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Abstract  

This paper presents the general solution of aerodynamically generated noise by lightning arrester. Governing 

equations are presented in form of Lighthill acoustic analogy, as embodied in the Ffowcs Williams-Hawkings 

(FW-H) equation. This equation is based on conservation laws of fluid mechanics rather than on the wave equa-

tion. Thus, the FW-H equation is valid even if the integration surface is in nonlinear region. That�s why the FW-

H method is superior in aeroacoustics. The FW-H method is implemented in program Fluent and the numerical 

solution is acquired by Fluent code. 

The general solution of acoustic signal generated by lightning arrester is shown and the results in form 

of acoustic pressure and frequency spectrum are presented. The verification of accuracy was made by evaluation 

of Strouhal number. A comparison of Strouhal number for circumfluence of a cylinder and the lightning arrester 

was done, because the experimental data for cylinder case are known and these solids are supposed to be respec-

tively in shape relation. 
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1. Introduction  

In recent years, as engineering design of components and systems has become increas-

ingly sophisticated, a significant amount of effort has been directed toward the reduction 

of aerodynamically generated noise. With the ongoing advances in computational resources 

and algorithms, CFD (Computational Fluid Dynamics) is being used more and more to study 

acoustic phenomena. Through detailed simulations of fluid flow, CFD has become a viable 

means of gaining insight into noise sources and basic sound production mechanisms. Sound 

transmission from a point source to a receiver can be computed by an analytical formulation.  

2. The Governing Equations 

The Lighthill acoustic analogy [5], [6] provides a mathematical foundation for integral ap-

proach. The Ffowcs-Williams and Hawkings (FW-H) method [4] extends the analogy to cases 

where solid, permeable, or rotating surfaces are sound sources, and represents the most com-

plete formulation of the acoustic analogy to date. The FW-H method is implemented in Flu-

ent, described in [9]. 

2.1. Lighthill Acoustic Analogy  

From [5], the propagation of sound in a uniform medium without sources of matter or 
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external forces is governed by mass conservation and Navier-Stokes momentum equations.  
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where ρ is density, ji uu , are the velocity components and ijP is the stress tensor  
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where 0p is the static pressure of the flow field, µ is the coefficient of viscosity and ijδ is 

the Kronecker delta. Taking the time derivative of equation (1), subtracting the divergence 

of equation (2), and then rearranging terms, the equation of sound propagation will be 
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where 0a is speed of sound in a medium at rest and ijT is Lighthill stress tensor defined as 

 ijijjiij aPuuT ρδρ 2

0−+= . (4) 

Mathematically, equation (3) is a hyperbolic partial differential equation, which describes 

a wave propagating at speed of sound in a medium at rest, on which fluctuating forces are ex-

ternally applied in the form described by the right hand side of equation (3). 

2.2. Ffowcs-William and Hawkings Method  

FW-H equation is the most general form of Lighthill acoustic analogy derived by 

J. E. Ffowcs-Williams a D. L. Hawkings in [4] and is appropriate for predicting the noise gen-

erated from turbulence, jet noise, cavity noise, rotating surface noise. 

In [1], the FW-H equation can be derived by embedding the exterior problem in un-

bounded space by using generalized functions to describe the flowfield. Consider a moving 

surface f(x,t)=0 with stationary fluid outside. The surface f=0 is defined such that n�=∇f ,

where n� is a unit normal vector that points into the fluid. Inside f=0, the generalized flow 

variables are defined as having their freestream values; that is, 
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Note that it was absorbed the constant ijp δ0 into the definition of ijP for convenience. Hence, 

for inviscid fluid, ijij pP δ′= , where p′ is the acoustic pressure ( 0ppp −=′ ). Freestream 

quantities are indicated by subscript 0. The summation convention is used when vector or ten-

sor components have indices i and j.
By using definitions of equations (5), (6), (7), a generalized continuity equation can be 

written as 
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where the bar in
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indicates that generalized differentiation is implied, the den-

