
Applied and Computational Mechanics 6 (2012) 151–162

Modeling of damage evaluation in thin composite plate loaded by

pressure loading
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Abstract

This article presents the results of numerical analysis of elastic damage of thin laminated long fiber-reinforced

composite plate consisting of unidirectional layers which is loaded by uniformly distributed pressure. The analysis

has been performed by means of the finite element method (FEM). The numerical implementation uses layered

plate finite elements based on the Kirchhoff plate theory. System of nonlinear equations has been solved by means

of the Newton-Raphson procedure. Evolution of damage has been solved using the return-mapping algorithm

based on the continuum damage mechanics (CDM). The analysis was performed using own program created

in MATLAB. Problem of laminated fiber-reinforced composite plate fixed on edges for two different materials

and three different laminate stacking sequences (LSS) was simulated. Evolution of stresses vs. strains and also

evolution of damage variables in critical points of the structure are shown.
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1. Introduction

Composite materials are now common engineering materials used in a wide range of applica-

tions. They play an important role in the aviation, aerospace and automotive industry, and are

also used in the construction of ships, submarines, nuclear and chemical facilities, etc. The

meaning of the word damage is quite broad in everyday life. In continuum mechanics the term

damage is referred to as the reduction of the internal integrity of material due to generating,

spreading and merging of small cracks, cavities and similar defects. In the initial stages of the

deformation process the defects (microcracks, microcavities) are very small and relatively uni-

formly distributed in the microstructure of a material. If the damage reaches the critical level

(depends on type of loading and used material), subsequent growth of defects will concentrate

in some of the defects already present in material [7]. Damage is called elastic, if the mate-

rial deforms only elastically (in macroscopic level) before the occurrence of damage, as well

as during its evolution. This damage model can be used if the ability of the material to de-

form plastically is low. Fiber-reinforced polymer matrix composites can be considered as such

materials [11]. Commercial FEM software can perform analyses with many types of material

nonlinearities, such as plasticity, hyperelasticity, viscoplasticity, etc. However, almost no com-

mercial software (except for ABAQUS) contains a module for damage analysis of composite

materials.

The goal of this paper is to present the numerical results of elastic damage analysis of thin

laminated composite plate consisting of unidirectional long fiber-reinforced layers which is

∗Corresponding author. Tel.: +421 415 132 974, e-mail: martin.dudinsky@fstroj.uniza.sk.

151
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loaded by uniformly distributed pressure. The analysis was performed by own software created

in MATLAB programming language. This software can perform numerical analysis of elastic

damage based on continuum damage mechanics utilizing finite element method using layered

plate finite elements based on the Kirchhoff plate theory. Locking effect was not removed, since

this is a rather complicated issue.

2. Theoretical and numerical modeling background

A number of material modeling strategies exist to predict failure in laminated composites, sub-

jected to static or impulsive loads. Broadly, they can be classified as [12, 15, 19]:

• strength-based failure criteria,

• fracture mechanics approach (based on energy release rates),

• plasticity or yield surface approach,

• damage mechanics approach.

Strength-based failure criteria (failure criteria approach) are commonly used with FEM to

predict failure events in composite structures. These approaches are based on the equivalent

stresses or strains in the critical failure areas. Numerous criteria have been derived to relate in-

ternal stresses and experimental measures of material strength to the onset of failure (maximum

stress or strain, Hill, Hoffman, Tsai-Wu, etc.). These classical criteria implemented in most

commercial FE codes are not able to physically capture the failure mode. Some of them cannot

deal with materials having a different strength in tension and compression. The Hashin criteria

are briefly reviewed in [11] and improvements were proposed by Puck and Schurmann [14]

over Hashin’s theories are examined.

However, few criteria can represent several relevant aspects of the failure process of lami-

nated composites, e.g. the increase on apparent shear strength when applying moderate values

of transverse compression, or detrimental effect of the in-plane shear stresses in failure by fiber

kinking.

