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Abstract 

Nonlinear equations of motion for a flexibly supported rigid airfoil with additional degree of freedom for 

controlling of the profile motion by a trailing edge flap are derived for large vibration amplitudes. Preliminary 

results for numerical simulation of flow-induced airfoil vibrations in a laminar incompressible flow are presented 

for the NACA profile 0012 with three-degrees of freedom (vertical translation, rotation around the elastic axis 

and rotation of the flap). The developed numerical solution of the Navier � Stokes equations and the Arbitrary 

Eulerian-Lagrangian approach enable to consider the moving grid for the finite element modelling of the fluid 

flow around the oscillating airfoil. A sequence of numerical simulation examples is presented for Reynolds 

numbers up to about Re ≈ 10
5
, when the system loses the aeroelastic stability, and when the large displacements 

of the profile and a post-critical behaviour of the system take place.  
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1. Introduction 

The contribution enlarges the previous studies of the authors [4] on finite element (FE) 

modelling of vibrations and aeroelastic instabilities of airfoils by including the additional 

degree of freedom for controlling of the profile motion by a trailing edge flap. The worked 

out method allows analyzing flow induced airfoil vibrations for various regimes, as, e.g. the 

flow of an isolated airfoil or an airfoil inserted into a wind tunnel. The presented 

computational results will demonstrate airfoil vibrations in dependence on time for various far 

field velocities and Reynolds numbers, the interaction of airflow and the airfoil for subcritical 

and supercritical regimes and the development of instabilities. 

2. Description of the fluid flow and FE solution of Navier-Stokes equations 

We assume that (0, T) is a time interval and we denote by �t a computational domain 

occupied by the fluid at time t. We denote by u = u(x, t) and p = p(x, t), x ∈ �t, t ∈ (0, T) the 

flow velocity and the kinematic pressure (i.e. dynamic pressure divided by the density ρ of the 

fluid) and v denotes the kinematic viscosity. We have u = (u1, u2), where u1 and u2 are 

components of the velocity in the directions of the Cartesian coordinates x1 and x2 of x. By R

and R
2

we denote the set of all real numbers and the set of all two-dimensional vectors, 

respectively. 
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In order to simulate flow in a moving domain, we employ the Arbitrary Eulerian-

Lagrangian (ALE) method, based on an ALE mapping 

:t ref tA � → � , ( ) ( ), tX x X t A X→ = , (1) 

of the reference configuration �ref  = �0 onto the current configuration �t with the ALE 

velocity w = ∂At / ∂t. We suppose that the ALE velocity at each point on the surface of the 

airfoil is equal to the velocity of its motion. By D
A

/ Dt we denote the ALE derivative � i.e. 

the derivative with respect to the reference configuration. In the domain �t we consider the 

Navier-Stokes equations written in the following ALE form [3]: 

( ). 0
AD

p
Dt

ν+ − ∇ +∇ − � =  u u w u u , (2) 

. 0∇ =u , (3) 

to which we add the initial condition 

( ) 0 0,0 ,x x= ∈�u u  (4) 

and boundary conditions 

D DΓ =u u ,
Wt WtΓ Γ=u w , ( ) 0 onref Op p p ν

∂
− − + = Γ

∂
u

n
n

. (5) 

Here n is the unit outer normal to the boundary ∂�t of the domain �t, ΓD represents the 

inlet, Γ0 is the outlet and ΓWt is the boundary of the airfoil at time t. Second condition 

represents the assumption that the fluid adheres to the airfoil. We denote by pref a prescribed 

reference outlet pressure. At the outlet we use here the boundary condition called the do-

nothing condition [5]. 

The spatial semidiscretization of the Navier-Stokes equations written in the ALE form is 

performed by the stabilized finite element method [4]. In practical computations, the Taylor�

Hood P2/P1 finite elements are used. The ALE time derivative is approximated by the 

second-order backward differentiation formula. The discrete Navier-Stokes problem is 

combined with the Runge-Kutta method for the solution of the nonlinear airfoil vibrations 

system. 

3. Airfoil with three degrees of freedom 

A solid flexibly supported airfoil with a control section is shown in Fig. 1, where the 

positions of the elastic axis (EO), and the position of the hinge (EF) of the control section are 

sketched. By h, α and β the plunging of the elastic axis, pitching of the airfoil and rotation of 

the flap are denoted, respectively, �� denotes the distance of the flap hinge from the elastic 

axis of the airfoil.  

