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Thermoelastic wave propagation in laminated composites plates
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Abstract

The dispersion of thermoelastic waves propagation in an arbitrary direction in laminated composites plates is

studied in the framework of generalized thermoelasticity in this article. Three dimensional field equations of ther-

moelasticity with relaxation times are considered. Characteristic equation is obtained on employing the continuity

of displacements, temperature, stresses and thermal gradient at the layers’ interfaces. Some important particular

cases such as of free waves on reducing plates to single layer and the surface waves when thickness tends to in-

finity are also discussed. Uncoupled and coupled thermoelasticity are the particular cases of the obtained results.

Numerical results are also obtained and represented graphically.
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1. Introduction

Increasing use of advanced composites as important structural components in modem high

speed aircraft, missile, marine vehicles, and other aerospace structures, and various other appli-

cations has led to widespread research activities in the field of composite materials. Composites

consist of different materials, so they are inhomogeneous and anisotropic. Different mechani-

cal and thermal properties between constituents of such composites structures, like temperature

changes, can generate residual stresses, which may lead to interface de-bonding. A possible

failure of the system has intensified the need to study the thermoelastic wave propagation, espe-

cially in the form of precise numerical calculations. Consequently, it is of interest to investigate

the feasibility of nondestructively, monitoring thermal, mechanical and aging in composites.

Extensive review on the dynamic behavior of anisotropic plate theories can be found in [1]

and [14] and problems of wave propagation in periodically layered anisotropic media have been

considered and studied in [16,28] and [3]. Dynamic behavior of the problems on the theories of

laminated and composite plates have been investigated by authors [12] and [18–23]. Reasonable

number of investigations of such advanced materials and their analysis also have been reported

in [10,19]. In [15] a transfer matrix technique to obtain the dispersion relation curves of elastic

waves propagating in multilayered anisotropic media i.e., composite laminate is developed and

detailed review on the wave propagation in layered anisotropic media is studied in [11]. In [9],

general problem of thermoelastic waves in anisotropic periodically laminated composites in

thermoelasticity is studied.

Theory of thermoelasticity is well established, one can see the works in references [17]

and [5]. Literature in this field is rather large to account for the phenomena involving the finite

propagation velocity of the thermal wave, and can confer with the reference [4]. These modified
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coupled theories of thermoelasticity are based on hyperbolic-type equations for temperature

and are closely connected with the theories of second sound, which consider heat propagation

as a wavelike phenomenon. In the literature, addressing linear theories with relaxation time,

most attention is given to the models formulated in [13] and [8]. Theory in [13] called Lord

and Shulman (LS) theory is based on a modified Fourier’s Law of heat conduction with one

relaxation time to dictate the relaxation of thermal propagation, as well as the rate of change of

strain rate and the rate of change of heat generation. Green and Lindsay (GL) theory is based

on a rigorous treatment of thermodynamics, and a form of the entropy inequality. The literature

dedicated to hyperbolic thermoelastic models is quite large and its detailed review can be found

in [6, 7].

Theory of generalized thermoelasticty [13] is extended to anisotropic heat conducting elastic

materials by [2], and hence it is valid for both isotropic and anisotropic bodies. The propaga-

tion of harmonic waves in a laminated composite plate consisting of an arbitrary number of

layeres is studied in [9]. Various problems of infinite plates in the context of generalized theo-

ries thermoelasticity and the propagation of waves in layered anisotropic media in generalized

thermoelasticity is investigated [24–27]. Yamada and Nasser [29] have studied harmonic wave’s

propagation direction in orthotropic composites.

In this article propagation of thermoelastic waves in layered laminated composites, where

the direction of the corresponding harmonic waves makes an arbitrary angle with respect to the

layers is examined in the context of generalized thermoelasticity with two thermal relaxation

times. Three dimensional field equations of thermoelasticity are considered for this study and

the corresponding characteristic equation is obtained on employing the continuity of displace-

ments, temperature, thermal stresses and thermal gradient at the layers’ interface. Some im-

portant particular cases such as of free waves on reducing plates to single layer and the surface

waves when thickness tends to infinity are also discussed. Numerical results are also obtained

and represented graphically.

