

”The HDF Object Package does not provide a one-to-one mapping from
Java methods to routines in the standard HDF4 and HDF5 libraries. The
one-to-one mappings are provided via the HDF Java Native Interface prod-
ucts JHI and JHI5. The HDF Object Package wraps these direct mappings
with a higher level object model.” [3] The diagram is in Figure 4.1.

The HDF works with five basic types of objects:

• Group

A group is used as a folder in the file system, it divides objects into the
logical groups. The group can contain none or more objects and can
be member of another group.

41

Implementation HDF Libraries

Figure 4.1: The HDF Object
Package. [3]

• Dataspace

This is a required part of HDF5 Dataset or Attribute. The Datas-
pace contains raw data and defines size and shape of data (defines the
number of dimensions and size of each element).

• Dataset

The Dataset is an object that describes stored data. It could contain
none or more attributes and it is composed from raw data, metadata,
data layout or other information necessary to write, read or interpret
the stored data. The application view of a dataset is in Figure 4.3.

• Datatype

The HDF5 datatype defines the storage format for a single data ele-
ment. The description is in Figure 4.4. The datatype describes the
storage layout of a single data element. All elements of the dataset
must have the same type and the datatype of a dataset is immutable.

42

Implementation HDF Libraries

Figure 4.2: Application view of a dataset. [22]

• Attribute

An HDF5 attribute is a small metadata object describing the nature
and/or intended usage of a primary data object. A primary data object
may be a dataset, group. Even though an attribute is not a standard
HDF5 Dataset, it has several common properties: [22]

– An attribute has a user-defined dataspace and the included meta-
data has a user-assigned datatype

– Metadata can be of any valid HDF5 datatype

– Attributes are addressed by name

Attributes are from Datasets different in:

– There is no provision for special storage such as compression or
chunking

– There is no partial I/O or sub-setting capability for attribute data

– Attributes cannot be shared

– Attributes cannot have attributes

– Attributes are stored in the object header

43

Implementation Used HDF5 Data Types

Figure 4.3: Example of HDF5 file with EEGBase format in HDFView 2.11-
the Dataset with name T6 (EEG channel) with Dataspace (array of

1414260 double numbers) and four attributes.

Since all elements defined in HDF5 have names, they can be referenced
by their path. [39]

4.2 Used HDF5 Data Types

The following data types were used in the HDF5 container:

• double

The signal raw data are stored as the HDF5 type H5T IEEE F64LE.

• float

Float numbers are saved as the HDF5 type H5T IEEE F32LE. The
stimuli raw data are saved in this format.

• string

All strings are stored as type H5T C S1. Almost all attributes, dates
and IDs are saved as strings.

44

Implementation EEGBase File Structure

Figure 4.4: Datatypes, dataspaces, and datasets. [22]

4.3 EEGBase File Structure

The root of the file contains basic information about the file and the for-
mat. It also divides the file container into two groups Data and Metadata.
(Table 4.1). The International Organization for Standardization (ISO) 8601
format was used for the date, because even though HDF5 has a data type for
the date, it is not platform independent. The NIX model does not have the
date format specified so I chose the norm of Czech standards (CSN) ISO 8601
[5], which is one of many possible formats and it is the Czech version of the
international format ISO 8601:2004. This norm allows the user to save date
and time at once and specify even the time zone. This could be important for
the flawless representation of measured data. Then the final Date string is:
Complete date plus hours, minutes, seconds and a decimal fraction of a sec-
ond YYYY-MM-DDThh:mm:ss.sTZD (e.g. 1997-07-16T19:20:30.45+01:00)
[5]. This date and time is saved as String so it is platform independent and
thanks to the ISO norm is standardized.

Recordings are wrapped into the blocks (HDF groups). Each recorded
channel with basic metadata is saved in a block. The recorded signal values
(raw data) are stored in the Dataset with the name of the channel. Infor-
mation from files eeg (Section 2.4.8) (raw data) and vhdr (Section 2.4.8)
(metadata) and generated IDs are stored in the DATA section. Markers
(stimuli and artifacts etc.) information are stored in a block in the section

45

Implementation HDFExport Program Modules

root
attribute format string
attribute version string
attribute created at string - date ISO 8601
attribute updated at string - date ISO 8601
group DATA
group METADATA

Table 4.1: The root of HDF5 file.

MARKERS and they are saved also in the Datasets with the name of the
marker. (Figure 4.5).

Figure 4.5: Example
of HDF5 file with

EEGBase format in
HDFView 2.11- the

DATA section.

The HDF5 container stores information about array dimensionality and
a stored data type natively. (Figure 4.3).

4.4 HDFExport Program Modules

4.4.1 Brain Vision Files Parser

The EEGDataTransformer from Jan Štěbeták [47] was used as a parser for
current eeg, vhdr and vrmk files. Only minor changes of this program were
made. I added the class AmplifierInfo and ImpedanceInfo and the methods
NumberOfChannels, SamplingInterval, getAmplifier, getImpedanceInfo into
DataTransformer interface. The method getUnits() of ChannelInfo class was
edited, because the returned String was in wrong format. Figure 4.6.

46

Implementation HDFExport Program Modules

Figure 4.6: Class diagram of edited EEGDataTransformer program. New
methods and classes are marked.

47

Implementation HDFExport Program Modules

4.4.2 Metadata Loader

The metadata are loaded through web services, which were written by Jan
Štěbeták [45], and from Brain Vision vhdr file.

The program uses the web service UserDataService and its methods for
loading all experiments metadata. The client was generated from Web Service
Definition Language (WSDL) file [46]. EDEDCLient [30] written by Petr
Miko was used as a client for web services.

4.4.3 HDF5 Writer

The writer consists of three classes:

• HDF5file

The the HDF5 file is created in this class and all necessary information
about format (Version, Format name, Date) are written in the file. This
class uses and calls methods from DataWriter and MetaDataWriter
classes.

• DataWriter

This class saves all binary data and markers to the HDF5 container.
This class saves also essential metadata of raw data into attributes.

• MetaDataWriter

This class stores all loaded metadata into METADATA part (Sec-
tion 3.3.3).

The programming was not simple, because the C methods stayed the
same and the wrappers only allow to be called from Java Virtual Machine.
The example of the Java code and calls of C functions are in Listing 4.1. The
methods for easier work with HDF5 libraries were written and the code for
saving string into the HDF5 file is in Listing 4.3 and for storing binary data
into the datasets is in Listing 4.2.

48

Implementation HDFExport Program Modules

Figure 4.7: HDF5 file with data with EEGBase format - in HDFView 2.11

Listing 4.1: Creating Group in HDF5 with Java wrappers. This code creates
a new group with the name METADATA at the specified location block

//create Group

H5.H5Gcreate(this.block, "METADATA", HDF5Constants.H5P_DEFAULT,

HDF5Constants.H5P_DEFAULT, HDF5Constants.H5P_DEFAULT);

Listing 4.2: Saving binary data into the dataset. It saves
H5T IEEE F64LE (double) in dset data if saving location dataset id exists

if (dataset_id >= 0) // location exists

H5.H5Dwrite(dataset_id, HDF5Constants.H5T_IEEE_F64LE,

HDF5Constants.H5S_ALL, HDF5Constants.H5S_ALL,

HDF5Constants.H5P_DEFAULT, dset_data);

Listing 4.3: Saving string as attribute in HDF5.