2.1. Continuum damage mechanics

From a physical point of view, damage represents surface discontinuities in form of microcracks

or volume discontinuities in form of cavities in a material. They are formed as the material

undergoes an increasing loading. The objective of the damage mechanics is to predict, through

mechanical variables, the response of a material in the presence of damage. Damage is initiated

at certain stress level and it generally increases with increasing stress from the virgin state up to

a macroscopic crack initiation or failure.

Continuum Damage Mechanics (CDM) considers damaged materials as a continuum, in

spite of heterogenity, micro-cavities, and micro-defects. The response to the loading condi-

tions is determined on the basis of the constitutive relations between macroscopic variables

(e.g. stress, strain) and internal variables which model, on a macroscopic scale, the irreversible

changes occurring at the microscopic level.

We consider a volume of material free of damage if no cracks or cavities can be observed

at the microscopic scale. The opposite state is the fracture of the volume element. Theory

of damage describes the phenomena between the virgin state of material and the macroscopic
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Fig. 1. Representative volume element for damage mechanics

onset of crack [6, 16]. The representative volume element must be of sufficiently large size

compared to the inhomogenities of the composite material. In Fig. 1 this volume is depicted.

One section of this element is related to its normal and to its area S. Due to the presence of

defects, an effective area S̃ for resistance of load can be found. Total area of defects is therefore

SD = S − S̃. (1)

The local damage related to the direction n is defined as:

D =
SD

S
. (2)

For isotropic damage, the dependence on the normal n can be neglected, i.e.

D = Dn ∀n. (3)

We note that damage D is a scalar assuming values between 0 and 1. For D = 0 a material

is undamaged, for 0 < D < 1 a material is damaged, for D = 1 complete failure occurs.

The quantitative evaluation of damage is not a trivial issue, it must be linked to a variable that

is able to characterize the phenomenon. Several papers can be found in literature where the

constitutive equations of the materials are a function of a scalar variable of damage [2, 3]. For

the formulation of a general multidimensional damage model it is necessary to generalize the

scalar damage variables. It is therefore necessary to define corresponding tensorial damage

variables that can be used for general states of deformation and damage [18].

2.2. Numerical modeling

One of the most powerful computational methods for structural analysis of composites is the

FEM. The starting point should be a “validated” FE model, with a reasonably fine mesh, correct

boundary conditions, material properties, etc. [1]. As a minimum requirement, the model is

expected to produce stress and strains that have reasonable accuracy to those of the real structure

prior to failure initiation. In spite of a great success of the finite and boundary element methods

as effective numerical tools for the solution of boundary-value problems on complex domains,

there is still growing interest in the development of new advanced methods. Many meshless

formulations are becoming popular due to their high adaptivity and a low cost to prepare input

data for numerical analysis [4, 5, 13].
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2.3. FEM formulation for Kirchhoff plate

Plate models are used to study structural components which are subjected to bending loads and

their thickness is smaller than the others dimensions. This characteristic allows representing

the plate using the reference middle surface. Therefore the geometric domain used for the

formulation of plate models is the middle surface.

A plate resists transverse loads by means of bending, exclusively. The flexural properties of

a plate depend greatly upon its thickness in comparison with other dimensions. Plates may be

classified into three groups according to the ratio a/t, where a is a typical dimension of a plate

in a plane and t is a plate thickness. The first group is represented by thick plates having ratios

a/t ≤ 8 . . . 10. The second group refers to plates with ratios a/t ≥ 80 . . . 100. These plates are

referred to as membranes. The most extensive group represents an intermediate type of plates,

so-called thin plates with 8 . . . 10 ≤ a/t ≤ 80 . . . 100 [17].

One of the most widely used theory for thin plates is the Kirchhoff (classical) plate theory.

The Kirchhoff (classical) laminate plate theory and the first-order shear deformation theories

describe with reasonable accuracy the kinematics of most laminates [19]. The details of deriva-

tion of equations governing the behavior of thin plates are given in [17]. The equations are

represented here for clarity.

