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Abstract

The aim of this article is to simulate the viscoelastic behaviour during quasi-static equilibrium processes using
the softwareComsol Multiphysics. Two-dimensional constitutive equations of the three most classical rheological
models (theKelvin-Voigt, MaxwellandThree-Elementsmodels) are developed and the mechanical equations for
each model are rewritten to be compatible with the predefined Comsol format in the so-calledCoefficients mode.
Results of the simulations on creep and relaxation tests are compared with experimental data obtained on a sample
of biological tissue.
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1. Introduction

Viscoelastic behaviour is characteristic of numerous materials, as polymers and biological
tissues for instance. Restricting our study under the hypothesis of small perturbations, rheolog-
ical models can be developed to catch the (linear approximation of the) materials mechanical
behaviour. These rheological models are classicaly represented as combinations of elastic el-
ements (springs) and viscous elements (dashpots) distributed in parallel or series branches. In
this paper, we focus on the three most classical models: the so-calledKelvin-Voigt, Maxwelland
Three-Elementsmodels. The aim of this article is to simulate their mechanical behaviour dur-
ing quasi-static equilibrium processes using the softwareComsol Multiphysics. That software
is designed for solving a system of differential equations coupled with boundaries conditions
and initial solutions. Even if the solution is based on the finite elements method, the differential
equations can be entered in their strong form but the user has to respect conventions of inputting
equations (see section 4). Material behaviour is simulated both on creep and relaxation tests,
and results of the simulations are compared with experimental data obtained on a sample of
smooth muscle extracted from a gastropod intestine.
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Fig. 1. TheKelvin-Voigt, MaxwellandThree-Elementsrheological models (from left to right).

2. Constitutive equations

The constitutive equation for (compressible, isotropic, linear) elastic behaviour is usually
written as

σ = Rε, (1)

where the rigidity tensorR is defined in dependence on the Young modulusE and on the
Poisson coefficientν, i.e.

R =

 1/E −ν/E 0
−ν/E 1/E 0
0 0 (1 + ν)/E

 , (2)

considering the two-dimensional space. Similarly, the constitutive equation for (compressible,
isotropic, linear) viscous behaviour can be written as

σ = Qε̇, (3)

whereQ is defined in dependence on the viscosity modulusη and on the compressibility coef-
ficientκ, i.e.

Q =

 1/η −κ/η 0
−κ/η 1/η 0
0 0 (1 + κ)/η

 . (4)

Viscoelastic behaviour is schematized as combinations of elastic (springs) and viscous (dash-
pots) elements. Elements can be combined in parallel or in series, see fig. 1. By extension of
the well-known one-dimensional rheological models [2][5], we develop constitutive equations
for two-dimensional schemas where elastic and viscous elements’ behaviours are governed by
(1) and (3) respectively. The two-elements figure combining a dashpot and a spring in parallel
is theKelvin-Voigtmodel (abbreviation: KV). It is led by the constitutive equation

σ = Rε + Qε̇, (KV model). (5)

The two-elements figure combining a dashpot and a spring in series is theMaxwell model
(abbreviation: MX) . It is led by the constitutive equation

ε̇ = R−1σ̇ + Q−1σ, (MX model). (6)

Thethree-elementsmodel (abbreviation: TE) combining a spring in series with parallel branches
containing a spring and a dashpot respectively is also studied. It is led by the constitutive equa-
tion

RAQε̇ + RARBε = Qσ̇ + (RA + RB)σ, (TE model). (7)
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3. Mechanical equations

We consider a material sample having the two-dimensional geometryΩ (for instance, a rect-
angle of dimensionsl × L). That sample is submitted to mechanical loading though boundary
conditions on∂Ω. The problem of quasi-static equilibrium can be written as: Find the fields of
displacement,u(x, y, t) andv(x, y, t), fulfilling:

the behaviour law, F(σ, σ̇, ε, ε̇) = 0, in Ω, (ε = ∇sym
[

u
v

]
)

the equilibrium equation, divσ = 0, in Ω,

the boundary conditions on ∂Ω,

the initial solution at t = 0 in Ω.