//SaveString method

int attribute_space,attribute_id=-1;

int stype =-1;

//create space for one char

attribute_space = H5.H5Screate(HDF5Constants.H5S_SCALAR);

//copy size of char

49

Implementation EEGBase Portal Integration

stype = H5.H5Tcopy(HDF5Constants.H5T_C_S1);

//sets size of string lenght*size of char

H5.H5Tset_size(stype, savedString.length());

//create attribute in location dataset_id, with name HdfName, size

stype

attribute_id = H5.H5Acreate(dataset_id, HdfName, stype,

attribute_space, HDF5Constants.H5P_DEFAULT,

HDF5Constants.H5P_DEFAULT);

//writes string into prepared attribute_id, with size of stype

H5.H5Awrite(attribute_id, stype, savedString.getBytes());

//if all was correct close space

if(attribute_space>-1){

H5.H5Sclose(attribute_space);

}

//if all was correct close attribute

if(attribute_id>-1){

H5.H5Aclose(attribute_id);

}

4.4.4 Graphical User Interface

The program has only a basic GUI, because the main purpose is to provide
methods for saving all current data and metadata to the HDF5 container.
The methods which are working with HDF5 container are general and it is
possible to use them in any other program. All methods are in separate
classes in a special package hdf5. GUI for locally stored data use case is
presented in Figure 4.8.

4.5 EEGBase Portal Integration

Although my first effort was to import my program into the EEGBase portal,
I was unable to do so. I tried to create a prototype which would save stored
data into the HDF5 file in a web container. However I could not make Java
wrappers work in the web container. I contacted HDF Group support for
advice, however, the support and developers did not know how to develop
such a program. I did some research and I tried to make the program work
on the Tomcat server and Glassfish server but with no success. For those

50

Implementation EEGBase Portal Integration

Figure 4.8: EEGBase HDF5 export program. Metadata are loaded trough
web services.

reasons I chose to use the EEGBase portal SOAP web services to load data
for export to the HDF5 container.

It was necessary to create a new web service, which will export all meta-
data of the experiment. The web service getExperimentsMetadata was cre-
ated for that reason and it is used by my program.

51

5 Tests

The program was manually tested for several use cases and all created HDF5
files were verified manually (opened and the contents was checked) by official
program of HDF Group HDFView [4] in version 2.11 - Figure 4.7. The
following test describing writing speed into HDF5 container were conducted.
(Table 5.1). The file size of created files were also tested. (Table 5.2).

5.1 Performance Tests

The write performance tests were conducted to determine time consumption
of export. The tests were conducted on a standard desktop computer (pro-
cessor Intel Core i7 at 3,4 GHz, 8 GB of DDR3 RAM, standard HDD with
7200 rpm). An unusually high memory consumption was detected during
the test. The amount of occupied memory by the EEGExport program for
big (220 MB) measurements reached up to 4 GB of memory. Further testing
showed that Java Virtual Machine, in attempt to speed up export, does not
free allocated memory. However, if the program was paused the amount of
allocated memory was lower; the program could run with less memory. In
the end the disk writing speed was a limited factor. The conversion times
with GZip compression are shown in Table 5.1.

1Average time from four savings.

Table 5.1: Performance tests with GZip compression. Each file was saved
seven times.

File size Time needed for conversion in ms
of Brain Vision files Best Worst Average With compression1

21,3 MB 3010 3501 3132 7529
51,2 MB 6160 7906 6700 26051
58 MB 7668 8262 7947 29032

87,2 MB 31364 35957 32820 44877
197,8 MB 13060 14625 13502 40168
221,3 MB 14589 16321 15197 42679
221,6 MB 14347 16108 14871 43586

52

Tests File Size Test

5.2 File Size Test

Several test were conducted to determine the resulting file size of the HDF5
container containing all data. Data from real experiments were used for
the tests. The test shows that size of the HDF5 container is influenced
by exported data and the original file size is not the only decisive factor.
The size of the HDF5 container is always bigger then Brain Vision files,
at worst case even four times bigger in the best scenario about two times
bigger. The results are shown in Table 5.2. The ratio is better for longer and
bigger measurements. The GZip compression was used to reduce file size.
The GZip compression is integrated in HDF libraries and it is supported
natively (reading of the data does not require any special actions). The
size of compression chunk was set to 256 after several tests. The file size
was decreasing with bigger chunk size, but the performance was decreasing.
This settings had the best results in file size compared to the impact on
performance. With the GZip compression the file size ratio decreased to 1,62
in average. The influence of chunk size on file size is in Table 5.3. The
comparison between GZip and SZip compression is in Table 5.4. The GZip
compression is better for smaller experiments. With bigger data the SZip
compression gets a smaller final file. However, most of experiments have
smaller size (smaller than 100 MB) I chose the GZip compression as default
compression algorithm.

Table 5.2: File size tests.

File size
HDF5 file size HDF5 file size

Ratio 2

of Brain Vision files with compression
21,3 MB 80,9 MB 26,92 MB 1,26x
51,2 MB 194,2 MB 112,98 MB 2,21x
58 MB 221,1 MB 102,79 MB 1,77x

87,2 MB 329,7 MB 124,51 MB 1,43x
197,8 MB 370,9 MB 305,19 MB 1,54x
221,3 MB 414,9 MB 355,58 MB 1,61x
221,6 MB 415,5 MB 334,46 MB 1,51x

2HDF5 is x times bigger than original file size.

53

Tests File Size Test

Table 5.3: File size dependency on compression chunk size.

Original file size
HDF5 file size in MB

chunk 64 chunk 256 chunk 512 chunk 1024
21,3 MB 39,76 26,92 23,30 20,46
51,2 MB 155,47 112,98 99,31 87,85
58 MB 151,31 102,79 88,60 77,96

87,2 MB 176,53 124,51 112,43 104,15
197,8 MB 365,63 305,19 292,59 285,48
221,3 MB 422,83 355,58 341,72 333,83
221,6 MB 402,81 334,46 320,22 312,10

Table 5.4: File size dependency on compression method. The chunk size is
256.

Original file size File size with SZip File size with GZip
21,3 MB 33,51 MB 26,92 MB
51,2 MB 138,01 MB 112,98 MB
58 MB 148,88 MB 102,79 MB

87,2 MB 145,53 MB 124,51 MB
197,8 MB 280,92 MB 305,19 MB
221,3 MB 331,01 MB 355,58 MB
221,6 MB 306,03 MB 334,46 MB

54

6 Evaluation and Summary

This thesis assignment was fulfilled. I examined current file formats for stor-
ing electrophysiology data and data from experiments and measurements
conducted at the University of West Bohemia. I became familiar with the
data and metadata model of EEG measurements and its terminology. I ex-
amined the data and metadata model of EEGBase portal.

Within my master thesis I analyzed two early file standard proposals from
INCF and I tracked progress in both. I found several currently used formats,
which are using HDF as a container in neuroinformatics. I chose the most
suitable format for our data and usage considering the INCF recommenda-
tions.

