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Abstract  

The paper deals with the optimization of parameters of the dynamic model of the reactor VVER 1000 sup-
port cylinder. Within the model of the whole reactor, support cylinder appears to be a significant subsystem for 
its modal properties having dominant influence on the behaviour of the reactor as a whole. Relative sensitivities 
of eigenfrequencies to a change of the discrete parameters of the model were determined. Obtained values were 
applied in the following spectral tuning process of the (selected) discrete parameters. Since the past calculations 
have shown that spectral tuning by the changes of mass parameters is not effective, the presented paper demon-
strates  what results are achieved when the set of the tuning parameters is extended by the geometric parameters. 
Tuning itself is then formulated as an optimization problem with inequalities.  
©  2007 University of West Bohemia. All rights reserved.   

Keywords: reactor VVER 1000, support cylinder, spectral tuning 
 

1. Introduction 

The tuning of the dynamic model was based on the values of eigenfrequencies that were 
computed on the FEM model, and could also be identified on the dynamic model. The com-
putation model, that has been developed in Cosmos/M programming code, contains support 
cylinder with core barrel housing. The eigenfrequencies obtained by modal analysis of this 
model represent the objective values for the eigenfrequencies of the tuned dynamic model of 
the support cylinder.  

The tuning of the discrete parameters of the dynamic model of the support cylinder body 
is the first step of identification of the parameters of the complete VVER 1000 reactor model. 
It was necessary to use identical boundary conditions for both models so that modal properties 
of the support cylinder would not be influenced by any other factor. In case of this model,  
it means that all stiffness parameters, including the gland flange stiffness, the bearing support 
stiffness and the stiffness of the toroidal pipes, were not considered. The only stiffness ele-
ment which was considered was the contact stiffness of the support cylinder with the flange  
of the pressure vessel.  

As the past calculations [3] showed, spectral tuning carried out only by changes of mass 
parameters has not appeared to be effective. Therefore it was necessary to add some other pa-
rameters for a new tuning process. It was found reasonable that geometric parameters (thick-
ness of the support cylinder wall and its diameter) could be the suitable ones to extend the set 
of tuning parameters. The fact that the total weight of the new dynamic model should be ap-
proximately the same as the weight of the FEM model is also taken into account. This re-
quirement is represented by two inequality constraints. Further, the changes of all discrete pa-
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rameters shouldn’t be radical. This is provided by imposing appropriate lower and upper 
bound for each tuning parameter.  

After the tuning of the discrete parameters of the support cylinder the dynamic model will 
be tested by modal analysis. Providing the desired results are achieved, the stiffness parame-
ters mentioned above could be included. At the meantime, the core containing 163 fuel cas-
settes will be implemented, and next tuning processes will then follow.  

2. Spectral tuning  

The aim of tuning of a mathematical model of a mechanical system is to change the values 
of parameters (mass, stiffness, geometric) to new values that provide achieving required char-
acteristic values. In case of spectral tuning they are represented by eigenfrequencies. 

 Mechanical system is assumed to be undamped. Mass, stiffness, or geometric parameters, 
that will be changed to tune the mathematical model, constitute a vector p = [pj] where 
 j = 1, …, s of tuning parameters. Characteristic values, which are selected eigenfrequencies 
in this case, and which are imposed some requirements, constitute a vector l = [l i] where  
i = 1, …, k.  This vector is called a vector of tuning.  

Selected tuned quantities depend (by means of coefficient matrices M and K  
of the mathematical model) on the selected tuning parameters. Thus, we may put l = l(p) 
where l(p) is a transformation from a space sR  into a space kR . Hence, the tuning problem 
can be formulated as a problem of finding a vector p* which satisfies 

 ,)( ∗∗ = lpl  (1) 

where l* is a vector of required values of eigenfrequencies. Dimension of this vector is k. 
Let’s assume that the transformation l(p) is differentiable in the neighbourhood  

of the starting point p0. Let’s define a Jacobi matrix of the transformation l(p) as 
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The Jacobi matrix L is called a matrix of sensitivity. Generally, it is a rectangular matrix  
of dimension (k,s) where its element in the i-th row and in the  j-th column determines the rate 
of a change of a quantity lj  with respect to a unit change of a quantity pj. It expresses the sen-
sitivity of a change of the i-th tuned quantity (eigenfrequency iΩ ) to a change of the j-th tun-

ing parameter. Thus, we deal with absolute sensitivity having its dimension corresponding to 
the dimension of the model parameters.  