2. Formulation

Consider a set of Cartesian coordinate system xi = (x1, x2, x3) in such a manner that x3-axis is

normal to the layering. The basic field equations of generalized thermoelasticity for an infinite

generally anisotropic thermoelastic medium at uniform temperature T0 in the absence of body

forces and heat sources are

∂σij

∂xj

= ρ
∂2ui

∂t2
, (1)

Kij
∂2T

∂xi∂xj
− ρCe

(

∂T

∂t
+ τ0

∂2T

∂t2

)

= T0βij
∂

∂xj

(

∂ui

∂t

)

. (2)

Constitutive relations for anisotropic materials in the context of generalized thermoelasticity are

following:

σij = cijklekl − βij(T + τ1Ṫ ), (3)

βij = cijklαkl, i, j, k, l = 1, 2, 3, (4)

where ρ is the density of the nth layer, t is time, ui is the displacement in the xi direction, Kij

are the thermal conductivities, σij and eij are the stress and strain tensor respectively, Ce is the

specific heat at constant strain, βij are thermal moduli, αij is the thermal expansion tensor, T

198



K. L. Verma / Applied and Computational Mechanics 6 (2012) 197–208

is temperature, and cijkl is the fourth order tensor of the elasticity. The quantities cijkl, αij , βij

satisfy the symmetry conditions

cijkl = cklij = cijlk = cjikl, αij = αji, βij = βji. (5)

The parameter τ1 and τ0 are the thermal-mechanical relaxation time and the thermal relaxation

time of the GL theory and satisfy the inequalityτ1 ≥ τ0 ≥ 0. Strain-displacement relation is

eij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

. (6)

In addition, at the interface between two layers the tractions, temperature gradient, displace-

ments and temperature must be continuous.

3. Analysis

For harmonic waves propagating in an arbitrary direction, the displacements components u1,

u2, u3 and temperature T are written as

(u1, u2, u3, T ) = {U1(x3), U2(x3), U3(x3), U4(x3)}eiξ(l1x1+l2x2+l3x3−ct), (7)

where ξ is the wave number, c = ω/ξ is the phase velocity, i =
√
−1, ω is the circular frequency,

l1, l2 and l3 are the direction cosine defining the propagation direction as in Fig. 1.

Fig. 1. Two-phase orthotropic layered thermoelastic composite plate. The direction of the propagation

vector are denoted as l1, l2 and l3

Uj and T are the constants related to the amplitudes of displacement and temperature, Flo-

quet’s theory requires functions Uj ( j = 1, 2, 3 and 4) to have the same periodicity as the

layering. Hence the problem is reduced to that of one pair of layers, where

Uj = Ūje
−iξ(l3+α)x3 , j = 1, 2, 3, 4, (8)

where Ūj are constants. On substitution of Eq. (8) into Eqs. (1)–(2), via (3)–(6) and specializing

the equations for orthotropic media, it follows that

Mmn(α)Ūn = 0, m, n = 1, 2, 3, 4, (9)
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where

M11 = (l21 + l22 c̄66 + α2c̄55 − ζ2), M12 = (c̄12 + c̄66)l1l2, (10)

M13 = −(c̄13 + c̄55)l1α, M14 = l1,

M22 = (l21c̄66 + l22 c̄22 + α2c̄44 − ζ2), M23 = −(c̄23 + c̄44)l2α, M24 = β̄2l2,

M33 = (l21c̄55 + l22 c̄44 + α2c̄33 − ζ2), M34 = −β̄3α, M41 = εω∗ζ2l1τg,

M42 = εω∗ζ2l2β̄2τg, M43 = −εω∗ζ2αβ̄3τg, M44 = l21 + K̄2l
2
2 + K̄3α

2 − ω∗ζ2τ, (11)

