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Abstract  

Curved channels are very often present in real hydraulic systems, e.g. curved diffusers of hydraulic turbines, 

S-shaped bulb turbines, fittings, etc. Curvature brings change of velocity profile, generation of vortices and pro-

duction of hydraulic losses. Flow simulation using CFD techniques were performed to understand these phe-

nomena. Cases ranging from single elbow to coupled elbows in shapes of U, S and spatial right angle position 

with circular cross-section were modeled for Re = 60000. Spatial development of the flow was studied and con-

sequently it was deduced that minor losses are connected with the transformation of pressure energy into kinetic 

energy and vice versa. This transformation is a dissipative process and is reflected in the amount of the energy ir-

reversibly lost. Least loss coefficient is connected with flow in U-shape elbows, biggest one with flow in S-

shape elbows. Finally, the extent of the flow domain influenced by presence of curvature was examined. This is 

important for proper placement of mano- and flowmeters during experimental tests. Simulations were verified 

with experimental results presented in literature. 
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1. Introduction and objectives 

Flows with curvature are very common in engineering applications. They can be found in 

most of the e.g. fittings, HVAC appliances, turbine and blade passages, etc.  

Our objective is the investigation of curved flow as a preliminary study for design of 

curved diffusers. Curved diffuser called elbow draft tube is the exit part of hydraulic turbine 

and exhibits very complex flow. It is a combination of flow with curvature, adverse pressure 

gradient diffuser flow and swirling flow. We decided to divide this complexity into these ba-

sic flow types and study them separately before going to full simulation. 

A lot of experimental and computational investigations have been carried out in past on 

curved ducts with rectangular cross-sections, e.g. [4], [7], [8], [9], much less effort was de-

voted to circular cross-sections, which are connected with problems particularly in experi-

mental work, see [2], [10], [11]. But still there are discrepancies as for the integral flow char-

acteristics and spatial evolution of the flow, especially if confronted with classical references 

[5], [6]. Aim of this paper is to find connections between integral characteristics (e.g. loss co-

efficient) and details of the flow field. 

2. Geometry and flow parameters 

All geometrical configurations of curved ducts have similar dimensions: same diameter d, 

same curvature radius dR 2= , same inflow and outflow length of the straight pipes, see fig. 
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Reynolds number based on the bulk velocity and pipe diameter is: 

60000
.

Re
, ==
ν

dU axm
 (1) 

Curvature is characterized by Dean number: 

30000
.2

Re ==
R

d
De  (2)  

All parameters are in correspondence with experiment [10]. Cross-sections in bends are la-

beled according to fig.2. Labelling is similar for spatial 90-degrees bend, and angle φ without 

any subscript is used for single bend. 

a) Single bend b) U-bend 

c) S-bend d) Spatial 90-degrees bend 

Fig.1. Geometrical configurations. 

Fig.2. Labelling of the cross-sections.
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3. Computational model 

3.1. Governing equations and turbulence model 

Finite volume solver Fluent 6.2 code [3] was used for computational simulation. Flow of 

incompressible fluid is governed by Reynolds averaged Navier-Stokes equations (RANS) and 

continuity equation. 

Two-layer approach is employed for turbulence modeling. The core region is modeled us-

ing high-Reynolds realizable k-ε turbulence model. This model is a modification of standard 

k-ε turbulence model. The main difference lies in Prandtl-Kolmogorov relation, where µC  is 

no longer a constant and becomes a function of turbulent kinetic energy, strain-rate tensor and 

rotation tensor (see eq.(6)) and a new transport equation for dissipation rate ε is formulated 

(see eq. (3)) 
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 44.11 =εC  , 9.12 =C  , 1=kσ  , 2.1=εσ  . (9) 

Improvement of this model over its standard form is in prediction of boundary layer flows 

under strong pressure gradients, separation, strong streamline curvature, recirculation, flow 

with presence of vortices.  

Region in vicinity of walls is solved using one-equation Wolfshtein model. Turbulent vis-

cosity is defined according to relation: 

klCt µµρµ =  , (10) 

k  is obtained from differential transport equation and length scale from relation: 

( ))/Reexp(11 µµ AyKl y−−=  . (11) 

Dissipation term in transport equation for turbulent kinetic energy is obtained from: 

ε

ε
l

k 2/3

=  ,  ( ))/Reexp(11 εε AyKl y−−=  . (12) 

Reynolds number yRe  is defined using wall normal distance y : 

ν

ky
y =Re  . (13) 
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Value of Rey is used as the switching criterion between high- and low-Reynolds regions, i.e. 

to realize switching between two-equation realizable k-ε model and one-equation Wolfshtein 

model. 

3.2. Numerical algorithm, boundary conditions, computational grid 

Computational domain is discretized using finite volumes. QUICK interpolation scheme is 

employed for convective term in momentum equation, central differencing for diffusive 

terms. Pressure-velocity coupling is via SIMPLE algorithm. 