However, more useful information is provided when relative sensitivity is used. The ad-
vantage of relative sensitivity is that it is related to unit frequency and unit parameter pj, there-
fore it enables the comparison of particular sensitivities. For the relative sensitivity lij  
of the changes of the i-th eigenfrequency to a change of the j-th parameter we may write 
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3. Tuning as an optimization problem 

The (selected) tuned parameters form a vector of tuning [ ] 1

k

i i
l

=
=l , the selected tuning pa-
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cording to [1], the tuning problem can be formulated by the k-criterion function expressed as 
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where gi is a weight of the i-th parameter. Each tuning parameter pi must lie in a permissible 
close range. Values of dip  (lower bound of the i-th tuning parameter), and hip  (upper bound 

of the same parameter), are chosen appropriate while the starting point must lie in this region. 
Incidence with a permissible parameter range is determined by 2s inequalities 

 ,d h
i i ip p p≤ ≤      1,..., .i s=  (5) 

From the definition (4), it is apparent that ( ) 0pψ ≥ . See that if all requirements are met, 

then the value of the objective function is zero. If k-multiplicity of the function (4) is not suit-
able for k > 1, then it is possible to choose a preferable (most important) i0-th requirement  
of which fulfilment is to be optimized, and the remaining requirements are included  
in the inequality limitations. Then the objective function of the optimization problem is given 
by 
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In addition to the limitation (5), the permissible region will also be specified by the limita-
tions 

 ( ) ,d h
i i il l l≤ ≤p      1,..., ;i k=      0,i i≠  (7) 

while the bounds dil  and h
il  are suitably chosen. 

4. Dynamic model of the reactor VVER 1000 support cylinder 

At the Department of Mechanics of the University of West Bohemia in Pilsen, the mathe-
matical model of the reactor VVER 1000 installed in the Temelin NPP has been developed. 
The evolution of the methodology which has been applied in the modelling of the vibrations 
of the reactor or the reactor components is documented in [4]. Within this model, the reactor 
is composed of eight subsystems which are: pressure vessel, support cylinder and core with 
fuel cassettes, guide tube block, upper block support system, control rod drives housings, 
block of electromagnets, and drive assemblies. Each subsystem is modelled in a suitably cho-
sen configurational space of one of other subsystems, and coupling stiffnesses are discretized 
by translational and rotational stiffness elements.  

Support cylinder (SC) is modelled in a configurational space of pressure vessel (PV). Its 
model consists of two stiff bodies (SC1 and SC3) which are connected by one-dimensional 
beam-type continuum (SC2). The body SC1 is denied relative transverse displacements  
at the location of its hanging on the pressure vessel flange, and relative rotations about the re-
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actor axis relative to pressure vessel. SC1 can both move longitudinally (vertically), and ro-
tate by bending motion – generalized coordinates1y , 

1x
ϕ , 

1z
ϕ . SC2 is divided into two ele-

ments by a node at its centre. Plane section passing through the node is enabled general spa-
tial motion - generalized coordinates 2x , 2y , 2z , 

2xϕ , 
2yϕ , 

2z
ϕ . SC3 can also move by general 

spatial motion - generalized coordinates 3x , 3y , 3z , 
3xϕ , 

3yϕ , 
3z

ϕ . The model of the support 

cylinder has 15 degrees of freedom. Vector of generalized coordinates of the support cylinder 
then has a following form: 

 
1 1 2 2 2 3 3 31 2 2 2 3 3 3, , , , , , , , , , , , , , .SC x z x y z x y zq y x y z x y zϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ =    (8) 

 

Fig. 1. Scheme of the dynamic model of the support cylinder. 

level A – emplacement of the pressure vessel in the reactor concrete pit 

level B – hanging of the support cylinder on the pressure vessel flange 

2.1. Geometric parameters of the model 

� AB = 4.72 m – distance between A and B, 

� aSC(1) = 4.02 m – distance between the upper node of the tube SC2 and the horizontal 
plane passing through A, 

� aSC(3) = 2.56 m – distance between the lower node of the tube SC2 and the horizontal 
plane passing through A, 
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� rSC = 1.82 m – distance between the centre of the contact surface of the hanging  
of the support cylinder on the pressure vessel flange and the reactor axis, 

� r tp = 1.8 m – distance between the contact curve of the toroidal pipes with the support 
cylinder and the reactor axis. 