I created my own implementation of the chosen format. I chose HDF5
container for the EEGBase format. I joined the INCF Electrophysiology Data
Sharing Task Force and contributed to the odML terminology and ontology.
I developed a program that transforms raw data and metadata from Brain
Vision files to the EEGBase format, and I also included metadata which are
stored in the EEGBase portal. I tested my format and program for several
use cases and its performance.

The proposed EEGBase format is capable of storing all currently saved
data and metadata and is able to save the future changes and modifications
of metadata model. The developed program saves measured data into the
EEGBase format. I also made a few suggestions for the UWB model. The
program is currently using web services of the EEGBase portal for metadata
loading. The developed libraries allow export of raw data or data with meta-
data. Also the GZip and the SZip compressions are included in the code, but
the GUI offers only GZip compression (for tested data it had better compres-
sion results). Exporting experimental data and metadata in the EEGBase
format to the HDF5 container improves sharing capabilities of the EEGBase
portal and overall attractiveness of stored experiments. The next extension of
the program could be loading and exporting files directly from the EEGBase
portal trough web services. The GUI of EEGBase HDF5 export program
could be improved to offer better selection of export options.

55

List of Figures

2.1 The original 10-20 international system - internationally rec-
ognized method to describe and apply the location of scalp
electrodes in the context of an EEG test or experiment. [43] . 10

2.2 Stages of Electronic Data Capture. [42] 11
2.3 Ovation work model - Researchers upload their data into Ova-

tion portal and describe them. Then they could work with
data with existing analyze tools or work directly with project
with linked version-controlled data. [37] 14

2.4 NIX data scheme. [38] . 17
2.5 Software used for EEG recording at University of West Bo-

hemia - BrainVision Recorder. [14] 21
2.6 Detailed descriptions of some of the data challenges facing

HDF adopters. [22] . 22
2.7 Comparison of compression performance in tests with HDF4.

Size of compressed output with Szip in HDF4. The test were
conducted with HDF4 format, but the compression algorithms
are the same in HDF5. 23

2.8 Ontology model. [18] . 24
2.9 Open metadata Markup Language Entity-Relation diagram.

[21] . 27

3.1 The final data model of proposed data format. The data are
stored in tree structure with fixed terminology and structure.
Each Group MARKER and SIGNAL could contain zero or
more DataArrays with raw data. 31

3.2 The comparison of metadata sections for saving experiments
with a person or a mouse. 37

3.3 Use cases of HDFExport Program. 39
3.4 Use cases of HDFExport Program. 40
3.5 The diagram of EEGBase HDF5 export program 40

4.1 The HDF Object Package. [3] 42
4.2 Application view of a dataset. [22] 43

56

4.3 Example of HDF5 file with EEGBase format in HDFView
2.11- the Dataset with name T6 (EEG channel) with Datas-
pace (array of 1414260 double numbers) and four attributes. . 44

4.4 Datatypes, dataspaces, and datasets. [22] 45
4.5 Example of HDF5 file with EEGBase format in HDFView

2.11- the DATA section. 46
4.6 Class diagram of edited EEGDataTransformer program. New

methods and classes are marked. 47
4.7 HDF5 file with data with EEGBase format - in HDFView 2.11 49
4.8 EEGBase HDF5 export program. Metadata are loaded trough

web services. 51

B.1 The odMLterminology. Part 1. 69
B.2 The odMLterminology. Part 2. 69
B.3 The odMLterminology. Part 3. 70
B.4 The odMLterminology. Part 4. 71

C.1 Metadata scheme of EEGBase format. 72

D.1 The EEGExport program GUI 74
D.2 The EEGExport program GUI 75

List of Tables

2.1 Overview of data types required by Requirements for storing
electrophysiology data, Version 0.72. [11] 13

3.1 The current formats comparison. 30
3.2 The comparison between the EEGBase portal metadata model

and terminology used by the odML model (without my adjust-
ments). 33

3.3 Modifications of the odML model. 35

4.1 The root of HDF5 file. 46

5.1 Performance tests with GZip compression. Each file was saved
seven times. 52

5.2 File size tests. 53

57

5.3 File size dependency on compression chunk size. 54
5.4 File size dependency on compression method. The chunk size

is 256. 54

Listings

2.1 Example of data annotation using odML and JSON encoding. 19
2.2 The header file example - Information about the file format. . 20
2.3 The header file example - Information about coding, created

files, data orientation, number of recorded channels and sam-
pling interval. 20

2.4 Example of odml XML file. 27
4.1 Creating Group in HDF5 with Java wrappers. This code cre-

ates a new group with the name METADATA at the specified
location block . 49

4.2 Saving binary data into the dataset. It saves H5T IEEE F64LE
(double) in dset data if saving location dataset id exists . . . 49

4.3 Saving string as attribute in HDF5. 49
A.1 The header file example - Information about format and chan-

nels and the amplifier setup. 66
A.2 The header file example - Information about used software

filters. 67
A.3 The vmrk file example - information about stimuli 68
D.1 Bat file . 73

58

Glossary

API application programming interface. 29, 30, 41

BFO Basic Formal Ontology. 26

BSD Berkeley Source Distribution. 22

CNO Computational Neuroscience Ontology. 26

CSN Czech standards. 45

EDC Electronic Data Capture. 9

EDF European Data Format. 14

EEG Electroencephalography. 5, 8, 9, 11–19, 31, 35, 38, 39, 55

epHDF electrophysiology HDF. 18

ERP Event-related potentials. 8, 9

G-Node German Neuroinformatics Node. 32, 35

GUI Graphical user interface. 39, 50, 55

HDF Hierarchical Data Format. 20–23, 30, 38, 41, 50, 53, 55

HDF4 Hierarchical Data Format 4. 15, 41

HDF5 Hierarchical Data Format 5. 12, 14–16, 18, 20–24, 29, 30, 35, 36, 38,
39, 41–46, 48, 50–53, 55, 57

HDFds Hierarchical Data Format – data sharing. 18

59

Glossary Glossary

INCF International Neuroinformatics Coordinating Facility. 8, 11, 12, 16,
18, 30, 35, 55

ISO International Organization for Standardization. 45

JHI interface for Java HDF. 41

JHI5 The Java HDF5 Interface. 41

JSON JavaScript Object Notation. 18

NIF Neuroscience Information Framework. 25

NIFSTD Neuroscience Information Framework Standard ontology. 25

OBO open biomedical ontologies. 25, 26

odML The open metadata markup language. 16, 18, 27, 28, 32, 34–37, 55,
57, 69–71

SOAP Simple Object Access Protocol. 38, 51

UWB University of West Bohemia. 8, 19, 32, 36, 37, 55

WSDL Web Service Definition Language. 48

XML Extensible Markup Language. 15, 21, 28

60

Bibliography

[1] Basic Formal Ontology [online]. 2014. [cit. 10.5.2015]. Available from:
http://ifomis.uni-saarland.de/bfo/.

[2] EEGbase [online]. 2015. [cit. 10.5.2015]. RRID:nif-0000-08190. Available
from: https://eegdatabase.kiv.zcu.cz/.

[3] HDF Object Package [online]. [cit. 1.5.2015]. HDF Group. Available
from: https://www.hdfgroup.org/products/java/hdf-object/index.html.