where ζ2 = ρc2

c11
, ω∗ = c11Ce

K1
, ε =

β2
1T0

ρCec11
, and τg = τ1 + i/ω, τ = τ0 + iω. The existence of

nontrivial solutions for Ūj (j = 1, 2, 3, 4) demands the vanishing of the determinant in Eqs. (9),

and yields the eighth degree polynomial equation

α8 + A1α
6 + A2α

4 + A3α
2 + A4 = 0, (12)

where the coefficients A1, A2, A3 and A4 are

A1 = [Q1ω
∗ετgζ

2 + P1K̄3 + c33c44c55(l
2
1 + l22K̄2 − ω∗τζ2)]/∆,

A2 = [Q2ω
∗ετgζ

2 + P2K̄3 + P1(l
2
1 + K̄2l

2
2 − ω∗τζ2)]/∆,

A3 = [Q3ω
∗ετgζ

2 + P3K̄3 + P2(l
2
1 + l22K̄2 − ω∗τζ2)]/∆,

A4 = [Q4ω
∗ετgζ

2 + P3(l
2
1 + l22K̄2 − ω∗τζ2)]/∆,

P1 = [(c22c33 − 2c23c44 − c2
23)c55 + c33c44c66]l

2
2 + [(c33 − 2c13c55 − c2

13)c44 + c33c55c66]l
2
1 −

(c33c44 + c33c55 + c44c55)ζ
2,

P2 = [(c33 − 2c13c55 − c2
13)c66 + c44c55]l

4
1 + [(c22c33 − 2c23c44 − c2

23)c66 + c22c55c44]l
4
2 +

[−c2
12c33 − 2(c33c44 − c66c23c55 − c12c44c55 + c13c22c55 − 2c44c55c66 − c13c44c66 +

c12c33c66 − c12c13c44 − c13c23c66 − c12c23c55 − c12c13c23) − c2
13c22 + c22c33 − c2

23]l
2
1l

2
2 +

[(2c13c55 − c66c33 − c55c44 − c44 − c33 − c66c55 + c2
13)l

2
1 +

(2c23c44 + c2
23 − c22c33 − c22c55 − c66c44 − c55c44 − c33c66)l

2
2 + (c33 + c44 + c55)ζ

4]ζ2,

P3 = (c55l
2
1 + c44l

2
2 − ζ2){[(1 + c66)l

2
1 + (c22 + c66)l

2
2]ζ

2 − ζ4 +

[(2c22c66 + c2
12 − c22)c55]l

2
1l

2
2 − c22c66l

4
2 − c66l

4
1},

∆ = c33c44c55K̄3, Q1 = −c44c55β̄
2
3 ,

Q2 = (c55 + c44)β̄
2
3ζ

2 + [2(c13c44 + c44c55)β̄3 − c33c44 − (c44 + c66c55)β̄
2
3 ]l

2
1 +

[2(c23c55 + c44c55)β̄2β̄3 − c33c55β̄
2
2 − (c22c55 + c44c66)β̄

2
3 ]l

2
2,

Q3 = ((1 + c66)β̄
2
3 + (c44 + c33) − 2(c55 + c13)β̄3)l

2
1ζ

2 +

((c22 + c66)β̄
2
3 + 2(c33 + c55)β̄

2
2 − 2(c23 + c44)β̄2β̄3)l

2
2ζ

2 +

[(−β̄2
3 + 2(c55 + c13)β̄3 − c33)c66 − c44c55]l

4
1 +

[−c22c66β̄
2
3 − (c33c66 + c44c55)β̄

2
2 + 2(c44c66 + c66c23)β̄2β̄3]l

4
2 +

[(c2
23 + 2c23c44 − c22c33) + 2(c22c55 + c13c22 − c12c44 − c44c66 − c12c23 − c23c66)β̄3 +