2.2. Mass parameters of the model 

� m1 = 1.32·104 kg – weight of  SC1, 

� I1 = 2.69·104 kgm2 – moment of inertia of SC1 about the transversal axis passing 
through the centre of gravity, 

� m3 = 7.97·104 kg – weight of  SC3, 

� I3 = 2.31·105 kgm2 – moment of inertia of SC3 about the transversal axis passing 
through the centre of gravity, 

� Io3 = 9.94·104 kgm2 – moment of inertia of SC3 about the vertical axis of the reactor. 

2.3. Stiffness parameters of the model 

The stiffness parameters which are the axial gland flange stiffness kgf, the axial  
and the torsional bearing support stiffness kxbs and kxxbs, the stiffness of the toroidal pipes dur-
ing the vertical motion, during the bending motion respectively, kytp, kxxtp respectively, were 
not considered so that boundary conditions can be identical with those that were considered  
in the FEM model. The value of the contact stiffness, the bending stiffness respectively,  
of the hanging of the support cylinder on the pressure vessel flange kySC, kxxSC  respectively, 
was taken sufficiently high to represent support.   

5. Sensitivity of eigenfrequencies to a change of discrete parameters 

The behaviour of the conservative mathematical model of the support cylinder is deter-
mined by the matrix equation of motion  

 .Mq + Kq = 0��  (9) 

Concrete form of the symmetric, positively definite mass matrix M and symmetric matrix 
K is derived from the kinetic and deformation energy of the system after the substitution into 
the Lagrange equations of the 2nd order.  

5.1. Sensitivity of eigenfrequencies to a change of mass parameters 

According to [4], for the relative sensitivity of the i-th eigenfrequency Ωi to a change  
of the j-th mass parameter (which has no influence on the stiffness matrix K), we can write 
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where vi is an eigenvector related to an eigenfrequency Ωi, and which is normalized by matrix 
M, so it satisfies the equation  

 1.=T
i iv Mv  (11) 

A. Musil et. al  / Applied and Computational Mechanics 1 (2007) 193 - 202

197



A. Musil et al. / Applied and Computational Mechanics 

The quadratic forms containing the matrix 
jm∂

∂M
have dominant role in the expression (10). 

Within the mathematical model, such matrix can be expressed very easily. For the discrete pa-
rameters of the support cylinder, we obtain  

 ( )2 2 2 2
1 1 2 3

1

,i i iv b v v
m

∂ = + +
∂

T
i i

M
v v  (12) 

 2 2
2 3

1

,i iv v
I

∂ = +
∂

T
i i

M
v v  (13) 

 ( ) ( )2 2 2 2 2 2 2
1 10 11 12 3 2 3 1 11 3 3 10 2 12

3

2 ,i i i i i i i i i i i iv v v v b v v v v b v v v v
m

∂ = + + + + + + + −  ∂
T
i i

M
v v  (14) 

 ( )2 2 2 2
2 3 13 15 1 13 5 15

3

2 ,i i i i i i i iv v v v v v v v
I

∂ = + + + + +
∂

T
i i

M
v v  (15) 

 2
14

03

.iv
I

∂ =
∂

T
i i

M
v v  (16) 

5.2.  Sensitivity of eigenfrequencies to a change of geometric parameters 

Generally, the relative sensitivity of the i-th eigenfrequency Ωi to a change of the j-th pa-
rameter is determined by the following expression: 
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Since the investigated geometric parameters influence only the segments of the matrices 
M and K which are related to those two elements modelling the middle part of the support 
cylinder, one may write  
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where X = M, K, and the corresponding xe = me, ke are mass and stiffness matrices of the e-th 
shaft element of the annular cross-section with 12 degrees of freedom. Te is a matrix of trans-
formation between the global and the local coordinates of the e-th shaft element. The detail 
structure of the matrix Te is described in [4]. 