sity 0ρρρ −≡′ and ( )fδ is the one-dimensional delta function, which is zero everywhere 

except where f=0. The surface f=0 is often assumed to be both coincident with the body and 

impenetrable, but clearly choosing the integration surface coincident with the physical body is 

not necessary, as presented in [2], [3]. The generalized continuity equation is valid for the en-

tire space, both inside and outside the body surface. The generalized momentum equation can 

be written as 
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Now eliminate the momentum iu~~ρ from both generalized equations (8), (9) by the same 

arrangement as in previous section, by arrangements coupled with Lighthill stress tensor (4) 

and with expressions nvtf −=∂∂ / , ii nxf �/ =∂∂ and iin nuu �= , which is fluid velocity in 

the direction normal to the surface f=0. The left hand side of FW-H equation can be written as 
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where the customary notation ρ ′=′ 2cp was used, because the observer location is outside 

the source region. Operator  
2

is so called wave operator, which is 2222
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The FW-H equation can be written as 
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where vn is the surface velocity in the direction normal to the surface f(x,t)=0 and H(f) is 

Heaviside function (0 for f<0, 1 for f>0). Generally, acoustic pressure p′ which is mentioned 

in equations (10), (11) is composed as 

),(),(),(),( tptptptp QLT xxxx ′+′+′=′ ,

where ),( tpT x′ is acoustic pressure caused by monopole source (thickness noise) determined 
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completely by the geometry and kinematics of the body. Acoustic pressure ),( tpL x′ is caused 

by a dipole source (known as loading noise) generated by the force acting on the fluid as a re-

sult of the presence of the body. The classification of thickness and loading noise is related to 

the thickness and loading problems of linearized aerodynamics. Thus, this terminology is con-

sistent with that of aerodynamics. Acoustic pressure ),( tpQ x′ is caused by quadrupole source. 

Quadrupole source term accounts for nonlinear effects, e.g., nonlinear wave propagation and 

steeping, variations in local sound speed, and noise generated by shocks, vorticity, and turbu-

lence in the flowfield. 

Acoustic analogy essentially decouples the propagation of sound from its generation, al-

lowing one to separate the flow solution process from the acoustic analysis. Hence the prob-

lem is divided into two phases. Let�s call it inner problem and outer problem.  

When the inner problem is solved, the transient numerical solution is realized with use of 

Navier-Stokes equations and very small time step (10
-5

 s). During this numerical simulation 

the relevant source data (pressure, velocity, density) at all face elements of the selected source 

surface f=0  is written on the specific files. 

The outer problem is based on the Huygens-Fresnel principle, which says that each point 

of an advancing wave front is in fact the center of a fresh disturbance and the source of a new 

train of waves; and that the advancing wave as a whole may be regarded as the sum of all the 

secondary waves arising from points in the medium already traversed. So the analytical 

solution is realized when wave equation is solved from the source data. Hence the acoustic 

pressure is acquired in arbitrary position of acoustic field. The time dependence of acoustic 

pressure is transformed by Fast Fourier Transformation (FFT) to a harmonic expression 

of signal, which is frequency spectrum. The scheme of the solution is in figure 1. 

Fig. 1. The scheme of acoustic analogy approach by FW-H method. 

3. Numerical Solution of the Aerodynamically Generated Noise by Lightning Arrester 

The Lightning Arrester is positioned on the roof of electric locomotive. Supposed locomo-

tive speed is 200 km/h (56 m/s). The aim of this paper was to find out the acoustic field char-

acteristics in given positions of receivers by the FW-H method that is implemented in Fluent.  