The elastic support of the airfoil is realized by translational and rotational springs. Kinetic 

and potential energy have to satisfy the Lagrange equations:  

( ) ( )
0,i

i i

E V E Vd
Q

dt q q

κ κ∂ − ∂ −
− + + =

∂ ∂&
(6) 

where  Qi are generalized forces, Ek is the kinetic energy and V is the potential energy.  

The potential energy V of the airfoil is given by  

2 2 21 1 1

2 2 2
hhV k k k h= + +αα ββα β , (7) 
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where kαα, khh, kββ are the stiffness coefficients of the springs. 

The airfoil in the neutral and deformed position is shown in Fig. 1. The horizontal 

displacement u and the vertical displacement w of any point on the airfoil chord can be 

expressed as  

( ) ( )( )

( ) ( )( )

� �min , cos cos ,

� �min , sin sin ,

u x x x

w h x x

+

+

= − � − + −�

= + � + + −�

α α β

α α β
 (8) 

where (λ)
+
means the positive part of a number λ, i.e. λ+

= max (0, λ), and x denotes the local 

coordinate measured along the airfoil chord c from the elastic axis. 
 

α

x

EO EF

A

w

β

�

A

A´

h

u

Fig. 1. Scheme of the airfoil with the flap. 

3.1. Nonlinear equations of motion for large amplitudes 

Using the nonlinear relations (4) for the displacements and dividing the airfoil chord c into 

the control section part c2 and the main front part c1, we have 

on 1
�:c x < �

( )1 cos ,u x α= − sin ,w h x α= +

and on 2
�:c x > �

( ) ( ) ( ) ( )� � � �cos cos , sin sin .u x x w h xα α β α α β
+ +

= −� − −� + = + � + −� +

Let us divide the kinetic energy into three parts Ek = E1 + E2 + E3 where, 

1

2 2

1

1
,

2
s

c

du dw
E dx

dt dt
ρ

    
= +    

     
∫

2

2

2

1
,

2
s

c

du
E dx

dt
ρ  

=  
 ∫

2

2

3

1

2
s

c

dw
E dx

dt
ρ  

=  
 ∫ ,

and where ρ5 is the airfoil material density. 

First, consider the kinetic energy E1:
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( )
2 2

2
2 2 2

1

� �

2 2

1 1 1

1 1
sin cos

2 2

1 1
cos ,

2 2

s s

x x

du dw
E dx x x h dx

dt dt

I h m hS

ρ ρ α α α α

α α α

<� <�

      = + = + + =            

= + +

∫ ∫ && &

& && &

 

where  ( )
1

1 s

c

m x dxρ= ∫ , ( )
1

2

1 s

c

I x x dxρ= ∫ and ( )
1

1 s

c

S x x dxρ= ∫ .

Further, for the kinetic energy E2 we have 

( )( ) ( )

( ) ( ) ( ) ( )

2

2

�

2
2 2 2 2

2

1 � �sin sin
2

1 1� �sin sin sin sin ,
2 2

s

x

E x dx

m I Sβ β

ρ α α α β α β

α α α β α β α α β α α β

+

>�

 = � + + −� + =  

= � + + + + + + �

∫ && &

& && & & &

 

where  ( )
2

2 s

c

m x dxρ= ∫ , ( ) ( )�
s

c

S x x dx
+

= −�∫β ρ is the static moment of the flap section 

around the elastic axis of the control section EF, ( ) ( )
2

�
s

c

I x x dxβ ρ
+ = −�  ∫ is the inertia 

moment of the flap section around the elastic axis of the control section EF, and for the 

kinetic energy E3 we have 

( )( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2

3

�

2
2 2 2 2 2

2 2

2

1 � �cos cos
2

1 1 1� cos cos
2 2 2

� �cos cos cos cos .

s

x

E x h dx

m I m h

S m h h S

β

β β

ρ α α α β α β

α α α β α β

α α β α α β α α α β α β

+

>�

 = � + + −� + + =  

= � + + + +

+ + + � + � + + +

∫ &&& &

&&& &

& && && & & &

 

The following relations are introduced 

( )1 2 s

c

m m m x dxρ= + = ∫ � the total mass of the entire airfoil, 

( ) 1 2
�

s

c

S x x dx S S mα βρ= = + +�∫ � the total static moment around the elastic axis EO, 

( )2 2

1 2
� �2s

c

I x x dx I I S mα β βρ= = + + � +�∫ ... the total inertia moment around the elastic axis, 

( )� �
s

c

x x dx I Sβ βρ
+

−� = +�∫ ,

( )( ) ( ) ( )cos cos cos cos sin sinβ α β α α α β α α β= + − = + + +

and after summing up the energies 1 2,E E and 3E we get the kinetic energy 

( )( ) ( )( )( )

( ) ( )

2 2 21 1 1�2 cos 1 cos cos cos
2 2 2

� cos cos .