6. FEM model of the reactor VVER 1000 support cylinder 

In fig. 2, there is a computation model of the support cylinder which was developed in 
Cosmos/M programming code as a thin-shell tank, and to which the fuel cassettes will be im-
plemented in the future.  

The support cylinder body consists of 14 segments of various diameters and thicknesses. 
The inlets for the cooling loop pipelines that are located in two different zones of the support 
cylinder were not modelled. Instead of that, the thicknesses in the support cylinder segments 
which contain these inlets were reduced in the rate of area of the wall with the inlets to the 
area of the “full” wall. Using this simplification that was already applied in the calculation 
[2], the bending stiffness should not change dramatically.  
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Core barrel, of which total height is 4.07 m, consists of two horizontal slabs and six rings. 
The shape of their outer shell enables to insert 163 fuel cassettes of regular hexagonal outer 
cross-section with the diameter of inscribed circle equal to 0.236 m. Five upper rings are 
0.705 m high while the bottom ring is 0.545 m high. These six rings are bolted together by six 
hollow screws (outer diameter 0.125 m, inner diameter 0.1 m) with the thread in the slab. 
Twelve bolts by which the bottom ring is anchored to the lower slab were not included  
in the model. The thickness of the upper and lower slab of the core barrel is 0.1 m. The model 
also contains 163 pipes connecting the lower slab of the core barrel with the bottom  
of the support cylinder.  

The support cylinder is inserted in the pressure vessel in the vertical axial direction  
(y axis), and hung on the flange. At the location of the contact which is between the first and 
the second segment of support cylinder wall, the corresponding circumferential nodes were 
imposed the zero displacement for all axial directions.  

The reactor VVER 1000 support cylinder is made of the steel material 08X18H10T. In ac-
cordance with the past calculations, the average operational temperature of the support cylin-
der is 305 oC. The corresponding value of Young’s modulus of elasticity E = 1.894·1011. Pois-
son’s ratio and material density do not practically depend on the temperature. The material 
properties for modal analysis are summarized in tab. 1.  

 
Density 
ρ [kg/m3] 

Young‘s modulus 
E [Pa] 

Poisson‘s  
ratio υ 

7850 1.894.1011 0.3 

Tab. 1. Material properties. 

 

 
  

Fig. 2. FEM model of the support cylinder. 

7. The tuning process 

The values of the first eight eigenfrequencies computed on both models are listed  
in tab. 2. Those eigenfrequencies that were found the most suitable for the tuning process are 
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bold marked (the frequencies of the FEM model define the objective functions). They repre-
sent the first bending, torsional, and longitudinal mode.  

As was already mentioned, the spectral tuning carried out by changes of mass parameters 
has not provided satisfying results. Therefore in the next step, the geometric parameters were 
also included in the set of tuning parameters. The relative sensitivities of the dominant fre-
quencies to a change of the mass parameters of the reactor VVER 1000 support cylinder are 
listed in tab. 3, and to the change of the geometric parameters (together with the sensitivities 
to the material constants) are listed in tab. 4.  

 

DYNAMIC MODEL FEM MODEL 

Order of 
frequency 

Eigenfrequency 
f [Hz] Mode shape Order of 

frequency 
Eigenfrequency 

f [Hz] Mode shape 

1 25.84 bending 1 13.45 bending 
2 25.84 bending 2 13.45 bending 
3 69.02 torsional 3 43.75 torsional 
4 73.14 longitudinal 4 49.93 longitudinal 
5 104.47 bending 5 66.18 core barrel 
6 104.47 bending 6 69.90 bending 
7 291.93 torsional 7 70.08 bending 
8 427.54 longitudinal 8 81.58 shell 

Tab. 2. Eigenfrequencies of the reactor VVER 1000 support cylinder. 

