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Abstract  

Tube heat exchangers are inseparable components of a great number of energetic machinery, where one fluid 
flows through tubes and the other fluid flows around the tubes. Heat transfer occurs between these two fluids. 
Apart from the problem of heat transfer, the problem of fluid-structure interaction is very important too. Mainly 
the fluid flowing around the tubes may be very dangerous, because it causes vibrations of these tubes. Intensity 
of vibration depends on the velocity of the flow. Under the certain, so-called critical velocity, vibration 
amplitudes can have random pattern. The objective of this article is to determine the probability of up crossing of 
some fixed level. It is necessary to avoid such regimes of operations, in which the damage of a heat exchanger as 
a consequence of flow-induced vibration could be caused.  
© 2007 University of West Bohemia. All rights reserved. 
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1. Introduction  

The cases, in which it is necessary to transfer heat from one fluid to another fluid, are very 
important and very frequent in power engineering. The heat exchangers are used for these 
purposes. The exchangers consisting of many parallel tubes are mostly used. One fluid flows 
inside the tube and the other fluid flows cross-tube. The heat is transferred from the fluid with 
a higher temperature to the fluid with lower temperature. The fluid flowing around tubes can 
be the source of aerodynamic excitation. Besides the problems dealing with heat transfer it is 
necessary to solve very important questions dealing with the dynamic behaviour of the whole 
equipments. Under the certain conditions the vibration of tubes can be so intensive, that a 
serious damage can occur. This happens under the certain, so called critical, velocity of flow. 
We say that the loss of stability began.  

More and more requirements on power production increase the call for designers, in order 
to machines operated near the stability limit. It is necessary to devote great attention to the 
stability limit determination for safeguarding the reliable and safety operation of the 
machinery. The problem of aerodynamic excitation is discussed in this paper. Physical nature 
of phenomena connected with the origins of non-stable states must be studied very carefully, 
too. When the turbulent excitation of cross-flowed tubes takes place, it is necessary to know 
the probability of up crossing of some fix level of amplitudes. In this paper it is supposed that 
vibration of tubes can be described by the equation of an oscillator with a light non-linear 
damping and a white noise excitation.  
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2. Mathematical formulation 

The tubes are modelled as slender bars. The axes of tubes are identical with axis z. Tubes 
can vibrate in plane ),( zx  and ),( zy . The displacement in plane ),( zx  is marked ),( tzu and 
the displacement in plane ),( zy  is marked ),( tzv . We choose a cell containing N tubes. If we 
suppose, that all tubes in the cell are identical, we can express equations of motion for tube 
number j in the form   
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where E is the modulus of elasticity of tube material, 64)( 4
2

4
1 DDJ −= π is the moment of 

inertia of a tube, µ is the coefficient of material damping, M is the mass of tubes per one 
meter length (including the mass of fluid inside of a tube), ),( tzFuj  is the force acting on a 
tube in plane ),( zx  and ),( tzFvj  is force acting on the tube in plane ),( zy .

Very detailed analysis is made in [4]. It is supposed, that the resulting aerodynamic force 
can be divided in two components. The former component is independent on movement of a 
tube, and the latter component depends on the harmonic movement. The existence of memory 
effects between the tube displacements and fluid forces follows from this analyse, [5]. These 
memory effects are generalisation of time delay, which was included in [11].  
 Forces ),( tzFuj  and ),( tzFvj  can be expressed in the form of sum of aerodynamic forces 

),( tzf a
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vj Lvf expressing interactions of tubes with 
dividing walls. Parameter pL denotes the length of segment from the left end of tube. We can 
write         
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where )( pLz −δ is  Dirac δ - function. 