In this subsection formulation for plate element based on the Kirchhoff plate theory for

symmetric balanced laminate will be presented. The most widely used plate elements in FEM

are linear and quadratic elements with 3 degrees of freedom (DOFs) in node: w, θx, θy. When

using linear four-node elements, one element has 12 DOFs and 12 shape functions are required.

Fig. 2. Four-node Kirchhoff plate element and DOFs in node

It is worth noting that shape functions must have C1 continuity. Displacements within the

element are interpolated as

w = Nû (4)

where w is displacement in given point of the element, N = [N1, N2, . . . , N3xn] is vector of

values of shape functions in this point, n is number of nodes in element and

û =
[

ŵ1, θ̂x1, θ̂y1, . . . , ŵn, θ̂xn, θ̂yn

]T

is vector of nodal displacements.

Matrix B, which in the case of plate elements gives the relation between curvatures and

nodal displacements, has the form of

B =


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The element stiffness matrix for unidirectional element has the form of

k =

∫

A

B
T
DKB dA. (6)

Matrix DK gives the relation between internal moments and curvatures. More details about

this matrix are given e.g. in [9]. The element stiffness matrix is integrated numerically, most

often by means of Gauss quadrature [10]. The element stiffness matrix calculation for lay-

ered rectangular element with edges parallel to x and y axis by means of Gauss quadrature is

performed as follows

k =

NL
∑

n=1

∫ x2

x1

∫ y4

y1

B
T
DKB dy dx ≈

≈
NL
∑

n=1

nGx
∑

i=1

x2 − x1

2

nGy
∑

j=1

y4 − y1

2
B

T (xinti , yintj)DKB(xinti , yintj)WiWj , (7)

xinti =
x2 − x1

2
xGi +

x2 + x1

2
, (8)

yintj =
y4 − y1

2
yGj +

y4 + y1

2
, (9)

where NL is number of layers, x1, x2, y1, y4 are x and y coordinates of nodes, which are in

subscript, xGi, yGj are Gauss points, Wi, Wj are corresponding weights and nGx and nGy is

number of Gauss points in x- and y-axis direction.

3. Damage model used

The model for fiber-reinforced lamina mentioned next was presented by Barbero and de Vivo [2]

and is suitable for fiber-reinforced composite materials with polymer matrix. On the lamina

level these composites are considered as ideal homogenous and transversely isotropic. All

parameters of this model can be easily identified from available experimental data. It is assumed

that damage in principal directions is identical with the principal material directions (1, 2, 3)

throughout the damage process. This is due to the fact that the dominant modes of damage

are micro-cracks, fiber breaks and fiber-matrix debond, all of which can be conceptualized as

cracks parallel or perpendicular to the fiber direction [3]. Therefore the evolution of damage

is solved in the lamina coordinate system. The model predicts the evolution of damage and its

effect on stiffness and subsequent redistribution of stress.

3.1. Damage surface and damage potential

Damage surface is defined by tensors J and H [3]

J =





J11 0 0
0 J22 0
0 0 J33



 , H = [H1, H2, H3] . (10)

Damage surface is similar to the Tsai-Wu damage surface [6], and it is commonly used

for predicting failure of fiber-reinforced lamina with respect to experimental material strength
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values. Damage surface and damage potential have the form of [3]

g(Y, γ) =
√

J11Y 2

1
+ J22Y 2

2
+ J33Y 2

3
+

√

H1Y 2

1
+ H2Y 2

2
+ H3Y 2

3
− (γ + γ0), (11)

f(Y, γ) =
√

J11Y 2

1
+ J22Y 2

2
+ J33Y 2

3
− (γ + γ0), (12)

where the thermodynamic forces Y1, Y2 and Y3 can be calculated by means of relations

Y1 =
1

Ω2

1

(

S̄11

Ω4

1

σ2

1
+

S̄12

Ω2

1
Ω2

2

σ1σ2 +
S̄66

Ω2

1
Ω2

2

σ2

6

)