Order of fre-
quency m1 I1 m3 I3 Io3 

1 -1.1901⋅10-11 -2.1180⋅10-11 -3.6483⋅10-1 -7.4932⋅10-2 -2.4663⋅10-24 
2 -1.1901⋅10-11 -2.1180⋅10-11 -3.6483⋅10-1 -1.9349⋅10-6 -4.4523⋅10-24 
3 -1.7087⋅10-31 -2.1379⋅10-33 -2.8553⋅10-21 6.6924⋅10-23 -3.5740⋅10-1 
4 -3.0493⋅10-11 -2.6731⋅10-33 -4.3464⋅10-1 8.1098⋅10-12 -2.3254⋅10-21 

Tab. 3. Relative sensitivity to a change of the mass parameters of the reactor VVER 1000 support cylinder. 

Order of fre-
quency r h ρ E 

1 1.3965⋅100 4.6394⋅10-1 -6.0233⋅10-2 4.9995⋅10-1 
2 1.3965⋅100 4.6394⋅10-1 -6.0233⋅10-2 4.9995⋅10-1 
3 1.0539⋅100 3.7567⋅10-1 -1.4260⋅10-1 5.0000⋅10-1 
4 4.2730⋅10-1 4.4196⋅10-1 -6.5389⋅10-2 4.9999⋅10-1 

Tab. 4. Relative sensitivity to a change of the geometric parameters and material constants of the reactor 
VVER 1000 support cylinder. 

According to the values of the relative sensitivities, the selected tuning parameters were: 
weight of SC3 m3, moment of inertia of SC3 about the vertical axis of the reactor Io3, and 
newly inner radius of the SC2 section of the support cylinder r, and thickness of the SC2 wall. 
Density of the support cylinder material ρ, and Young’s modulus E remain unchanged.  
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While performing the tuning process, the value of the total weight of the support cylinder 
should be respected. Since the total weight found on the FEM model is 141.7 tones, the fol-
lowing two inequality constraints have been imposed: 

 .145135 321 tmmmt ≤++≤  (19) 

What remains to be done is to determine appropriate values of the lower and upper bounds 
of the tuning parameters. The computations have shown that the most convenient results can 
be obtained when the bounds of the tuning parameters are as follows: (see tab. 5) 

 

Parameter Original 
value Lower bound Upper bound

m3 [kg] 7.97⋅104 4.98⋅104 1.28⋅105 
Io3 [kgm2] 9.94⋅104 5.23⋅104 1.89⋅105 

r [m] 1.75 1.61 1.90 
h [m] 0.06 0.048 0.075 

Tab. 5. Lower and upper bounds of the tuning parameters 

The results of the tuning of the dynamic model of the support cylinder shown in tab. 6 
where is the comparison of the eigenfrequencies of the model with the eigenfreqeuncies  
of the original model and the FEM model (objective values). The comparison of the new val-
ues of the tuning parameters with the original values is shown in tab 7.  

 

Frequency   f [Hz] Order of 
 frequency 

Mode 
shape Original dy-

namic model 
New dynamic 

model FEM model 

1 bending 25.84 16.72 13.45 
2 bending 25.84 16.72 13.45 
3 torsional 69.02 43.72 43.75 
4 longitudinal 73.14 49.94 49.93 

Tab. 6. Effect of the spectral tuning on the eigenfrequencies of the reactor VVER 1000 support cylinder. 

Parameter Original 
value New value 

m3 [kg] 7.97⋅104 1.28⋅105 
Io3 [kgm2] 9.94⋅104 1.87⋅105 

r [m] 1.75 1.61 
h [m] 0.06 0.048 

Tab. 7. The changes of the tuning parameters. 

Finally, let us check the total weight of the new model: 

 .96.14352.12724.32.13321 tmmmmSC =++=++=  (20) 
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8. Conclusion 

This work is an introduction to the research of which aim is to implement the model of the 
support cylinder with core and fuel cassettes to the dynamic model of the whole reactor. In-
cluding of the geometric parameters to the tuning process brought a significant improvement 
when the desirable modal properties were practically achieved. On the other hand, the achiev-
ing of this result was possible only by dramatic changes of the mass parameters of the dy-
namic model of the support cylinder. Therefore, application of this method in this case still 
remains questionable. Another approach, and more suitable, is to execute the condensation of 
the FEM model and to implement the condensed model into the dynamic model of the reactor. 
This will be the task for the next phase of the research. 
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