2(c12c13 + c33c66 − c44c55 − c13c23 − c23c55 − c13c44)β̄2 +

(c2
13 − c33 + 2c13c55)β̄

2
2 + (c2

12 − c22 + 2c12c66)β̄
2
3 +

2(c23 − c13c66 + c44 − c12c55 − c66c55 − c12c13)β̄3β̄2]l
2
1l

2
2 − β̄3ζ

4,

Q4 = (c55l
2
1 + c44l

2
2 − ζ2)[(l21 + β̄

2

2 l
2
2)ζ

2 + (−β̄
2

2 + 2β̄2c66 − c22 + 2β̄2c12)l
2
1l

2
2 −

c66β̄
2

2 l
4
2 − c66l

4
1].
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Eqs. (8) using Eq. (7) are rewritten as

(U1, U2, U3, U4) =
8

∑

q=1

(Ū1q, Ū2q, Ū3q, Ū4q)e
−iξ(l3+αq)x3 . (13)

For each αq, q = 1, 2, . . . , 8, using the Eqs. (9) and express the displacements ratios as

D1(αq)

D(αq)
=

Ū2q

Ū1q

= γq,
D2(αq)

D(αq)
=

Ū3q

Ū1q

= δq, (14)

D3(αq)

D(αq)
=

Ū4q

Ū1q

= Θq for q = 1, 2, . . . , 8,

where

D1(αq) = M23(αq)M34(αq)M41(αq) + M24(αq)M33(αq)M41(αq) −
M13(αq)M24(αq)M43(αq) + M12(αq)M34(αq)M43(αq) +

M13(αq)M23(αq)M44(αq) − M12(αq)M33(αq)M44(αq),

D2(αq) = M23(αqq)M24(αq)M41(αq) + M12(αq)M23(αq)M44(αq) +

M13(αq)M24(αq)M42(αq) + M22(αq)M34(αq)M41(αq) −
M13(αq)M22(αq)M44(αq) − M12(αq)M34(αq)M42(αq),

D3(αq) = M2
23(αq)M41(αq) − M22(αq)M33(αq)M41(αq) −

M12(αq)M23(αq)M43(αq) + M13(αq)M22(αq)M43(αq) +

M12(αq)M33(αq)M42(αq) − M13(αq)M23(αq)M42(αq),

D(αq) = M23(αq)M34(αq)M42(αq) − M24(αq)M33(αq)M42(αq) − (15)

M22(αq)M34(αqq)M43(αq) + M22(αq)M33(αq)M44(αq) −
M2

23(αq)M44(αq) + M23(αq)M24(αq)M43(αq).

Then the solution given by Eq. (13) may be rewritten as

(U1, U2, U3, U4) =

8
∑

q=1

(1, γq, δq, Θq)Ū1qe
−iξ(l3+αq)x3 . (16)

In view of the continuity of the displacement components, temperature, tractions and tempera-

ture gradient across the interface of the two layers, the following conditions must be satisfied:

uI
j
x3=0−

= uII
j
x3=0+

, T I

x3=0−
= T II

x3=0+
, (17)

σI
3j

x3=0−
= σII

3j
x3=0+

, T ′I

x3=0−
= T ′II

x3=0+
, (18)

where T ′ = ∂T
∂x3

superscripts I and II refer to layers one and two respectively, 0+ and 0− are

values of x3 near zero. Because of periodicity of the deformation and thermoelastic stress fields,

additional conditions obtained are

uI
j
x3=h

−

1

= uII
j
x3=−h

+
2

, T I

x3=h
−

1

= T II

x3=−h
+
2

, (19)

σI
3j

x3=h
−

1

= σII
3j

x3=−h
+
2

, T ′I

x3=h
−

1

= T ′II

x3=−h
+
2

, j = 1, 2, 3. (20)
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On substituting the displacements, temperature, stresses and temperature gradient components

into Eqs. (17)–(18), sixteen linear homogeneous equations for sixteen constants U I
11, U

I
12, . . .,

U II
17 and U II

18 are obtained. For nontrivial solutions, the determinant of coefficient matrix must

vanish. This yields the following characteristic equation:

det

(

Pjk −P̄jk

Qjk −Q̄jk

)

= 0, j, k = 1, 2, . . . , 8. (21)