(8)

A material sample is tested with a traction machine, see fig.2. The loading is applied on the up

Fig. 2. Mechanical traction test.

border while the position of the down one is maintained by the conditionv|y=0 = 0, ∀x, ∀t.
The distribution of deformation within the sample is assumed to be symmetric with respect to
the centered vertical axis: During numerical simulations, we consider the only right half of the
sample (the domainΩ) and we apply the conditionu|x=0 = 0, ∀y, ∀t, on the left border. The
remained border is assumed to be free of stress:σ11|x=l = 0, ∀y, ∀t. Simulations are done both
on the creep test (i) and on the relaxation (ii) test:

(i) At the timet = 0, an instantaneous force is applied on the up boundary and that force is
held constant in time:σ22|y=L = f, ∀x, ∀t.

(ii) At the time t = 0, an instantaneous strain is imposed by moving the up border and that
deformation is held constant in time:v|y=L = δ, ∀x, ∀t.
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4. Comsol modeling in mode ‘Coefficient’

In Comsol’s language, the so-calledCoefficient modeis best adapted for solving linear dif-
ferential equations [1]. It is used to input the equations of the problem respecting the following
scheme:

ea
∂2U

∂t2
+ da

∂U

∂t
+∇ . (−c ∇U − al U + ga) + be . ∇U + a U = f in Ω,

n . (c ∇U + al U − ga) + q U = g − hT µ, on ∂Ω (Neuman condition),

h U = r, on ∂Ω (Dirichlet condition),

(9)

where
• U is the vector of unknown variables,
• ea, da, c, al, ga, be, f , q, g, h andr are tensors (of various orders, and of which the dimensions
depend on the dimension of the vectorU and on the space dimension) collecting the material
coefficients,
• hT is the transposed ofh,
• n is the unitary normal output vector on the considered boundary,
• µ is a Lagrange multiplicator Lagrange mixing Neuman and Dirichlet conditions on the con-
sidered boundary [1].

Comsol programs can be translated inMatlab language. Information is then stoked in a
Matlab structure, the so-calledfem. structure [1]. For instance, information on the unknown
vector in stocked in the fieldfem.dim, on the differential equation in the fieldsfem.equ.ea..
fem.equ.f, on the boundaries equations in the fieldsfem.bnd.q.. fem.bnd.r, and on the initial
solution in the fieldfem.equ.init.

The main part of the Comsol modeling consists of identifying the coefficients’ tensorsea,
da, c, al, ga, be, f , q, g, h andr by comparing the mechanical equations (8) with the Comsol
ones (9). In two-dimensional elasticity, the dimension of the problem is given by the defini-
tion of the vector of unknown variables:U = (u, v) whereu andv are the components of the
displacement field along the two spatial directions. Since we have two unknown variables, we
must have two (differential) equations: They are given by the projections of the equilibrium
equation,divσ(U) = 0, on the space axis, whereσ(U) is replaced by the elastic behaviour law
(1). In opposition to this, when studying viscoelastic materials, we meet the following difficul-
ties:

(i) Coupled time-space derivatives of the typed
dt

∂u
∂x

do not (explicitly) occur in the Comsol
system (9) while we need them in the mechanical equations (8).

(ii) For the models of typeMaxwellandThree-Elementswe are not able to extricate theσ-
expression from the constitutive law, because the later is a differential equation forσ. Conse-
quently, we cannot replaceσ by the behaviour law when writing the projection ofdivσ(U) = 0
on the space axis.

To bypass these difficulties we enrich the number of degrees of freedom as following:
(i) New variables,b and p, are added within theU -definition. In parallel we define two
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adding equations:̇u − b = 0 andv̇ − p = 0. Consequently, the hybrid derivatives, e.g.d
dt

∂u
∂x

,
reduce to purely spatial derivatives, e.g.∂r

∂x
.

(ii) The three components of the stressσ11, σ22 andσ12 are input as new variables (enrich-
ing theU -definition). In parallel the number of differential equations to be solved byComsol
Multiphysicsis increased by adding the components of the behaviour equation (three scalar
expressions) to the projections of the equilibrium equation.