[4] HDF Java Products [online]. 2014. [cit. 1.5.2015]. HDF Group. Available
from: https://www.hdfgroup.org/products/java/.

[5] ČSN ISO 8601. Data elements and interchange formats – Information
interchange – Representation of dates and times. Praha: ČESKÝ NOR-
MALIZAČNÍ INSTITUT, 2005.

[6] Neural ElectroMagnetic Ontology [on-
line]. 2015. 15.5.2015. Available from:
http://bioportal.bioontology.org/ontologies/NEMO/?p=summary.

[7] Open data specifications and software for neurophysi-
ology [online]. 2011. [cit. 10.5.2015]. Available from:
http://neuroshare.sourceforge.net/.

[8] Neuroscience Information Framework Standard ontol-
ogy [online]. 2015. [cit. 10.5.2015]. Available from:
http://bioportal.bioontology.org/ontologies/NIFSTD.

[9] INCF GitHub odML repository [online]. [cit. 12.5.2015]. Available from:
https://github.com/INCF/odml-terminologies.

[10] The Open Biological and Biomedical Ontologies [online]. 2015.
[cit. 10.5.2015]. Available from: http://www.obofoundry.org/.

61

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Requirements for storing electrophysiology data, Version 0.72. Available
from: https://goo.gl/QbClkE. Electrophysiology Task Force of the
INCF Program on Standards for Data Sharing, 2014.

[12] Benda, J. From recording to sharing of data - embedding metadata han-
dling into the laboratory workflow using odML. Frontiers in Neuroinfor-
matics. 2011, 5. 10.3389/conf.fninf.2011.08.00100. Available from:
http://dx.doi.org/10.3389/conf.fninf.2011.08.00100.

[13] Brain Products GmbH. BrainVision Recorder User Manual. Brain Prod-
ucts GmbH, 011 edition, December 2014.

[14] Brain Products GmbH [online]. 2014. [cit. 03.07.2014]. Brain Products
GmbH. Available from: http://www.brainproducts.com/index.php.

[15] Br̊uha, P. Semantic Web and Classic Data Structures.

[16] Brinkman, R. R. et al. Modeling biomedical experimental pro-
cesses with OBI. Journal of Biomedical Semantics. 2010, 1,
Suppl 1, s. S7. 10.1186/2041-1480-1-s1-s7. Available from:
http://dx.doi.org/10.1186/2041-1480-1-S1-S7.

[17] Computational Neuroscience Ontology [on-
line]. 2013. [cit. 13.6.2015]. Available from:
http://bioportal.bioontology.org/ontologies/CNO.

[18] Franc, Y. L. Introduction to CNO [on-
line]. 2012. [cit. 15.5.2015]. Available from:
https://neuroml.org/files/NeuroML2012/YleFranc_CNO.pdf.

[19] Friedrich, S. et al. Mission and activities of the INCF Electro-
physiology Data Sharing Task Force. Frontiers in Neuroinformat-
ics. 2014, 8. 10.3389/conf.fninf.2014.08.00088. Available from:
http://dx.doi.org/10.3389/conf.fninf.2014.08.00088.

[20] Gosink, L. et al. HDF5-FastQuery: Accelerating Complex
Queries on HDF Datasets using Fast Bitmap Indices. In 18th
International Conference on Scientific and Statistical Database
Management. Institute of Electrical & Electronics Engineers
(IEEE), 2006. 10.1109/ssdbm.2006.27. Available from:
http://dx.doi.org/10.1109/SSDBM.2006.27.

62

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Grewe, J. – Wachtler, T. – Benda, J. A Bottom-up Ap-
proach to Data Annotation in Neurophysiology. Frontiers in Neu-
roinformatics. 2011, 5. 10.3389/fninf.2011.00016. Available from:
http://dx.doi.org/10.3389/fninf.2011.00016.

[22] HDF Technologies [online]. 2013. [cit. 03.07.2014]. The HDF Group.
Available from: http://www.hdfgroup.org/.

[23] INCF [online]. 2015. [cit. 4.3.2015]. Available from:
http://www.incf.org/.

[24] Jeffrey, T. – Friedrich, S. epHDF – a proposed standard for
storing electrophysiology data in HDF5. Frontiers in Neuroinformat-
ics. 2013, 7. 10.3389/conf.fninf.2013.09.00068. Available from:
http://dx.doi.org/10.3389/conf.fninf.2013.09.00068.

[25] Jeffrey, T. et al. Considerations for developing a standard for
storing electrophysiology data in HDF5. Frontiers in Neuroinformat-
ics. 2013, 7. 10.3389/conf.fninf.2013.09.00069. Available from:
http://dx.doi.org/10.3389/conf.fninf.2013.09.00069.

[26] Kemp, B. [online]. 2014. [cit. 4.5.2015]. Available from:
http://www.edfplus.info/specs/edf.html.

[27] Kemp, B. – Olivan, J. European data format ‘plus’ (EDF+),
an EDF alike standard format for the exchange of physi-
ological data. Clinical Neurophysiology. sep 2003, 114, 9,
s. 1755–1761. 10.1016/s1388-2457(03)00123-8. Available from:
http://dx.doi.org/10.1016/S1388-2457(03)00123-8.

[28] Liu, Z. – Ding, L. – He, B. Integration of EEG/MEG with MRI
and fMRI in Functional Neuroimaging. IEEE engineering in medicine
and biology magazine : the quarterly magazine of the Engineering in
Medicine and Biology Society. 2006, 25. ISSN 0739-5175.

[29] Luck, S. ERPinfo.org [online]. 2015. [cit. 22.3.2015]. Available from:
http://erpinfo.org/what-is-an-erp.

[30] Miko, P. EDEDClient [online]. 2012. [cit. 9.1.2015]. Available from:
https://github.com/stebjan/jerpa-EDEDClient.

[31] Milham, M. P. Open Neuroscience Solutions for the
Connectome-wide Association Era. Neuron. jan 2012, 73, 2,
s. 214–218. 10.1016/j.neuron.2011.11.004. Available from:
http://dx.doi.org/10.1016/j.neuron.2011.11.004.

63

BIBLIOGRAPHY BIBLIOGRAPHY

[32] Neo [online]. 2014. [cit. 03.07.2014]. Available from:
http://pythonhosted.org/neo/.

[33] NeuroHDF [online]. 2014. [cit. 03.07.2014]. NeuroHDF Interest Group.
Available from: https://neurohdf.readthedocs.org/.

[34] NeXus Format [online]. 2014. [cit. 03.07.2014]. NeXus International Ad-
visory Committee. Available from: http://www.nexusformat.org/.

[35] Ontology for Biomedical Investigations [on-
line]. 2015. [cit. 13.6.2015]. Available from:
http://bioportal.bioontology.org/ontologies/OBI.

[36] Ovation [online]. 2014. [cit. 3.7.2014]. Physion LLC. Available from:
http://physion.us/.

[37] Ovation [online]. 2014. [cit. 3.7.2014]. Physion LLC. Available from:
http://ovation.io/.

[38] NIX [online]. 2014. [cit. 03.02.2015]. G-Node. Available from:
https://github.com/G-Node/nix/wiki.