The entries of 8 × 8 matrices Pjk, P̄jk, Qjk and Q̄jk are

P1j = 1, P2j = γI
j, P3j = δI

j, P4j = ΘI
j,

P5j = bI
1jc

I
55, P6j = bI

2jc
I
44, P7j = bI

3j , P8j = −bI
4j ,

P̄1j = 1, P̄2j = γII
j , P̄3j = δII

j , P̄4j = ΘII
j ,

P̄5j = ηbII
1jc

II
55, P̄6j = ηbII

2jc
II
44, P̄7j = ηbII

3j , P̄8j = ηbII
4j ,

Qjk = PjkE
−

k , Q̄jk = P̄jkE
+
k , (22)

where E−

j = e−iQ(l3+α
(1)
j )h1/h, Q = ξ(h1 + h2), E+

j = e−iQ(l3+αII
j )h2/h, η = cII

11/c
I
11,

b
(m)
1j = l1δ

(m)
j − α

(m)
j , b

(m)
2j = l2δ

(m)
j − α

(m)
j γ

(m)
j ,

b
(m)
3j = c̄

(m)
13 l1 + c̄

(m)
23 l2γ

(m)
j − c̄

(m)
33 α

(m)
j δ

(m)
j − β3Θ

(m)
j ,

bI
4j = (l3 + α

(m)
j )Θ

(m)
j = iξα

(m)
j Θ

(m)
j , c̄

(m)
jk = c

(m)
jk /c

(m)
11 , m = I, II. (23a)

From Eq. (21), we have det[Pjk] det([−Q̄jk] − [Qjk][Pjk]
−1[−P̄jk]) = 0 which implies that

either det[Pjk] = 0, (23b)

or det([−Q̄jk] − [Qjk][Pjk]
−1[−P̄jk]) = 0. (23c)

If Eq. (23b) holds true, then the problem reduces to a free wave propagation in a single ther-

moelastic plate of thickness h1, and in this case ([−Q̄jk]− [Qjk][Pjk]
−1[−P̄jk]) will not exist as

Pjksingular. On the hand Pjk is nonsingular [Pjk]
−1 exists and accordingly

det([−Q̄jk] − [Qjk][Pjk]
−1[−P̄jk]) = 0. (24a)

Similarly Eq. (21) can also be written as

det[−Q̄jk] det([Pjk] − [−P̄jk][−Q̄jk]
−1[Qjk]) = 0, (24b)

which implies that either

det[−Q̄jk] = 0, (24c)

or

det([Pjk] − [−P̄jk][−Q̄jk]
−1[Qjk]) = 0. (24d)

If Eq. (24b) holds true, then again the problem reduces to a single thermoelastic plate of thick-

ness h2, and ([−Q̄jk] − [Qjk][Pjk]
−1[−P̄jk]) will not exists as Q̄jk is singular.

On the hand, if Q̄jk is non-singular, therefore

det([−Q̄jk] − [Qjk][Pjk]
−1[−P̄jk]) = 0. (25)

In order to solve the problem numerically it is sufficient to consider either Eq. (24a) or Eq. (25)

for composite plates and to solve for free thermoelastic plate Eq. (23b) or Eq. (24b) can be

considered.
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4. Particular cases

4.1. Classical case

If the coupling constant ε = 0, then thermal and elastic fields decoupled from each other and

from Eq. (11) we have M41 = M42 = M43 = 0. In this case Eq. (12) factorised into

(l21 + K̄2l
2
2 + K̄3α

2 − ω∗ζ2τ)(∆α6 + F1α
4 + F2α

2 + F3) = 0. (26)

One of the factor of the above equation

∆α6 + F1α
4 + F2α

2 + F3 = 0 (27)

corresponds to the characteristic equation in the uncoupled thermoelasticity, where