E mh I S I h S S

I S hS

κ α β β α β

β β β

α β β α α α β α

αβ β β α β

= + + � − + + + + − +

+� + +

& && &

&& &&

Using the Lagrange equations, we find that 
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( )( )( ) ( )

( )( )( ) ( )( ) ( )

( )( )( ) ( )

( ) ( ) 2

cos cos cos cos 0,

� �cos cos cos 2 cos 1 cos

sin sin sin sin 0,

� �cos cos

hh

d
mh S S S k h

dt

d
S S h I S I S

dt

h S S hS k

d
S h I S I

dt

α β β

α β α β β β

α β β αα

β β β β

α α β α α β α β

α α β α β α β β

α α α β α β α β α

α β β α β α

 + + + − + + + = 

 + + − + + � − + + � 

+ + + − + + + =

 + + +� + + � 

& &&

& &&

& &&&

& && &

( ) ( )

sin

�sin sin 0

S

h S S k

β

β β ββ

β

α β α β αβ β β+ + + + � + =& & && &

 

and after differentiation with respect to time t we finally get 

( )( )( ) ( )

( ) ( ) ( )

( )( )( ) ( )( )

( )
( ) ( )

2
2

2

cos cos cos cos

sin sin 0,

�cos cos cos 2 cos 1

� � �cos sin 2 sin 0,

�cos cos

hh

mh S S S

S S S k h

S S h I S

I S S S k

S h I S

α β β

β α β

α β α β

β β β β αα

β β β

α α β α α α β β

α α α β α β

α α β α β α

β β β β α β β α

α β β

 + + + − + + + 

+ − − + + + =

+ + − + + � − +

 + +� + −� − � + = 

+ + + �

&& &&&&

&& &

&& &&

&& & &&

&& 2 � sin 0.I S kβ β ββα β α β β+ + � + =&&&& &

 (9) 

3.2. Linear equations of motion for small amplitudes 

For small values of the angles α, β and of its derivatives , &&α β (i.e. sin ≈α α , sin ≈β β ,

cos 1≈α , cos 1≈β ) the linearized equations reads 

( )

( )

0,

� 0,

� 0.

hhmh S S k h

S h I I S k

S h I S I k

α β

α α β β αα

β β β β ββ

α β

α β α

α β β

+ + + =

+ + +� + =

+ + � + + =

&& &&&&&

&& &&&&

&& &&&&

 (10) 

3.3. Structural damping and aerodynamic forces loading the airfoil in viscous flow  

After introducing the model of a proportional damping and the unsteady aerodynamic lift 

( )L L t= , aerodynamic moment ( )M M t= and hinge moment ( )M M tβ β= , the equations 

of motion for a flexibly supported rigid airfoil and small displacements read 

 + + =Mu Bu Ku f&& & , (11) 

where 

0 0

� , 0 0 ,

� 0 0

hh
m S S k

S I S I k

kS S I I

α β

α α β β αα

βββ β β β

   
   

= � + =   
    � +   

M K

0 0

0 0

0 0

hhd

d

d

αα

ββ

 
 

=  
 
 

B

and u = (h, α, β)
T
, f = (-L, M, Mβ)

T
; B is the matrix modelling a viscous damping of the 

structure. In the case of large displacements, the damping and aerodynamic forces are added 

to the equations of motion for the airfoil (9) in a similar way. 
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The aerodynamic lift force L acting in the vertical direction and the torsional moments M

and Mβ are defined by 

2 2 2
ort ort EF

2

1 1 1w ,airfoil w ,airfoil w , flapt t t

j j ij j i ij j i

j i , j i , j

L l n dS , M l n r dS , M l n r dS ,βΓ Γ Γ
τ τ τ

= = =

= − = + = +∑ ∑ ∑∫ ∫ ∫
 (12) 

where     
ji

ij ij

j i

vv
p

x x
τ ρ δ ν

  ∂∂
= − + +   ∂ ∂   

, (13) 