3.1. Pre-processing 

By preprocessor Gambit 2.3.16, where the model and its mesh is modeled, the mathematical 

surface f(x,t)=0 around lightning arrester was prepared to include the contributions from all 

sources: monopole, dipole and quadrupole, see fig. 1. Thus the mathematical surface f(x,t)=0 

is called source surface. There is non-moving body in the case of circumfluence, which im-

plies that the mathematical form of source surface isn�t time dependent, thus f(x)=0 and vn

from equation (11) is zero. In equation (11), there is used the mathematical surface identical 
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with the body surface. But in case of lightning arrester the mathematical surface had to be 

modeled around the body to include quadrupole source, since as it is presented in [9] 

the quadrupole sources are accounted only inside the source surface. So if the conditions 

of Heaviside function as presented in (11) govern the quadrupole noise isn�t accounted. Thus 

the conditions of Heaviside function is changed to H(f)=1 for f<0 and then in the FW-H 

method slightly different mathematical manipulations are used, as presented in [2], [3]. 

In preprocessing the unstructured mesh volumes were created by hex elements. 

The number of elements is more then 6 million. Inside the source surface f(x)=0, the fine 

mesh was used to ensure the sinusoidal acoustic signal, which corresponds to the smallest 

wave length of audible frequency (20000 Hz). 

 
Fig. 2.  Solution domain and source surface created around the lightning arrester. 

The mathematical surface f(x) =0 is permeable due to interior boundary condition, fig. 2. 

Side walls of solution domain are in sufficient distance from the lightning arrester and they 

were signified as symmetry.

3.2. Inner Problem Solution 

After reasonably converged stationary solution, the LES (Large Eddy Simulation) ap-

proach to turbulence modeling is activated, and the source data are written to the source files, 

which corresponds to the source surface�s elements.  
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Fig.3. Drag coefficient Cd in the y direction Fig.4. Spectral analysis of drag coefficient,  

 (normal to the axis, see fig.2).        frequency of vortex shedding (dominant fv=194 Hz), 

 PSD-Power Spectral Density. 

From [9], the duration of the simulation can be determined beforehand by estimating 

the mean flow residence time MFRT in the solution domain. ULMFRT /= , where L is char-

acteristic length of solution domain and U is characteristic mean flow velocity. The simula-

tion should be run for at least a few mean flow residence times. In this case of lighting ar-

rester the value of MFRT corresponds to the 0.014 s. The duration of the simulation was 3,6 

MFRT corresponding to 0,05 s, which is recognizable in fig. 3 (drag coefficient indicates 

the force acting on the body). Then the frequency of vortex shedding fv could be evaluated 

with the FFT to get the verification of accuracy of the solution. In fig. 4 the dominant fre-

quency of vortex shedding is fv=194 Hz. 

inlet outlet

lightning arrester 

symmetry 

source surface f(x)=0  

- interior 

FFT 

J. Váchová / Applied and Computational Mechanics 1 (2007) 343 - 350

347



J. Váchová / Applied and Computational Mechanics X (YYYY) 123-456 

Let�s try to approximate the lightning arester by a much more simple body of a rotational 

cylinder. Experimental data are in [7]. It is known that Strouhal number for circumfluence 

of cylinder is constant (Sh=0.2) for large interval of Reynolds number Re= 52 101.3103 ⋅−⋅ .

The Reynolds number Re= 5105.2 ⋅ for circumfluence of lightning arrester lies in this range. 

Then the Strouhal number could be resolved from UDfSh v /⋅= . The value of diameter 

D=0.074 was estimated since D is variable along the lightning arrester�s axes. The dominant 

Strouhal number for circumfluence of lightning arrester is 0.258. 

In light of inner problem solution, after comparison of Strouhal number for both cases, it 

could be said, that the results are physically correct. The small difference could be induced 

due to different shape mainly different top of the lightning arrester or due to estimated diame-

ter D. 

3.3. Outer Problem Solution and the Results 

After submitting the locations of the receivers P1 and P2 (fig. 6) to program Fluent 

the acoustic pressure is evaluated from the wave equation (11). The results are in form of time 

dependence of acoustic pressure, fig. 7, 8 (left), and frequency spectrum of sound pressure 

level SPL (right), which is acquired from FFT. The magnitude of sound pressure level is 

evaluated from ( ) ),/(log20 0110 ppdBSPL = where p1 is monitored acoustic pressure and p0 is 

reference (the smallest audible) acoustic pressure of 2·10
-5

 Pa. By integration over the fre-

quency spectrum for given receiver, it is possible to evaluate the overall sound pressure level 

OASPL. 