[39] NIX [online]. 2014. [cit. 03.02.2015]. G-Node. Available from:
https://github.com/G-Node/nix/wiki/Implementation-in-HDF5.

[40] Ovation Scientific Data Management System. Physion Consulting. 2012.
Release 1.4.

[41] Poldrack, R. A. The future of fMRI in cognitive neu-
roscience. NeuroImage. aug 2012, 62, 2, s. 1216–1220.
10.1016/j.neuroimage.2011.08.007. Available from:
http://dx.doi.org/10.1016/j.neuroimage.2011.08.007.

[42] Poline, J.-B. et al. Data sharing in neuroimaging research. Frontiers
in Neuroinformatics. 2012, 6. 10.3389/fninf.2012.00009. Available
from: http://dx.doi.org/10.3389/fninf.2012.00009.

[43] Schalk, G. BCI2000 [online]. 2009. [cit. 25.11.2014]. [rev. 2009-8-14].
Available from: www.bci2000.org.

[44] Smith, B. et al. Genome Biol. 2005, 6, 5,
s. R46. 10.1186/gb-2005-6-5-r46. Available from:
http://dx.doi.org/10.1186/gb-2005-6-5-r46.

64

BIBLIOGRAPHY BIBLIOGRAPHY

[45] Štěbeták, J. EEGBase SOAP webservices [on-
line]. 2015. [cit. 10.5.2015]. Available from:
http://eeg2.kiv.zcu.cz:8080/webservice/.

[46] Štěbeták, J. Webservice WSDL file [on-
line]. 2015. [cit. 10.5.2015]. Available from:
http://eeg2.kiv.zcu.cz:8080/webservice/UserDataService?wsdl.

[47] Štebeták, J. EEGloader 2.0 [online]. 2015. [cit. 10.5.2015]. Available
from: https://github.com/stebjan/eegloader.

65

A Brain Vision Files Examples

Listing A.1: The header file example - Information about format and
channels and the amplifier setup.

[Binary Infos]

BinaryFormat=INT_16

[Channel Infos]

;Each entry: Ch<number>=<Name>,<Reference channel name>,

;<Resolution in "Unit">,<Unit>,Future extensions..

;Fields are delimited by commas, some fields might be omitted.

;Commas in channel names are coded as "\1".

Ch1=1,,0.1,µV
Ch2=2,,0.1,µV
...

Ch41=41,,0.1526,C

Ch42=42,,0.0763,mm

...

[Comment]

A m p l i f i e r S e t u p

============================

Number of channels: 48

Sampling Rate [Hz]: 200

\end{verbatim}

Sampling Interval [µS]: 5000

Channels

- - - - - - - -

Name Phys.
Chn

Resol./
Unit

Low
Cutoff
[s]

High
Cutoff
[Hz]

Notch
[Hz]

Series
Res.
[kOhm]

Gradient Offset

1 1 1 0.1 µV DC
2 2 2 0.1 µV DC
...
41 41 41 0.1526 C DC
42 42 42 0.0765 mm DC
...

66

Brain Vision Files Examples

Listing A.2: The header file example - Information about used software
filters.

S o f t w a r e F i l t e r s

==============================

Low Cutoff [s] High Cutoff [Hz] Notch [Hz]

1 0.0006366 Off Off

2 0.0006366 Off Off

...

41 0.0006366 Off Off

42 0.0006366 Off Off

...

Impedance [kOhm] at 12:10:43:

1: Out of Range!

2: Out of Range!

...

41: Out of Range!

42: Out of Range!

...

Ref: Out of Range!

Gnd: Out of Range!

67

Brain Vision Files Examples

Listing A.3: The vmrk file example - information about stimuli

Brain Vision Data Exchange Marker File, Version 1.0

[Common Infos]

Codepage=UTF-8

DataFile=0000007.eeg

[Marker Infos]

; Each entry: Mk<Marker

number>=<Type>,<Description>,<Position in data points>,

; <Size in data points>, <Channel number (0 = marker is

related to all channels)>

; Fields are delimited by commas, some fields might be

omitted (empty).

; Commas in type or description text are coded as "\1".

Mk1=New Segment,,1,1,0,20120503112002605235

Mk2=Stimulus,S 7,110437,0,0

Mk3=Stimulus,S 7,110673,0,0

..

Mk1233=Stimulus,S 3,3209901,0,0

68

B Metadata Terminology

Event
-	Timestamp	:	datetime
-	Description	:	text

EventList
-	Timestamp	:	datetime
-	Description	:	text

Experiment/Behavior
-	Paradigm	:	string
-	Environment	:	string
-	IndividualCount	:	int
-	definition	:	text
-	Protocol	:	text

Experiment/Electrophysiology
-	Type:string
-	Subtype:string

Experiment/Imaging
-	Type:string

Experiment
-Type:string
-	Subtype	:	string
-	ProjectName	:	string
-	ProjectID	:	string

Enviroment
-	Weather	:	string
-	RoomTemperature	:	string
-	AirHumidity	:	float
-	Description	:	string

Experiment/Psychophysics
-	Task	:	string
-	Paradigm	:	string
-	SubjectKnowledge	:	string
-	TrainingTrials	:	int
-	TrainingDuration	:	float
-	SubjectInstruction	:	text
-	definition	:	text

Response
-	Description	:	text
-	Comment	:	text
-	Author	:	person
-	Duration	:	float
-	StartTime	:	time
-	EndTime	:	time
-	Intensity	:	string
-	Location	:	string
-	Modality	:	string
-	Repetitions	:	int
-	ResponseFile	:	binary
-	ResponseFileURL	:	URL
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Project
-	Topic	:	text
-	Grant	:	string
-	PrincipleInvestigator	:	person
-	Scientist	:	person
-	Start	:	date
-	End	:	date

Electrode
-	Type : string
-	Usage	:	string
-	Material	:	string
-	GlassType	:	string
-	GlassSpecification	:	string
-	FirePolish	:	boolean
-	Puller	:	string
-	PullParameter	:	string
-	ShapeParameters	:	string
-	Manufacturer	:	string
-	TipSize	:	float
-	Coating	:	string
-	Impedance	:	float
-	ElectrodeCount	:	int
-	Description	:	string
-	ElectrodeLocation:string

Dataset
-	Start	:	datetime
-	End	:	datetime
-	StartDate	:	date
-	EndDate	:	date
-	StartTime	:	time
-	EndTime	:	time
-	Comment	:	text
-	File	:	binary
-	FileURL	:	URL
-	Quality	:	string
-	QualityRange	:	string

Analysis
-	Author	:	person
-	Date	:	date
-	Description	:	text
-	Method	:	string
-	CommandlineCall	:	string
-	Comment	:	text
-	CodeFile	:	binary
-	CodeFileURL	:	URL
-	CodeRevision	:	string
-	ConfigFile	:	binary
-	ConfigFileURL	:	URL
-	DatasetFile	:	binary
-	DatasetFileURL	:	URL
-	ResultFile	:	binary
-	ResultFileURL	:	URL
-	ResultFigure	:	binary
-	PaperDOI	:	text
-	PaperURL	:	URL

Protocol
-	Description	:	string
-	Name	:	string
-	Author	:	Person
-	ProtocolFile	:	binary
-	ProtocolFileURL	:	URL
-	Version	:	string

Figure B.1: The odMLterminology. Part 1.