Inlet velocity boundary condition is obtained by simulation of the flow with same Rey-

nolds number in sufficiently long straight pipe. Turbulence intensity for this simulation is es-

timated to be 2%, because this quantity is not presented in [10]. Constant static pressure is 

prescribed at the outlet. Rest of the domain is made of no-slip walls.

Hexahedral computational grid was created with about 800.000 volumes. Further adap-

tion, enforced by near wall modeling, led to final number of 1.500.000 computational vol-

umes. All cells in wall vicinity lie in viscous sublayer ( 5<+y ). 

Fig.3. Cross-section of the computational domain (left) and zoom of the near wall region (right). 

4. Integral flow characteristics 

Integral flow characteristics are obtained using mean integral value theorem on selected 

cross-sections. Basic integral quantities are mean pressure and mean velocity, [1]. Coriolis 

number and loss coefficients are derived quantities
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Correction for real specific kinetic energy of velocity profile is realized by Coriolis number, 

which is a ratio of kinetic energies of the real and ideal ("piston") velocity profiles: 

SU

dSUU

axm

S

maxm

.3

,

0

2

,

=α  . (15) 

Specific energy of hydraulic losses is composed of two parts: friction losses and minor losses 

mLfLL EEE ,, +=  . (16) 

Friction losses represent internal friction in fluids flowing through straight pipes. Minor losses 

are associated with energy dissipation, usually caused by vortices and flow recirculation, in 

elements inserted in between the straight sections.
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Friction loss must be computed first, if minor loss should be extracted from eq.(16) 
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Developed turbulent flow in a straight pipe was numerically simulated in present case to ob-

tain friction factor f  and verified with empirical relationships. Good agreement confirms that 

computational grid is sufficiently fine. 

 relationship friction factor f

Konakov 

( )2
5,1Relog8,1

1

−⋅
=f

0,019834

Nikuradse 

237,0Re

221,0
0032,0 +=f

0,019492

Computational simulation - 0,019595

Tab.1. Friction factor. 

Total loss coefficient is computed from following expression: 
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And finally minor loss is defined by: 

fKKm −=  . (19) 

5. Single bend 

Flow in curved duct invokes centrifugal force that is balanced by radial pressure gradient. 

Fluid particles along axis, with higher momentum are displaced to the outer (concave) curva-

ture radius. On the other hand, low momentum particles in boundary layers on upper and 

lower walls are displaced in opposite direction to fulfill continuity equation. This process is 

origin of so called channel vortices, which form a characteristic vortex pair, see fig.4.  

Comparison with experimental data [10] can be performed. Maximum velocity is near in-

ner (convex) radius in both simulation and experiment slightly behind elbow inlet. This peak 

starts to shift towards concave side at about φ = 30° in experiment, whereas remains at the 

same position in simulation. Velocity maximum moves to concave side atφ = 60° in simula-

tion. Ratio of maximum and mean velocity at bend exit is higher in simulation than in ex-

periment. Flow field is more uniform at position 10d in experimental data. Overall it may be 

concluded that flow recovers faster in reality than in computational simulation. The possible 

reasons are wrong estimation of inlet turbulence intensity (not supplied in [8]), infidelity of 

physical model and numerical inaccuracy. 

Details of the flow field are closely related to integral characteristics. Specific kinetic en-

ergy profile features two maxima, one behind bend inlet and the other behind bend exit. De-

crease of kinetic energy after the second peak is even below the inlet value. Equalization to 

original value is reached at position 35.d. Specific pressure energy behaves inversely. Figure 

reveals transformation of pressure energy to kinetic energy and again to pressure energy. This 
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irreversible process is connected with energy dissipation and is the primary cause of the minor 

loss in curved ducts. Situation is also well depicted in Coriolis number profile, see fig.9.  

Fig.4. Velocity vectors for φ = 90°
(view downstream, vector  

scale = 0.5). 

Fig.5. Velocity vectors at 5d behind 

bend (view downstream, vector 

scale = 1). 

Fig.6. Velocity vectors at 25d be-

hind bend (view downstream, vector 

scale = 4). 

Fig.7. Velocity vectors for φ = 90° (up - computation, down - experiment [8], view upstream).

6. Compositions of bends 

6.1 U-bend 

Radial pressure gradient arises at the first bend inlet and consequently vortex pair is cre-

ated. Vortex pair shifts to the inner curvature radius after passing through half of the first 

bend and is growing at the same time. This causes pushing of the low momentum fluid from 

the convex towards concave side accompanied by axial velocity drop on the concave side. 