3. Suppositions of the solution 

The so-called displacement mechanism of the aerodynamic excitation is mostly used for 
the mathematical formulation of tube bundles vibration. This mechanism is based on the 
assumption that the pressure field around considered tube and simultaneously pressure field 
around neighbouring tubes are changed by the tube deviation from its equilibrium position. 
The aerodynamic forces cause the tubes to begin vibrate. The aerodynamic couplings between 
tubes exist. These couplings are expressed by means of coefficients of added mass, 
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aerodynamics damping and aerodynamics stiffness, [7], [8], [9]. In this approach the 
knowledge of these coefficients is required to solve the stability problem. Besides these 
deterministic forces it is necessary consider the stochastic forces ),( tzf turb

uj , ),( tzf turb
vj , which 

are caused by turbulent fluctuations. We can write  
 

( ) ,),(
2
1

2
1

4
),(

1

2

1
1

1
2

2

2

22
1

tzfvuw

t
v

t
uwD

t
v

t
uDtzf

turb
uj

N

k
k

xy
jkk

xx
jkx

N

k

kxy
jk

kxx
jkx

N

k

kxy
jk

kxx
jk

a
uj

++−

+







∂
∂

+
∂
∂

−








∂
∂

+
∂
∂

−=

∑

∑∑

=

==

γγρ

ββρπααρπ

(5) 

( ) .),(
2
1

2
1

4
),(

1

2

1
1

1
2

2

2

22
1

tzfvuw

t
v

t
uwD

t
v

t
uDtzf

turb
vj

N

k
k

yy
jkk

yx
jkx

N

k

kyy
jk

kyx
jkx

N

k

kyy
jk

kyx
jk

a
vj

++−

+







∂
∂

+
∂
∂

−








∂
∂

+
∂
∂

−=

∑

∑∑

=

==

γγρ

ββρπααρπ

(6) 

 

Coefficients rs
jkα , rs

jkβ , rs
jkγ in these equations are the coefficients of added mass, added 

aerodynamic damping and aerodynamic stiffness, mentioned above. The subscripts and 
superscripts are Nkj ,...,2,1, = , yx,= , yxs ,= , N is the number of tubes, which are in 
aerodynamic coupling. For example rs

jkα is added mass of tube number j, moving in direction 
r, influenced by tube number k, moving in direction s. It is necessary to determine these 
coefficients experimentally. Real heat exchangers consist of great number of tubes, but we 
suppose, that aerodynamic couplings are restricted on a few tubes only. We choose a cell 
containing a small number of tubes, usually N = 9, or N = 7 tubes, in the dependency on 
geometric shape and flow direction. In spite of that, the degree of freedom number of such 
system is very high.  

The so-called global model was formulated in [3] for this purpose. The tube bundle 
consisting of the great number of cross-flowed elastic tubes (system with many degrees of 
freedom) is replaced by the system consisting of bundle of rigid tubes with one elastic tube, in 
this approach. Theory of this global model is based on the assumption that tubes are identical, 
have identical boundary conditions and the dominant frequency 0ω (peak) exists in the 
response frequency spectrum. For circular natural frequency kω and viscous damping factor 

kζ it is possible to write 

 )1(),1( 000 kkkkk ηωζωζεωω +=+= , (7) 

where k is the tube number and 1,1 <<<< kk ηε . Introducing this model means that 
requirements on experimental works are much lower.  

It was found out on the base of theoretical considerations [1], [2], [12], that for cross-
flowed elastic bundle the two different mechanism for loss of stability exists. If the value of 
parameter 2

1DM ρδ is low, the loss of stability is mainly determined by the negative value of 
the damping aerodynamic coefficient. The influence of the aerodynamic couplings is 
suppressed in that case. If the value of parameter 2

1DM ρδ is high, the loss of vibration 
stability is determined by aerodynamic stiffness. Aerodynamic couplings are important in that 
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case. Boundary value is 3002
1 =DM ρδ . That means that for 3002

1 <DM ρδ it is possible to 
judge the vibration stability of elastic tube bundle on the base of vibration stability of one 
elastic tube vibrating inside of the rigid tube bundle. This approach (so called “semi rigid 
theory”) is very popular, mainly for vibration of loosely supported tubes, because it simplifies 
stability limit calculations. 