,

Y2 =
1

Ω2

2

(

S̄22

Ω4

2

σ2

2
+

S̄12

Ω2

1
Ω2

2

σ1σ2 +
S̄66

Ω2

1
Ω2

2

σ2

6

)

, (13)

Y3 = 0.

where stresses and components of matrix S̄ are defined in the lamina coordinate system. Matrix

S̄ gives the strain-stress relations in the effective configuration [2]. Ω1 and Ω2 are components

of a second-order tensor Ω =
√

I − D, called the integrity tensor. The eigenvalues Di of

damage tensor D describe the load-carrying area reduction on the three planes orthogonal to

the principal direction of the tensor D. Equations (11) and (12) can be written for particular

simple stress states: tension and compression in fiber direction, tension in transverse direction,

in-plane shear. Tensors J and H can be derived in terms of material strength values.

3.2. Hardening parameters

In the present damage model isotropic hardening is considered and hardening function was used

in the form of

γ = c1

[

exp

(

δ

c2

)

+ 1

]

. (14)

where δ denotes the hardening variable. The hardening parameters γ0, c1 and c2 are determined

by approximating the experimental stress-strain curves for in-plane shear loading. If this curve

is not available, we can reconstruct it using the function

σ6 = F6 tanh

(

G12

F6

γ6

)

, (15)

where F6 is the in-plane shear strength, G12 is the in-plane initial (undamaged) shear modulus

and γ6 is the in-plane shear strain (in the lamina coordinate system). This function represents

experimental data very well.

3.3. Critical damage level

Reaching of critical damage level is dependent on stress values in lamina. If in a point in lamina

only normal stresses in the fiber direction and across the fibers (i.e. normal stresses in lamina

coordinate system) occur, then simply comparing the values of damage variables with critical

values of damage variables for given material at this point is sufficient. The damage has reached

the critical level if at least one of the values of D1, D2 in the point of lamina is greater or equal

to its critical value. The magnitude of these critical damage parameter values can be estimated

from statistical models of the failure process of each type of loading. If in given point of lamina

also shear stress occurs (in lamina coordinate system), it is additionally necessary to compare
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the value of the product of (1−D1)(1−D2) with value of ks parameter from Table 3 for given

material. If the value of this product is less or equal to ks, the damage has reached the critical

level. Value of ks is determined from the relation between damaged in-plane shear modulus G∗

12

and undamaged in-plane shear modulus G12

ks =
G∗

12

G12

. (16)

3.4. Implementation of numerical method

The Newton-Raphson method was used for solving the system of nonlinear equations. Evo-

lution of damage has been solved using the return-mapping algorithm described in [2]. The

input values are strains and strain increments in lamina coordinate system, state variables D1,

D2, and δ in integration point from the start of the last performed iteration, C̄ matrix (gives

the stress-strain relations in the effective configuration [3]) and damage parameters related to

damage model. The output variables are D1, D2, and δ, stresses and strains in lamina coordi-

nate system in this integration point at the end of the last performed iteration. Another output is

damaged tangent constitutive matrix C
ed in lamina coordinate system, which reflects the effect

of damage on the behavior of structure. Flowchart of the return-mapping algorithm used in

numerical damage analysis is described in Fig. 3.

Fig. 3. Flowchart of the return-mapping algorithm used in numerical damage analysis of thin composite

plates
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4. Numerical example and results

One problem for two different materials and three different laminate stacking sequences (LSS)

was simulated in order to study damage of laminated long fiber-reinforced composite plates

consisting of unidirectional layers. Composites consist of carbon fibers embedded in epoxy

matrix. Composite plate fixed on its edges with dimensions of 125 × 125 × 2.5 mm and LSS

of [0, 45,−45, 90]S, [0, 90, 45,−45]S and [45, 0,−45, 90]S was loaded by uniformly distributed

pressure p = 0.5 MPa perpendicular to the surface of the plate (Fig. 4). Own program created

in MATLAB language was used for this analyses.