From fig. 7, 8, the acoustic pressure where observer location is 810D from lightning ar-

rester�s axes (receiver P2) is ten times smaller then in 40D (receiver P1). The magnitude 

of sound pressure level also increased from 79 dB to 56dB. The �noisy frequencies� are 

within 2000 Hz. 

Fig. 5. Contours of velocity magnitude, M=0.19, 

 Re=2.5·10
5
, Smagorinsky �Lilly subgrid scale model [8], 

t=2.5·10
-5 s. 

Fig. 6. Lightning arrester on the roof of elec-

tric locomotive � 4 m height (ground plan) 

and the locations of the receivers (p1, p2) � 

1.7 m height. 
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Fig.7. Acoustic pressure and frequency spectrum of sound pressure level, receiver p1 (fig. 6), observer location 

40D (3 m) from lightning arrester�s main axes, OASPL is 79 dB. 
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Fig.8. Acoustic pressure and frequency spectrum of sound pressure level,  receiver p2 (fig. 6), observer location 

810D (30 m) from lightning arrester�s main axes, OASPL is 56 dB. 

 

3.4. Broadband noise solution 

This method is also based on Lighthill acoustic analogy [5], 

[6]. It is used for external aerodynamics for identification 

of the acoustic sources (position and intensity). The solutions 

of similar designs are compared to decrease the aerodynamically 

generated noise. In the case of lightning arrester, result 

represents acoustic power level on its surface. From fig. 9 

the top of the lightning arrester is noisiest.  

 

4. Conclusion  

By Lighthill acoustic analogy as embodied in the FW-H equation the acoustic signal gen-

erated by lightning arrester in given receiver positions was acquired. Lightning arrester is po-

sitioned on the roof of an electric locomotive with the speed of 200 km/h. The solution was 

divided into two parts � inner problem solution, where the source data were acquired and 

outer problem solution, where the acoustic signal was evaluated in form of acoustic pressure 

and frequency spectrum of sound pressure level in given receiver positions.  

Great effort has been given to the solution pre-processing, especially to get proper solution 

domain and proper fine mesh inside the source surface. The length of the smallest element has 

U

Fig.9. Contours of surface  

acoustic power level. 
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been set up with the respect to sinusoidal acoustic signal and the smallest wave length. Pre-

liminary solution in form of the 2D cylinder example was numerically solved to get some es-

timation of the source surface shape for lightning arrester. 

The accuracy of the solution was validated by comparison of Strouhal number for circum-

fluence of rotational cylinder and Strouhal number for circumfluence of lightning arrester 

(lightning arrester was approximate by a much more simple body of a rotational cylinder). 

The solution is physically correct, because the values of Strouhal number are very close. 

The small difference between them is caused by the shape difference (mainly - lightning ar-

rester has different top). With the different acoustic approach (broadband) it was also found 

out, that this top of the lightning arrester is noisy. 

Further work in progress will be significant in the improvement of the aeroacoustic solu-

tion consisting in modelling more source surfaces around the body. Then it will be possible 

to get some validation of the outer problem solution by comparison the results corresponding 

to each source surface, which corresponds to fine mesh creation.  

The aeroacoustic data of lightning arrester must have been checked, because there have 

been doubts whether this lightning arrester positioned on the roof of electric locomotive in 

motion (speed of 200 km/h) is generating too much noise with its shape. Presented numerical 

solution showed that if the lightning arrester is the only aeroacoustic source on the roof, then 

OASPL of 79 dB in position p1 (fig. 6) would be acceptable. But such an ideal roof of electric 

locomotive does not really exist. There is also a noise generated by other mechanical sources. 

So it is necessary to perform another validation hereafter, where the acquired aeroacoustic 

data � aeroacoustic sources and also mechanical sources from whole locomotive, will be 

comprehended. To get some aeroacoustic data of a real roof of locomotive will be a problem 

of the future.  
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