Let us suppose one elastic tube vibrating inside of tube bundle consisting from of rigid 
tubes. Aerodynamic exciting forces can be according [12] expressed in the form 
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Subscript j, which determines tube number in the bundle, is omitted here. In equations 
mentioned above is rwv&≅α , uUwr &−≅ , xawU = , )( DTTa −= , where T is the distance 
between tube centres. Parameters LD CC , are drug and lift coefficients, respectively. These 
quantities depend on displacements ),(),,( ttzvttzu ∆−∆− , where t∆ has a meaning of time 
delay between aerodynamic force and the tube displacement. In a view of the fact that 
coefficients LD CC , are usually established in the dependence of flow velocity xw , it is 
possible to express aerodynamic forces acting on tube in the form 
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where 2aCC DD = , 2aCC LL = . These expressions are substituted to equations (1) and (2). 
We can see that resulting system of equations is non-linear.   

4. Probability of boundary limit over-crossing 

We know from the preceding explanation that it is possible to transpose the solving of the 
stability problem of the tube bundle vibration (consisting from elastic tubes) on the stability 
problem of one elastic tube vibrating inside the tube bundle (consisting of rigid tubes). This 
problem can be described by equation 

 ),()(),()( tfqKqqBtq =++ &&& ε (12) 

where )(tq is the tube displacement and ε is a small parameter. The function ),( qqB &

expresses the non-linear damping and the function )(qK expresses the non-linear stiffness. 
We shall suppose that ),( qqB & is an odd function with respect to ).(tq& Function )(tf
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expresses random excitation (excitation by turbulent fluctuations). We further suppose that 
this function has a form of white noise. 

Under these assumptions the quantities )(tq and )(tq& are components of a two-
dimensional Markov process. We designate the trajectory in the phase plane in a point t by 
symbols )(),( tqytqx &== . Let 00 , yyxx ==  is starting point of the trajectory at time 0=t .
The probability that the trajectory in phase plane, which starts at )0(),0( 00 qyqx &== , arrives 
within the differential element dxdy  at the later time is ( )dxdytyxyxp ;,, 00 .

The appropriate Fokker-Planck equation is 
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where I is the intensity of white noise which is given by expression  
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E is so called expected value.  

Kinetic energy related to tube of length one meter and mass one kilogram is 2
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Potential energy is ξξ∫=
q
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Equations describing probability density for parameters )(tq and )(tEk can be obtained by 
transformation of variable yx, in equation (13) on variable η,x , [13]. It is useful to introduce 
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If we suppose that the response amplitude is of the unity order, variable I must be of ε
order. From that it follows that the third and the forth terms on the left-hand side of equation 
(17) are of ε order. In order to the second term on the left-hand side of this equation was also 
of ε order, it must be )(0)( εη += gD , where )(ηg is a function of η . That means that 

);,( 0 tyxp η can be expressed in the form of η function, with an error of ε order. We can 
write 
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where dxtxptp
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It is evident that the integration range must be such that η > kE . Under these 
considerations it is possible to establish that for a small value of parameter ε the one-
dimensional Markov process with probability density );( 0 tp ηη  can approximate the random 
vibration of tube. Corresponding Fokker-Planck equation has the form 

 

[ ]pAIpIA
t
p )(

2
1

2
1)( 32

2

2 η
η

ηε
η ∂

∂
−













 −

∂
∂

−
∂
∂ , (21) 

 ( )[ ]dxxExB
A

A
x

k∫
∆

−= )(2,
2)(

1)(
1

2 η
η

η , (22) 

 dxE
A

A
x

k∫
∆

−= η
η

η
)(

1)(
1

3 . (23) 

 

Let us consider so called stationary solution )(η∞p at first, which is defined by expression   
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and k is a normalization constant. 
Let us consider the non-linear damping in the form of equation (27). The same problem 

was solved in [13]. We can meet with the same form of damping in the case of vibration of 
the loosely supported tube (if the dry friction is supposed in the gap). 