Subject
-	Comment	:	text
-	Species	:	string
-	Genus	:	string
-	TrivialName	:	string
-	Gender	:	string
-	Birthday	:	date
-	Age	:	string
-	Strain	:	string
-	CellLine	:	string
-	Population	:	string
-	Label	:	string
-	HealthStatus	:	string
-	DevelopmentalStage	:	string
-	ConactInformation	:	text
-	Size	:	float
-	Weight	:	float

Person
-	FirstName	:	string
-	LastName	:	string
-	FullName	:	person
-	Gender	:	string
-	Education level	:	string
-	Birthday	:	date
-	Role	:	string
-	E-mail	:	string
-	PhoneNumber	:	string
-	Laterality:		string

Setup
-	Description	:	text
-	Location	:	string
-	Department	:	string
-	Creator	:	string
-	Maintainer	:	person
-	Config	:	string
-	ConfigID	:	string

Software
-	Name	:	string
-	Owner	:	string
-	Developer	:	string
-	Version	:	string
-	Licence	:	string
-	LicenceStart	:	date
-	LicenceExpiration	:	date
-	LicenceDuration	:	string
-	LicenceCount	:	int
-	Distribution	:	string
-	Description	:	string

Recording
-	Comment	:	string
-	Experimenter	:	person
-	ExperimenterID	:	person
-	Start	:	datetime
-	End	:	datetime
-	StartDate	:	date
-	EndDate	:	date
-	StartTime	:	time
-	EndTime	:	time

Figure B.2: The odMLterminology. Part 2.

69

Metadata Terminology

Hardware
-	SerialNo	:	string
-	InventoryNo	:	string
-	Owner	:	person
-	Model	:	string
-	Type	:	string
-	Manufacturer	:	string
-	Description	:	string

Hardware/CameraObjective
-	SerialNo	:	string
-	InventoryNo	:	string
-	Owner	:	person
-	Model	:	string
-	Type	:	string
-	Manufacturer	:	string
-	Type	:	string
-	Mount	:	string
-	NumericalAperture	:	float
-	MaximumAperture	:	float
-	Aperture	:	float
-	FocalLengthRange	:	float
-	FocalLength	:	float
-	TransmissionLowerBound	:	float
-	TransmissionUpperBound	:	float
-	TransmissionRange	:	float
-	Description	:	string

Hardware/StimulusIsolator
-	SerialNo	:	string
-	InventoryNo	:	string
-	Model	:	string
-	Manufacturer	:	string
-	Owner	:	string
-	InputRangeMinVoltage	:	float
-	InputRangeMaxVoltage	:	float
-	OutputRangeMinVolatge	:	float
-	OutputRangeMaxVoltage	:	float
-	OutputRangeMinCurrent	:	float
-	OutputRangeMaxCurrent	:	float
-	MaximumGain	:	float
-	MinimumGain	:	float
-	GainStepSize	:	float
-	OutputType	:	string
-	OutpuMode	:	string
-	Gain	:	float
-	GainDb	:	float
-	Description	:	string

Hardware/ImageAcquisition
-	InventoryNo	:	string
-	SerialNo	:	string
-	Model	:	string
-	Manufacturer	:	string
-	Owner	:	string
-	Type	:	string
-	Mount	:	string
-	Colorspace	:	string
-	DetektorType	:	string
-	SensitivityRange	:	float
-	MinFramerate	:	int
-	MaxFramerate	:	int
-	Framerate	:	int
-	SpatialRes	:	string
-	Lens	:	string
-	ShutterSpeed	:	float
-	Apperture	:	float
-	CCDGain	:	float
-	Depth	:	int
-	RoiPositionX	:	int
-	RoiPositionY	:	int
-	RoiWidth	:	int
-	RoiHeight	:	int
-	PicRotation	:	float
-	Brightness	:	float
-	Contrast	:	float
-	Gamma	:	float
-	GammaFuntion	:	string
-	PixelBinning	:	string
-	Subsampling	:	string
-	ColorTemperature	:	int
-	ColorGain	:	float
-	Description	:	string

Hardware/Microscope
-	SerialNo	:	string
-	InventoryNo	:	string
-	Owner	:	string
-	Type	:	string
-	Model	:	string
-	Manufacturer	:	string
-	Description	:	string

Hardware/Filterset
-	InventoryNo	:	string
-	Owner	:	string
-	ExcitationFilterModel	:	string
-	ExcitationFilterManufacturer	:	string
-	ExcitationFilterWavelength	:	float
-	ExcitationFilterLowerBound	:	float
-	ExcitationFilterUpperBound	:	float
-	ExcitationFilterRange	:	float
-	ExcitationFilterPassbandTransmission	:	float
-	EmissionFilterModel	:	string
-	EmissionFilterManufacturer	:	string
-	EmissionFilterWavelength	:	float
-	EmissionFilterLowerBound	:	float
-	EmissionFilterUpperBound	:	float
-	EmissionFilterRange	:	float
-	EmissionFilterPassbandTransmission	:	float
-	BeamsplitterType	:	string
-	BeamsplitterModel	:	string
-	BeamsplitterManufacturer	:	string
-	BeamsplitterWavelength	:	float
-	Description	:	string

Hardware/Filter
-	SerialNo	:	string
-	Model	:	string
-	Manufacturer	:	string
-	InventoryNo	:	string
-	Owner	:	string
-	Type	:	string
-	SubType:string
-	LowpassCutoff	:	float
-	LowpassOrder	:	int
-	HighpassCutoff	:	float
-	HighpassOrder	:	int
-	Description	:	string

Hardware/Amplifier
-	SerialNo	:	string
-	InventoryNo	:	string
-	Owner	:	person
-	Model	:	string
-	Type	:	string
-	Manufacturer	:	string
-	MeasurementType	:	string
-	SwitchingFrequency	:	float
-	DutyCycle	:	float
-	Gain	:	float
-	HighpassCutoff	:	float
-	LowpassCutoff	:	float
-	Description	:	string

Hardware/Attenuator
-	SerialNo	:	string
-	InventoryNo	:	string
-	Owner	:	person
-	Model	:	string
-	Type	:	string
-	Manufacturer	:	string
-	LineCount	:	int
-	MaxAttenuation	:	float
-	MinAttenuation	:	float
-	StepSize	:	float
-	Attenuation	:	float
-	Description	:	string

Hardware/DataAcquisition
-	SerialNo	:	string
-	InventoryNo	:	string
-	Model	:	string
-	Manufacturer	:	string
-	Owner	:	string
-	AIResolution	:	int
-	AIMaxSampleRate	:	float
-	AIChannelCount	:	int
-	AOResolution	:	int
-	AOMaxSampleRate	:	float
-	AOChannelCount	:	int
-	DIOLineCount	:	int
-	AIUsedChannelCount	:	int
-	AISampleRate	:	int
-	AIChannelGain	:	float
-	AIReference	:	string
-	AIPolarity	:	string
-	AOUsedChannelCount	:	int
-	AOSampleRate	:	int
-	AOChannelGain	:	float
-	Description	:	string