Rewritten mechanical equations (8) in respect with the Comsol format (9) are given in tab.
1. For instance, the developed equations for theThree-Elementsmodel are

∂σ11

∂x
+

∂σ12

∂y
= 0,

∂σ12

∂x
+

∂σ22

∂y
= 0,

∂u

∂t
− b = 0,

∂v

∂t
− p = 0,

Φ
∂σ11

∂t
+ κΦ

∂σ22

∂t
+ Aσ11 + Bσ22 −D

∂b

∂x
− E

∂p

∂y
−G

∂u

∂x
−H

∂v

∂y
= 0,

κΦ
∂σ11

∂t
+ Φ

∂σ22

∂t
+ Bσ11 + Aσ22 − E

∂b

∂x
−D

∂p

∂y
−H

∂u

∂x
−G

∂v

∂y
= 0,

η

1 + κ

∂σ12

∂t
+ Cσ12 −

F

2

∂b

∂y
− F

2

∂p

∂x
− I

2

∂u

∂y
− I

2

∂v

∂x
= 0,

(10)

whereΦ, A .. I are function of the material coefficients:

Φ =
η

1− κ2
, ∆A =

EA

1− ν2
A

, ∆B =
EB

1− ν2
B

,

A = ∆A + ∆B, B = νA∆A + νB∆B, D = ∆AΦ(1 + νAκ),
E = ∆AΦ(νA + κ), G = ∆A∆B(1 + νAνB), H = ∆A∆B(νA + νB),

C =
EA

1 + νA

+
EB

1 + νB

, F =
ηEA

(1 + κ)(1 + ηA)
, I =

EAEB

(1 + ηA)(1 + ηB)
.

(11)

Confronting the system (10) with the predefined Comsol’s system (9) we observed that only
the tensorsal, be, da, a, g, h andr are not zero. Their expressions are detailed in [4]. The
tensorsg, h, r, are related to the boundary conditions. Because of the increase of the number of
degrees of freedom, the Dirichlet conditions onu or r have to be enriched by conditions onb or
p, respectively. That isb|x=0 = 0, ∀y, ∀t andp|y=0 = 0, ∀x, ∀t. Moreover, when simulating
relaxation test,p|y=L = 0, ∀x, ∀t.

Initial solution is needed for every variable in which time derivative is involved in modeling
equations. Consequently, initial condition is needed onu andv for theKelvin-Voigtmodel; on
eachσij, i, j = 1, 2 for the Maxwell model; and onu, v andσij, i, j = 1, 2 for the Three-
Elementsmodel. Nevertheless, the initial solutions must be compatible with the boundary con-
ditions. In every case they are needed, we fixσinit

11 (x, y) andσinit
12 (x, y) as zero. Also, we
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KV U =


u

v

b

p

 ∇ (Rε(u, v) + Qε̇(b, p)) = 0,

u̇− b = 0 and v̇ − p = 0.

MX U =


b

p

σ11

σ22

σ12


∇σ = 0,

ε̇(b, p) = R−1σ̇ + Q−1σ.

TE U =



u

v

b

p

σ11

σ22

σ12


∇σ = 0,

u̇− b = 0 and v̇ − p = 0,

RAQε̇(b, p) + RARBε(u, v) = Qσ̇ + (RA + RB)σ.

Tab. 1. Compatible equations with the Comsol coefficient mode for the three viscoelastic models.

assume the initial components of the displacement of the form

uinit(x, y) = εinit
11 x and vinit(x, y) = εinit

22 y. (12)

When simulating the creep test we fixσinit
22 (x, y) = f, ∀x, ∀y. When simulating the re-

laxation test we fixεinit
22 (x, y) = δ/L, ∀x, ∀y. There is no restriction on the remaining initial

solutions: The user has to input them by the same way as he has to input the material coefficients
EA .. κ - see the summary of free model parameters in tab. 2. Note finally that theMaxwell
model does not work with the variablesu andv becauseε is not involved in the constitutive
equation. As a consequence, results are obtained in term of rate displacement only (that the
user may integrate by himself to obtain information on the displacement field).