Fig. 4. Force and displacement boundary condition of the analyzed plate and schematic illustration of

the LSS [0, 45,−45, 90]S

Material properties, damage parameters, hardening parameters and critical values of damage

parameters [2] are given in Tables 1–3. Subscripts t and c in Table 3 denote critical damage

parameter values for tensile and compressive loading, respectively. Critical value for damage

parameter D2 is listed only for tensile loading because it is difficult to find accurate model for

estimating the critical value of this parameter for transverse compressive loading. In this model

it is assumed that critical value of this parameter for compressive loading is equal to critical

value for tensile loading. Parameters J33 and H3 are equal to zero. The plate model was divided

into 20 × 20 elements and was analyzed in 50 load substeps.

Table 1. Material properties

E1 [GPa] E2 [GPa] G12 [GPa] ν12

M30/949 167 8.13 4.41 0.27

M40/948 228 7.99 4.97 0.292

Table 2. Damage and hardening parameters

J1 J2 H1 H2 γ0 c1 c2

M30/949 0.952 · 10−3 0.438 25.585 · 10−3 −21.665 · 10−3 −0.6 0.30 −0.395
M40/948 2.208 · 10−3 0.214 10.503 · 10−3 −8.130 · 10−3 −0.12 0.10 −0.395

Table 3. Critical values of damage variables

Dcr
1t Dcr

1c Dcr
2t = Dcr

2c ks

M30/949 0.105 0.111 0.5 0.944
M40/948 0.105 0.111 0.5 0.908
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Linear static analysis of the plate with LSS of [0, 45,−45, 90]S has shown that maximum

magnitudes of stresses in fiber direction and direction transverse to fibers as well as equivalent

(von Mises) stress occur in the outer layers in the middle of two opposite edges of the plate and

maximum magnitudes of shear stress in lamina coordinate system occur in layers 2 (2nd from

the bottom) and 7. However, the results of damage analysis have shown that critical damage

level will not be reached in the outer layers at first, but in layer 2 (2nd layer from the bottom)

and layer 7 for both materials.

For plate from material M30/949 critical damage level has been reached between 17th and

18th load substep in several locations in layer 2 and layer 7. Critical loading for plate from this

material (macrocrack will be present in the plate) is p = 0.175 MPa. For material M40/948

critical damage level has been reached between 46th and 47th load substeps in several locations

in layer 2 and layer 7. Critical loading is p = 0.465 MPa. In Figs. 5–6 evolution of stress vs.

strain in lamina (local) coordinate system in layer 7 in integration point where critical damage

level was reached at first for LSS [0, 45,−45, 90]S for both materials are shown. In Figs. 7–8

evolution of damage variables in the same point are shown.

Fig. 5. Stress vs. strain evolution in lamina coor-

dinate system in layer 7 in integration point where

critical damage level was reached at first for mate-

rial M30/949 and LSS [0, 45,−45, 90]S

Fig. 6. Stress vs. strain evolution in lamina coor-

dinate system in layer 7 in integration point where

critical damage level was reached at first for mate-

rial M40/948 and LSS [0, 45,−45, 90]S

Fig. 7. Evolution of damage variables in layer 7

in integration point where critical damage level

was reached at first for material M30/949 and LSS

[0, 45,−45, 90]S

Fig. 8. Evolution of damage variables in layer 7

in integration point where critical damage level

was reached at first for material M40/948 and LSS

[0, 45,−45, 90]S
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Linear static analysis of the plate with LSS of [0, 90, 45,−45]S has shown that maximum

magnitudes of stresses in fiber direction and direction transverse to fibers as well as shear stress

in lamina coordinate system and equivalent (von Mises) stress occur in the outer layers. Results

of damage analysis have shown that critical damage level for plate from material M30/949 will

be reached in these layers. Critical damage level has been reached between 29th and 30th load

substep. Critical loading for plate from this material is p = 0.299 MPa. For plate from material

M40/948 critical damage level has not been reached.