Hardware/Lightsource
-	InventoryNo	:	string
-	SerialNo	:	string
-	Model	:	string
-	Manufacturer	:	string
-	Owner	:	string
-	Type	:	string
-	PulseWidth	:	string
-	PulseRate	:	float
-	Wavelength	:	float
-	WavelengthLowerBound	:	float
-	WavelengthUpperBound	:	float
-	Intensity	:	float
-	Intensity	:	float
-	Intensity	:	float
-	Description	:	string

Hardware/Eyetracker
-	SerialNo	:	string
-	InventoryNo	:	string
-	Owner	:	string
-	Model	:	string
-	Manufacturer	:	string
-	Comment	:	text
-	Type	:	string
-	SampleRate	:	float
-	DetektorType	:	string
-	Filter	:	string
-	Calibration	:	string
-	Fixation	:	string
-	Description	:	string

Hardware/MicroscopeObjective
-	SerialNo	:	string
-	InventoryNo	:	string
-	Model	:	string
-	Manufacturer	:	string
-	Type	:	string
-	Owner	:	string
-	Magnification	:	float
-	NumericalAperture	:	float
-	TransmissionLowerBound	:	float
-	TransmissionUpperBound	:	float
-	TransmissionRange	:	float
-	Description	:	string

Hardware/Scaner
-	InventoryNo	:	string
-	SerialNo	:	string
-	Owner	:	string
-	Model	:	string
-	Manufacturer	:	string
-	Type	:	string
-	ImageWidth	:	int
-	ImageHeight	:	int
-	PixelSize	:	float
-	DwellTime	:	float
-	ScanRate	:	float
-	ScanMode	:	string
-	StackZRange	:	float
-	StackZStepSize	:	float
-	Description	:	string

Figure B.3: The odMLterminology. Part 3.

70

Metadata Terminology

Stimulus
-	Description	:	text
-	Comment	:	text
-	Author	:	person
-	Duration	:	float
-	StartTime	:	time
-	EndTime	:	time
-	Intensity	:	string
-	Location	:	string
-	Modality	:	string
-	Repetitions	:	int
-	InterstimulusInterval	:	float
-	StimulusFile	:	binary
-	StimulusFileURL	:	URL
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/Gabor
-	Modality	:	string
-	Duration	:	float
-	TemporalOffset	:	float
-	Function	:	string
-	OutputChannel	:	string
-	Dimension	:	float
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/Ramp
-	Modality	:	string
-	Duration	:	float
-	TemporalOffset	:	float
-	Function	:	string
-	OutputChannel	:	string
-	StartAmplitude	:	float
-	EndAmplitude	:	float
-	Slope	:	float
-	RampStartTime	:	float
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/RandomDot
-	Modality	:	string
-	Duration	:	float
-	TemporalOffset	:	float
-	Function	:	string
-	OutputChannel	:	string
-	DotCount	:	int
-	DotHorizontalExtent	:	float
-	DotVerticalExtent	:	float
-	DotPixelHeight	:	int
-	DotPixelWidth	:	int
-	DotSize	:	2-tuple
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/Whitenoise
-	Modality	:	string
-	Duration	:	float
-	TemporalOffset	:	float
-	Function	:	string
-	OutputChannel	:	string
-	Mean	:	float
-	Variation	:	float
-	LowerCutoffFrequency	:	float
-	UpperCutoffFrequency	:	float
-	Filter	:	string
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/Squarewave
-	Modality	:	string
-	Duration	:	float
-	TemporalOffset	:	float
-	Function	:	string
-	OutputChannel	:	string
-	Frequency	:	float
-	DutyCycle	:	float
-	Amplitude	:	float
-	IntensityOffset	:	float
-	StartAmplitude	:	float
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/Image
-	Description	:	text
-	Comment	:	text
-	Author	:	person
-	Duration	:	float
-	StartTime	:	time
-	EndTime	:	time
-	Repetitions	:	int
-	StimulusFile	:	binary
-	StimulusFileURL	:	URL
-	Position	:	2-tuple
-	SpatialExtent	:	2-tuple
-	Resolution	:	2-tuple
-	ColorSpace	:	string
-	ColorDepth	:	int

Stimulus/Sinewave
-	Modality	:	string
-	Duration	:	float
-	TemporalOffset	:	float
-	Function	:	string
-	OutputChannel	:	string
-	Frequency	:	float
-	Phase	:	float
-	Amplitude	:	float
-	MeanIntensity	:	float
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/Grating
-	Modality	:	string
-	Type	:	string
-	Duration	:	float
-	TemporalOffset	:	float
-	Contrast	:	float
-	Intensity	:	float
-	GratingType	:	string
-	SpatialWavelength	:	float
-	SpatialFrequency	:	float
-	SpatialExtent	:	2-tuple
-	Orientation	:	float
-	DriftingVelocity	:	float
-	Position	:	2-tuple
-	PositionReference	:	string
-	Function	:	string
-	OutputChannel	:	string

Stimulus/Pulse
-	Modality	:	string
-	Duration	:	float
-	TemporalOffset	:	float
-	Function	:	string
-	OutputChannel	:	string
-	IntensityOffset	:	float
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/Movie
-	Modality	:	string
-	Duration	:	float
-	TemporalOffset	:	float
-	FrameRate	:	float
-	SpatialResolution	:	2-tuple
-	ColorSpace	:	string
-	ColorDepth	:	int
-	OutputChannel	:	string
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/Sawtooth
-	Modality	:	string
-	Duration	:	float
-	TemporalOffset	:	float
-	Function	:	string
-	OutputChannel	:	string
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/DC
-	Modality	:	string
-	Duration	:	float
-	Intensity	:	string
-	IntensityOffset	:	string
-	TemporalOffset	:	float
-	Function	:	string
-	OutputChannel	:	string
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Stimulus/Audio
-	Description	:	text
-	Comment	:	text
-	Author	:	person
-	Duration	:	float
-	StartTime	:	time
-	EndTime	:	time
-	Repetitions	:	int
-	StimulusFile	:	binary
-	StimulusFileURL	:	URL
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple
-	Frequency	:	float
-	BitRate	:	int

Figure B.4: The odMLterminology. Part 4.

71

C Metadata Scheme

Dataset
-	Start	:	datetime
-	End	:	datetime
-	StartDate	:	date
-	EndDate	:	date
-	StartTime	:	time
-	EndTime	:	time
-	Comment	:	text
-	File	:	binary
-	File	:	URL
-	Quality	:	string
-	QualityRange	:	string

Analysis
-	Author	:	person
-	Date	:	date
-	Description	:	text
-	Method	:	string
-	CommandlineCall	:	string
-	Comment	:	text
-	CodeFile	:	binary
-	CodeFileURL	:	URL
-	CodeRevision	:	string
-	ConfigFile	:	binary
-	ConfigFileURL	:	URL
-	DatasetFile	:	binary
-	DatasetFileURL	:	URL
-	ResultFile	:	binary
-	ResultFileURL	:	URL
-	ResultFigure	:	binary
-	PaperDOI	:	text
-	PaperURL	:	URL