5. Results

Since material is assumed to be homogeneous and the loading tests are of the type ‘trac-
tion test’, numerical simulations confirm without surprise that the extra-diagonal termsσ12

and ε12 are zero, and that the distributions ofσii and εii are constant in space. Thus,σ11 =
0, ∀x, ∀y, ∀t, for both simulation tests. When simulating the creep test,σ22 = f, ∀x, ∀y, ∀t.
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Kelvin-Voigt Maxwell Three-Elements

ν, κ , E, η ν, κ , E, η νA, νB, κ , EA, EB, η

creep testf εinit
11 εinit

22 none εinit
11 , εinit

22

relaxation testδ εinit
11 σinit

22 εinit
11 , σinit

22

Tab. 2. Free model parameters (material coefficients, loading and initial solutions).

The distributions of displacement,u andv, are linear functions of one space direction and inde-
pendent from the second space direction, i.e.

u(x, y, t) = ε11(t) x/l and v(x, y, t) = ε22(t) y/L. (13)

When simulating the relaxation test,ε22(t) = δL, ∀t. We confront the numerical results with
experimental data obtained on biological tissue. We use the results from [3] which were ob-
tained from relaxation and creep tests done on samples of smooth muscle extracted from the
soles of gastropods foots. The gastropods samples were tested by unidirectional loading on
tensile apparatus. Relaxation tests were done on unfixed samples using the apparatus DMA 7
(dynamic mechanical analyzer, Perkin Elmer INC, Wellesley, Massachusetts) while creep tests
were done on formalin-fixed samples using the apparatus Zwixk/Roell SC-FR050TH (Zwick
GmbH & Co., Ulm, Germany). The geometry of the tested samples and the values of load-
ing are given in the table 3. The results of the experiments are plotted in fig. 3 and fig. 4 in
term of elongation vs time for the creep test (fig. 3, solid curve), and in term of stress vs time
for the relaxation test (fig. 4, solid curve). Then, numerical curves the best reproducing the
experimental ones could be identified using the least-squares method. Identified values of the
model parameters are given in tab. 3. The numerical simulations also give information on the
horizontal deformation of the sample,ε11, that was not stocked by the experimental measure-
ments. Its (numerical) time evolution is plotted in fig. 5 and fig. 6. Nevertheless, the limitation
of exploitation of this result lies with the fact that final solution strongly depends on the initial
solutionεinit

11 .
During the creep test the elongation of the gastropod sample increases in time, see fig. 3.

Since this increase is not linear, theMaxwell model is not well suited. Indeed, the solutions
b andp (= u̇, v̇) of the Maxwell model are stationary. Their analytical expressions are found
when simulating the creep test:

ε̇11 =
−κ f

η
, ε̇22 =

f

η
, ∀x, ∀y, ∀t, (MX model, creep test). (14)

On the other hand, the gastropod tissue shows stress relaxation: When simulating the relax-
ation test, stress decreases in time as shown in fig. 4. Even if the stationary solution is not
reached within the tested interval of time, it seems that the stress does not decrease until it van-
ishes. Once more, theMaxwell model fails to mimic the gastropod tissue behaviour. Indeed,
when simulating the relaxation test, the solutionsσ22 andε̇11 of theMaxwellmodel decrease till
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Creep test Relaxation test

geometry L=5.33 mm, l= 3.9/2 mm [3] L= 8 mm, l= 4/2 mm [3]

loading f= 1.0052 e4 Pa [3] δ= 7 mm [3]

initial εinit
11 = 0 ( default assumption), εinit

11 = 0 (default assumption),

solution εinit
22 = einit L, einit = 0.7 mm (fig. 3) σinit

22 = 1 e5 Pa (fig. 4)

κ, ν, νA, νB = 0.33

KV E = 2.0e4 Pa η = 2.0e7 Pa.s E = 3.72e4 Pa η = 1.0e7 Pa.s

MX E = 1.0e6 Pa η = 6.2e7 Pa.s E = 5.0e4 Pa η = 1.0e7 Pa.s

TE EA = EB = 4.0e4 Pa η = 4.0e7 Pa.s EA = EB = 7.44e4 Pa η = 2.0e7 Pa.s

Tab. 3. Model parameters.

vanishing. Moreover, if the compressibility coefficient is the same for the elastic and viscous el-
ements, i.e. ifν = κ, then the horizontal deformation is also stationary i.e.ε̇11 = 0, ∀x, ∀y, ∀t,
see fig. 6.