On the other hand linear static analysis of the plate with LSS of [45, 0,−45, 90]S has shown

that maximum magnitudes of stresses in fiber direction and direction transverse to fibers as

well as equivalent (von Mises) stress do not occur in the outer layers, but in layers 2 and 7.

Maximum magnitudes of shear stress in lamina coordinate system occur in the outer layers.

Critical damage level in plate with this LSS will be reached in the outer layers at first for both

materials. Critical damage level has been reached between 13th and 14th load substep in plate

from material M30/949 and between 34th and 35th load substep in plate from material M40/948.

Critical loadings are p = 0.137 MPa and p = 0.346 MPa.

Overall results of the damage analyses relating to the critical damage level for all LSSs

and both materials are listed in Table 4. In Figs. 9–14 distribution of value of the product

(1 − D1)(1 − D2), which is required for assessing the critical damage level, in layers 1 and 2

for plate from material M30/949 with LSS of [45, 0,−45, 90]S after applying 15, 30 and 50 load

substeps, which corresponds to loadings 0.15 MPa, 0.30 MPa and 0.50 MPa.

Table 4. Overall results of the damage analyses relating to critical damage level

LSS material

layers in which

the critical damage

level was reached

at first

layers with

critical damage

level after

applying full loading

critical loading

[0, 45,−45, 90]S
M30/949 2, 7 1, 2, 3, 6, 7, 8 0.175 MPa

M40/948 2, 7 2, 7 0.465 MPa

[0, 90, 45,−45]S
M30/949 1, 8 1, 2, 3, 6, 7, 8 0.299 MPa

M40/948 – – –

[45, 0,−45, 90]S
M30/949 1, 8 1, 2, 3, 6, 7, 8 0.137 MPa

M40/948 1, 8 1, 8 0.346 MPa

Fig. 9. Distribution of the value of

(1 − D1)(1 − D2) in layer 1, material M30/949,

LSS [45, 0,−45, 90]S after load substep 15

(p = 0.15 MPa)

Fig. 10. Distribution of the value of

(1 − D1)(1 − D2) in layer 2, material M30/949,

LSS [45, 0,−45, 90]S after load substep 15

(p = 0.15 MPa)
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M. Dudinský et al. / Applied and Computational Mechanics 6 (2012) 151–162

Fig. 11. Distribution of the value of

(1 − D1)(1 − D2) in layer 1, material M30/949,

LSS [45, 0,−45, 90]S after load substep 30

(p = 0.30 MPa)

Fig. 12. Distribution of the value of

(1 − D1)(1 − D2) in layer 2, material M30/949,

LSS [45, 0,−45, 90]S after load substep 30

(p = 0.30 MPa)

Fig. 13. Distribution of the value of

(1 − D1)(1 − D2) in layer 1, material M30/949,

LSS [45, 0,−45, 90]S after load substep 50

(p = 0.50 MPa)

Fig. 14. Distribution of the value of

(1 − D1)(1 − D2) in layer 2, material M30/949,

LSS [45, 0,−45, 90]S after load substep 50

(p = 0.50 MPa)

5. Conclusion

In the current study, we have focused on solving elastic damage analysis of thin laminated long

fiber-reinforced composite plate consisting of unidirectional layers which is fixed on its edges

and loaded by uniformly distributed pressure for different materials and different LSSs. The

postulated damage surface reduces to the Tsai-Wu surface in stress space. However, presented

model goes far beyond simple failure criteria by identifying a damage threshold, hardening

parameters for the evolution of damage, and critical values of damage for which material failure

occurs. The analysis results show that change of material, change of laminate stacking sequence

as well as presence of shear stress have significant influence on the evolution of damage as well

as on location of critical damage and load at which critical level of damage will be reached.

Critical damage level has not necessary to be reached in places with maximum magnitude of

equivalent stress, but can be reached in other places.
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