Analysis
-	Author	:	person
-	Date	:	date
-	Description	:	text
-	Method	:	string
-	CommandlineCall	:	string
-	Comment	:	text
-	CodeFile	:	binary
-	CodeFileURL	:	URL
-	CodeRevision	:	string
-	ConfigFile	:	binary
-	ConfigFileURL	:	URL
-	DatasetFile	:	binary
-	DatasetFileURL	:	URL
-	ResultFile	:	binary
-	ResultFileURL	:	URL
-	ResultFigure	:	binary
-	PaperDOI	:	text
-	PaperURL	:	URL

Protocol
-	Description	:	string
-	Author	:	Person
-	ProtocolFile	:	binary
-	ProtocolFileURL	:	URL
- Version:string

Response
-	Description	:	text
-	Comment	:	text
-	Author	:	person
-	Duration	:	float
-	StartTime	:	time
-	EndTime	:	time
-	Intensity	:	string
-	Location	:	string
-	Modality	:	string
-	Repetitions	:	int
-	ResponseFile	:	binary
-	ResponseFileURL	:	URL
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Electrode
-Type : string
-Material	:	string
-	GlassType	:	string
-	GlassSpecification	:	string
-	FirePolish	:	boolean
-	Puller	:	string
-	PullParameter	:	string
-	ShapeParameters	:	string
-	Manufacturer	:	string
-	TipSize	:	float
-	Coating	:	string
-	Impedance	:	float
-	ElectrodeCount	:	int
-ElectrodeLocation:string

Event
-	Timestamp	:	datetime
-	Description	:	text

EventList
-	Timestamp	:	datetime
-	Description	:	text

Stimulus
-	Description	:	text
-	Comment	:	text
-	Author	:	person
-	Duration	:	float
-	StartTime	:	time
-	EndTime	:	time
-	Intensity	:	string
-	Location	:	string
-	Modality	:	string
-	Repetitions	:	int
-	InterstimulusInterval	:	float
-	StimulusFile	:	binary
-	StimulusFileURL	:	URL
-	Position	:	2-tuple
-	PositionReference	:	string
-	SpatialExtent	:	2-tuple

Recording
-	Comment	:	string
-	Experimenter	:	person
-	ExperimenterID	:	person
-	Start	:	datetime
-	End	:	datetime
-	StartDate	:	date
-	EndDate	:	date
-	StartTime	:	time
-	EndTime	:	time

Setup
-	Description	:	text
-	Location	:	string
-	Department	:	string
-	Creator	:	string
-	Maintainer	:	person
-	Config	:	string
-	ConfigID	:	string

Person
-	FirstName	:	string
-	LastName	:	string
-	FullName	:	person
-	Gender	:	string
-	Birthday	:	date
-	Role	:	string
-	E-mail	:	string
-	PhoneNumber	:	string
-Laterality:		string

Subject
-	Comment	:	text
-	Species	:	string
-	Genus	:	string
-	TrivialName	:	string
-	Gender	:	string
-	Birthday	:	date
-	Age	:	string
-	Strain	:	string
-	CellLine	:	string
-	Population	:	string
-	Label	:	string
-	HealthStatus	:	string
-	DevelopmentalStage	:	string
-	ConactInformation	:	text
-	Size	:	float
-	Weight	:	float

Software
-	Name	:	string
-	Owner	:	string
-	Developer	:	string
-	Version	:	string
-	Licence	:	string
-	LicenceStart	:	date
-	LicenceExpiration	:	date
-	LicenceDuration	:	string
-	LicenceCount	:	int
-	Distribution	:	string
-	Description	:	string

Hardware
-	SerialNo	:	string
-	InventoryNo	:	string
-	Owner	:	person
-	Model	:	string
-	Type	:	string
-	Manufacturer	:	string
-	Description	:	string

Environment
-	Weather	:	string
-	RoomTemperature	:	string
-	AirHumidity	:	float
-	Description	:	string

Experiment
-Type:string
-	Subtype	:	string
-	ProjectName	:	string
-	ProjectID	:	string

Project
-	Topic	:	text
-	Grant	:	string
-	PrincipleInvestigator	:	person
-	Scientist	:	person
-	Start	:	date
-	End	:	date

Figure C.1: Metadata scheme of EEGBase format.

72

D Export Program User Manual

D.1 Installation

The EEGExport program needs for its functionality installed HDF5 libraries
version 2.10 or higher and Java Runtime Environment in version 1.7 or higher.
The pre-build binary distribution could be obtained from official HDF Group
website.

The EEGExport program do not require installation. Program is dis-
tributed as runnable jar and could be lunched with supplied ”run.bat” file.
The path to installed HDF libraries must be in the bat file for the
correct function filled. (Listing D.1).

Listing D.1: Bat file

@ECHO OFF

rem Fill in hdf_path path to installed HDF libraries

set hdf_path=C:\HDF_Group\HDF-JAVA\2.11.0\lib\jhdf5.dll

java -Dncsa.hdf.hdf5lib.H5.hdf5lib=%hdf_path% -jar program.jar

D.2 Data Export

The location of hvdr, eeg and vmrk files and exported files location and file
name must be set before export. The load of eeg files from EEGBase portal
is not working in current version. So the option 1 (Figure D.1) must be
selected.

73

https://www.hdfgroup.org/products/java/release/download.html#download
https://www.hdfgroup.org/products/java/release/download.html#download

Export Program User Manual Metadata Export

Figure D.1: The EEGExport program GUI

D.3 Metadata Export

If the metadata from EEGBase portal should be exported as well the option
2 must be checked and the number of experiment must be filled (Figure D.2).

D.4 Compression

The final file size could be influenced by compression. The amount of com-
pression is set by chunk size. The chunk size 1 means no compression. Bigger
chunk size sets bigger compression so the file size is smaller.

74

Export Program User Manual Compression

Figure D.2: The EEGExport program GUI

75

	Introduction
	State of the Art
	eeg
	Data Sharing
	Program on Standards for Data Sharing
	Present formats for Storing eeg Data
	Ovation
	European Data Format
	NeXus Format
	NEO
	NeuroHDF
	NIX
	epHDF
	Brain Vision Format

	Hierarchical Data Format
	Ontologies
	Neural ElectroMagnetic Ontology
	Gene Ontology
	Phenotype And Trait Ontology
	The Open Biomedical Ontologies Foundry
	OBO Relations Ontology
	NIFSTD
	Basic Formal Ontology
	Computational Neuroscience Ontology
	Ontology for Biomedical Investigations

	Open Metadata Markup Language

	Analysis and Design
	Current Formats Comparison
	Data Model
	Model Ontology
	Data Part
	Metadata Part - odML
	UWB Metadata Model
	NIX Metadata Model
	Metadata Terminology Extensions
	EEGBase Metadata Model

	HDFExport Program
	Program Specification
	Architecture

	Implementation
	HDF Libraries
	Used HDF5 Data Types
	EEGBase File Structure
	HDFExport Program Modules
	Brain Vision Files Parser
	Metadata Loader
	HDF5 Writer
	Graphical User Interface

	EEGBase Portal Integration

	Tests
	Performance Tests
	File Size Test

	Evaluation and Summary
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Bibliography
	Attachments
	Brain Vision Files Examples
	Metadata Terminology
	Metadata Scheme
	Export Program User Manual
	Installation
	Data Export
	Metadata Export
	Compression