Because this fluid has low momentum to overcome pressure gradient, it turns backwards and 

new pair of vortices originates, see fig.11. Continuity equation must be fulfilled and fluid near 

walls starts to move from the inner to outer radius. This process suppresses original vortex 

pair. New vortex pair causes faster recovery of the velocity field. Kinetic energy profile is 

characterized by one maximum and one minimum. Therefore the minor hydraulic loss is also 

low. 
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a) Single bend b) U-bend 

c) S-bend d) Spatial 90-degrees bend 

Fig.8. Specific pressure and kinetic energies. 

a) Single bend b) U-bend 

c) S-bend d) Spatial 90-degrees bend 

Fig.9. Coriolis number. 
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Fig.10. Velocity vectors for φ1 = 90°
(view downstream, vector scale = 1).

Fig.11. Velocity vectors for φ2 = 60°  

(view downstream, vector scale = 1).

Fig.12. Velocity vectors at 12.5d 

behind bend (view downstream, 

vector scale = 14). 

6.2 S-bend 

Vortex pair originates after fluid passes bend inlet due to radial pressure gradient. Velocity 

maximum is on the concave side just behind the end of the first bend. Pressure gradient in the 

second elbow is about 10% higher than in the first one. This results in fluid displacement to-

wards the inner side of the second bend, which is documented by distinct peak in Coriolis 

number profile. Coriolis number and naturally also kinetic energy reaches the highest value of 

all investigated geometrical configurations. This is reflected by highest minor loss coefficient. 

Fig.13. Velocity vectors for φ1 = 

= 90° (view downstream,  vector 

scale = 1). 

Fig.14. Velocity vectors for φ2 = 

= 90°  (view downstream,  vector 

scale = 1). 

Fig.15. Velocity vectors at 25.d be-

hind bend (view downstream, vector 

scale = 3). 

6.3. Spatial 90-degrees bend 

Pressure gradient in the second bend is rotated by 90 degrees, which induces flow field de-

formation, see fig.17. Axial velocity distribution together with centrifugal force invokes heli-

cal flow pattern with one vortex. Flow in spatial 90-degrees bend is associated with 3 peaks of 

kinetic energy profile: behind the first bend inlet, behind the first bend exit and behind the 

second bend exit. Minor loss coefficient is lower than for S-bend, which is in discrepancy 

with [5]. However result of computational simulation is well justified by kinetic energy and 

Coriolis number profiles. 
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Fig.16. Velocity vectors for φ1 = 

90° (view downstream, vector  

scale = 1). 

Fig.17. Velocity vectors for φ2 = 40°  

(view downstream, vector scale = 1).

Fig.18. Velocity vectors at 12.5d 

behind bend (view downstream, 

vector scale = 2). 

7. Minor loss coefficient 

Minor loss coefficients were evaluated according to eq.(19) and are summarized in tab.2. 

Differences are apparent for all geometrical configurations. Major disagreement is for U-bend 

and spatial 90-degrees bend. It is important to note that the outlet evaluation cross-section was 

d.5.32 behind last bend (i.e. d.5.2  in front of outlet boundary condition) for all configura-

tions. Longer outflow pipe ( d.60 ) was created behind single bend to investigate how far the 

flow recovery region reaches. It was discovered that it is not less than d.40 , where flow is 

fully recovered and minor loss coefficient attains final constant value. This in contrast with 

well known rule of thumb, which recommends to place pressure transducers d.10  behind the 

last bend. However it is approximately distance d.10 , where the flow is already considerably 

recovered and slow recovering process continues along distance of approximately another 

d.30 , see fig. 19. 

Fig.19. Minor loss coefficient profile for single bend. 

P. Rudolf et. al  / Applied and Computational Mechanics 1 (2007) 255 - 264

263



P. Rudolf  et al. / Applied and Computational Mechanics X (YYYY) 123-456 

 single bend (out-

flow length = 

35.d) 

single bend (out-

flow length = 

60.d) 

U-bend S-bend Spatial 90-

degrees bend 

Computational simulation 0.1769 0.2254 0.159 0.2932 0.277 

Experiment [5] 0.219 0.219 0.300 0.3723 0.438 

Tab.2. Minor loss coefficient. 

8. Conclusion 

A numerical simulation of turbulent flow in different geometrical configurations com-

posed of curved bends was performed. Velocity vector fields on bend cross-sections were re-

corded and put in connection with Coriolis number and kinetic energy of the respective cross-

section. 

Presented study reveals that principal integral characteristics are reflection of the flow 

field details. Energy dissipation of flows in curved ducts originates from mutual transforma-

tions of kinetic and pressure energy that are invoked by centrifugal forces. This conclusion 

explains the least minor loss coefficient of U-bend, where the flow uniformity is enforced by 

two pairs of counter-rotating vortices and the biggest coefficient for S-bend, where one mas-

sive vortex pair originates and the flow is characterized by large velocity difference in radial 

direction. 

Finally it should be concluded that the flow recovery is rather slow process reaching more 

than 40.d behind the last bend. This should be kept in mind especially when placing meas-

urement equipment (e.g. pressure transducers, flowmeters).
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