 ( )nqqqqB &&& ε+= 1),( . (27) 

 Equation of motion describing tube vibration is then of the form  

 ( ) )(12 2
000 tfqqq n =+++ ωεωζ &&&& , (28) 

where 0ζ is damping ratio and 0ω is natural  frequency in a case of the linear vibration 
problem,   when is 0=ε a 002 ωζ=B . It follows from expressions (22), (23) and (26) given 
above:  

 ηη =)(3A , (29) 
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We introduce the non-dimensional quantities  
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The probability ),( yxp has in that case the form 
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The normalization constant c in equation (37) is given by expression  
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We substitute *εε = in to the expression (30) and calculate the function )(*
4 ηA . Expected 

value of the momentum of order m (if m is even) of non-dimensional quantity 
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This quantity equals zero if m is odd. We express the exponential functions in (38) and (39) in 
the form of power series in *ε . After integration we obtain 
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constants mnA are  
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For 2=m we get from equation (41) the expression for the mean square response 
{ })(22 tqE=σ . If n is odd, we have 
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If n is even, we have  
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It is interesting to compare this result with the result of solution of the same problem 
solved by method of equivalent linearization, [14].  

Instead of equation (28) we use equation in the form 
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The equivalent damping in this equation must be chosen to minimize mean square of the 

difference between the response of equation (28) and the response of equation (45). The 
optimal value of eqε is then given by expression  
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Let us consider the response )(tq of non-linear tube vibration, which is described by the 

non-linear differential equation (28). Expected frequency of the up-crossing of certain fixed 
level a is given by expression  
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0
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where 0
~ σaqa = . For expressing the function p we use equation (37).  

It is possible to get an analytical expression for Ω in special case 2=n
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The frequency 0ω is natural frequency of the linear problem solution, that means for 

0* =ε . Knowledge of the frequency Ω is very important for assessment of heat exchangers 
reliability. Let us remark that for 0=aq is 0ω=Ω .

5.  Conclusion 

In the first part of the article the problem of the cross-flowed tube bundle vibration is 
described. The phenomenon of the vibration stability limit is mentioned. The loss of stability 
limit means, that for certain flow velocity, so called critical velocity, the amplitudes of 
vibration suddenly increase. It can be very dangerous, because the vibration can be so 
intensive, that the heat exchanger may be destroyed. 

The fundamental equations describing the tube vibration are introduced. It is supposed that 
the so-called displacement mechanism takes place. This mathematical model of vibration is 
based on the knowledge of the coefficients of added mass, added aerodynamic damping and 
added aerodynamic stiffness. These coefficients express aerodynamic couplings between the 
tubes. The coefficients are determined experimentally. The experimental equipment for the 
research of aerodynamic couplings between tubes is built in the laboratory of the University 
of West Bohemia. 

The justification of semi rigid theory based on the solving of vibration of one elastic tube 
inside the tube bundle, which consists of rigid tubes, is introduced further. The main part of 
the article is devoted to the theory of non-linear tube vibration for the case of random 
turbulent excitation. It is supposed that the excitation has a form of white noise. Under these 
assumptions the displacements )(tq and vibration velocity )(tq& are the components of two-
dimensional Markov process. The probability of that process is described by the Fokker-
Planck equation. For a special form of the non-linear damping the analytical solution is 
introduced. The main objective is to determine the probability of the over-crossing of some 
fixed vibration amplitude. The expected frequency of up-crossings is calculated. The 
knowledge of the frequency is very important for the assessment of the heat exchangers safety 
work. 

It is known that near the stability limit some interesting phenomena take place. Further 
works will be therefore concentrated on that field. It is mainly the intermittent behaviour [6], 
[10], [15] and the triggering mechanism of non-stability. It is important to study also other 
types of non-linear systems, for example non-linear models of loosing supported tubes or non-
linear vibration of the turbine and the compressor blades.  
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