KV TE

creep test ε∞11 =
−fν

E
, ε∞22 =

f

E
ε∞11 =

−δ (νBEA + νAEB)

L (EA + EB)
σ∞22 =

δEAEB

L (EA + EB)

relaxation test ε∞11 =
−δν

L
, σ∞22 =

δE

L
ε∞11 =

−f (νBEA + νAEB)

EAEB

, ε∞22 =
f(EA + EB)

EAEB

Tab. 4. Stationary solutions.

For both kinds of loading, the solutions for theKelvin-Voigtand theThree-Elementsmodels
have a tendency towards stationary values that are given in tab. 4. If the elastic elements of the
Three-Elementsmodel are identical, i.e. if

νA = νB ≡ νTE and EA = EB ≡ ETE, (15)

and if the conditions
EKV = ETE/2 and νKV = νTE, (16)

are fulfilled, then the stationary solutions are the same for both models. Moreover, when sim-
ulating the creep test, the following ways to reach the stationary solution are the same for both
models if the conditionηKV = ηTE/2 are held. Then the creep solutions of theKelvin-Voigt
and theThree-Elementsmodels become confused, see fig. 3 and fig. 5. On the other hand,
the solutions diverge when simulating relaxation test, see fig. 4 and fig. 6. Here, all numerical
simulations were done assuming the material to be compressible, with the same compressibility
coefficient for all viscous or elastic elements: we fixκ, ν, νA, νB equals to 0.33 for each model
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Fig. 3. Creep test, confrontation between the three
models and the experimental data.

Fig. 4. Relaxation test, confrontation between the
three models and the experimental data.

Fig. 5. Creep test, evolution on the deformationε11
for the three viscoelastic models.

Fig. 6. Relaxation test, evolution on the deforma-
tion ε11 for the three viscoelastic models.

and each simulation. Such assumptions forbid theKelvin-Voigtmodel to relax. Indeed, the
behaviour law (5) leads to the initial stress expression

σinit
22 =

E

1− ν2

(
δ

L
(1− νκ) + εinit

11 (ν − κ)

)
(KV model, relaxation test). (17)

(We recall that for theKelvin-Voigtmodel,σinit
22 is not a free model parameter but it is fixed

by the constitutive equation since the later is not a differential equation forσ). This solution
is confused with the stationary solutionσ∞22 (tab. 4) if ν = κ. If not, theKelvin-Voigtmodel
relaxes, and by this way fundamentally diverges from its one-dimensional representation, which
never relaxes. Also (for any compressibility coefficient) if the initial deformationεinit

11 is chosen
equal to the stationary solution,ε∞11, then theKelvin-Voigtmodel does not relax any more. On
the other hand, theThree-Elementsmodel relaxes whatever the initial value of the horizontal
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deformationεinit
11 (assuming the (user free) initial value of the vertical stress,σinit

22 , chosen is
different from the stationary one).

6. Conclusions

The two-dimensional extension of the classical linear viscoelastic models leads to systems
of differential equations that are not solvable analytically. In general cases, stationary solutions
can be found analytically but no analytical expression for the way to reach them can be pro-
vided. To study the mechanical behaviour of viscoelastic materials during mechanical loading
we recourse to numerical solutions. In this contribution, we worked with the softwareCom-
sol Multiphysics. The mechanical equations are rewritten to be compatible with the predefined
Comsol’s equations system, leading to a large amount of work on coefficients’ tensors identi-
fication which was done and is further developed in [4]. In this paper, we focus more on the
results of the simulations. Numerical results were confronted with experimental data obtained
on a sample of smooth muscle extracted from a gastropod intestine [3]. We conclude that the
Maxwellmodel is unable to mimic the mechanical behaviour of such tissue, while theKelvin-
Voigt and theThree-Elementsmodels leads to better results. We also observed that, excepting
particular situations, the two-dimensional extension of theKelvin-Voigtmodel relaxes and by
this way fundamentally diverges from its one-dimensional representation, which never relaxes.
We may finish by saying that all results are extremely sensible on initial solution which is not
modeled by the rheological models but remain the user’s decision.
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