 ( )ort ort

1 2 2 2 1 1,EO EOr x x r x x= − − = −

and ,tw airfoilΓ is the surface of the whole airfoil. By τij we denote the components of the stress 

tensor, ν1, ν2 are the velocity components in the directions x1, x2, p is the kinematic pressure, 

δij denotes the Kronecker symbol, n = (n1, n2) is the unit outer normal pointing into the airfoil 

and xEO = (xEO1, xEO2) is the position of the elastic axis (lying in the interior of the airfoil), 

( )ort ort 

1 2 2 2 1 1,EF EF

EF EFr x x r x x= − − = − , l is the airfoil depth, and 
t , flap t ,airfoilW WΓ Γ⊂ is the 

moving surface of the control section. Relations (12) and (13) define the coupling of the fluid 

and structural models.  

3.4. Analysis of the eigenfrequencies for the structure in vacuo 

The problem (10) was solved for zero aerodynamic forces (f = 0) and 

4

0.08662 0.7796

�0.7796 4.87291.10

�

S

S I

S S I I

β

β β

β β β β

−

 −
 

= − � + 
  � + 

M ,

105.109 0 0

0 3.695582 0

0 0 kββ

 
 

=  
 
 

K ,

F [Hz]

k [N/rad]β
Fig. 2. Eigenfrequencies in dependence on flap stiffness. 
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where the stiffness kββ ∈ [0.001, 0.05] for the tensional spring of the flap was considered. 

Following the report [2], the input data for the flap were taken as follows: Sβ = 0 kgm, 

Iβ =1.10
-6

 kgm
2
, �� =1.12 m. Influence of the proportional structural damping on 

eigenfrequencies was respected by a proportional damping B = 0.001 K.

Computed eigenfrequencies are shown in Fig. 4. The eigenfrequencies are in good 

agreement with the values in [2], denoted by small circles. 

4. Aeroelastic simulations for small vibration amplitudes 

The mesh, developed according to [1], and used for the FE computations is shown in 

Fig.7 for the profile NACA 0012 in two different positions during vibrations. The preliminary 

computations were performed for the airfoil with three degrees of freedom in viscous laminar 

flow, according to the method developed earlier for the profile with two degrees of freedom 

[4]. The input data were taken from the report [2], where the stiffness kββ = 0.05 N/rad was 

considered. 

4.1. Examples of numerical simulations for linear structural model 

The transient response of the structure for the profile rotation, the vertical displacement of 

the profile and the rotation of the flap was computed after releasing the profile motion from a 

small initial rotation angleα . The numerical simulations of the profile rotation α, the flap 

angle β and vertical displacement h of the elastic axis EO are shown in Figs. 4-6 for three far 

field flow velocities U∞. If the simulations were performed for small velocities U∞, when the 

profile motion is stable, i.e. when the vertical displacement and both rotation angles are 

decreasing in time. 

 

Fig. 3. Moving mesh around the vibrating profile with the flap in two different time instants. 

 

Near the critical flow velocity the damping is reaching lower values and the decay of the 

vibration amplitudes is getting smaller � see Fig. 5. Above the critical flow velocity for flutter 

the amplitudes of vibration are growing in time very fast � see Fig. 6. 

We note that according to the results of computations using NASTRAN code in [2] the 

system should lose the stability by flutter for the flow velocity U∞ = 26.8 m/s. 
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Fig. 4. Numerical simulations of the profile vibration for U∞ = 12m/s. 
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Fig. 5. Numerical simulations of the profile vibration for U∞ = 27m/s. 
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Fig. 6. Numerical simulations of the profile vibration for U∞ = 32m/s. 

5. Conclusion 

We have been concerned with numerical simulation of flow induced airfoil vibrations of 

an airfoil with three degrees of freedom. The fluid flow is described by the Navier-Stokes 

equations for incompressible fluid in the ALE form, which allows taking into account time 

dependence of the computational domain for large deformations of the structure in post-

critical regimes, when the aeroelastic system is unstable by flutter or divergence. The system 

of equations is discretized by a two step Backward Difference Formula in time and the FE 
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method in space stabilized by the Streamline � Upwind- Petrov � Galerkin method. The 

developed method is applied to the numerical simulation of interaction of a fluid and an 

airfoil for Reynolds numbers up to Re≈10
5
. The solution shows the robustness and 

applicability of the method to technically relevant situations.  
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