∆ = c33c44c55,

F1 = [(c22c33 − 2c23c44 − c2
23)c55 + c33c44c66]l

2
2 +

[(c33 − 2c13c55 − c2
13)c44 + c33c55c66]l

2
1 −

(c33c44 + c33c55 + c44c55)ζ
2,

F2 = [(c33 − 2c13c55 − c2
13)c66 + c44c55]l

4
1 + [(c22c33 − 2c23c44 − c2

23)c66 + c22c55c44]l
4
2 +

[−c2
12c33 − 2(c33c44 − c66c23c55 − c12c44c55 + c13c22c55 − 2c44c55c66 − c13c44c66 +

c12c33c66 − c12c13c44 − c13c23c66 − c12c23c55 − c12c13c23) − c2
13c22 + c22c33 − c2

23]l
2
1l

2
2 +

[(2c13c55 − c66c33 − c55c44 − c44 − c33 − c66c55 + c2
13)l

2
1 +

(2c23c44 + c2
23 − c22c33 − c22c55 − c66c44 − c55c44 − c33c66)l

2
2 + (c33 + c44 + c55)ζ

4]ζ2,

F3 = (c55l
2
1 + c44l

2
2 − ζ2){[(1 + c66)l

2
1 + (c22 + c66)l

2
2]ζ

2 − ζ4 +

[(2c22c66 + c2
12 − c22)c55]l

2
1l

2
2 − c22c66l

4
2 − c66l

4
1}.

In this case, Eqs. (14) simplify to

D1(αq) = M13(αq)M23(αq) − M12(αq)M33(αq),

D2(αq) = M12(αq)M23(αq) − M13(αq)M22(αq),

D3(αq) = 0, D(αq) = M22(αq)M33(αq) − M2
23(αq) (28)

and the reduced result corresponds to the purely elastic orthotropic materials, which is obtained

and studied by Yamada and Nasser [29]. On the other hand, the second factor of the Eq. (26) is

l21 + K̄2l
2
2 + K̄3α

2 − ω∗ζ2τ = 0, (29)

which corresponds to the purely thermal wave. Hence thermal wave in the generalized theory

of thermoelasticity is influenced by the thermal relaxation time τ .

4.2. Thermoelastic free waves

When layer I = II and h1 = h2(say h) then the thickness of the layer is 2h, on considering

origin at mid of the plate, then the above analysis reduces to a single plate. In this case, the

eight roots of Eq. (12) can be arranged in four pairs as αj+1 = −αj , j = 1, 3, 5, 7.

It is observed from Eq. (11) that M13, M23, M34 and M43 are odd functions of α, and the

other Mij’s are even functions of α. On employing the thermal stresses and thermal gradient

free surfaces conditions

σ3j = T ′ = 0, x3 = ±h, j = 1, 2, 3, (30)
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and employing the relations (14), we have

γq+1 = γq, δq+1 = −δq and Θq+1 = Θq. (31)

Hence from (23a)

b1q+1 = −b1q , b2q+1 = −b2q , b3q+1 = b3q and b4q+1 = −b4q, (32)

b1j = l1δj − αj , b2j = l2δj − αjγj,

b3j = c̄13l1 + c̄23l2γj − c̄33αjδj − β3Θj, b4j = −iξαjΘj c̄jk = cjk/c11, (33)

det [Pjk] = 0. (34)

Eq. (34) is the corresponding characteristic equation for free waves in generalized thermoe-

lasticity. Further, if thickness d = (h1 + h2) → ∞, in Eq. (34) then the problem reduces to

thermoelastic surface waves.

4.3. Coupled thermoelasticity

This is the case, when thermal relaxation times τ0 = τ1 = 0 and hence, τ = τg = i/ω.

Following above, we arrived at frequency equation of the coupled thermoelasticity. When τ1 =
τ0 6= 0, characteristic Eq. (21) becomes the frequency equation in the LS theory of generalized

thermoelasticity.

5. Numerical results and discussion

Using Eq. (24a) numerical results are presented to exhibit the dependence of dispersion on the

angle of propagation and thermal relaxation time. The materials chosen for this purpose are

aluminum epoxy composite as layer I (h1 = 0.6) and carbon steel as layer II (h2 = 0.4).

Since the distinction among the wave mode types of thermoelastic waves in anisotropic

plates is somewhat artificial, as the thermal and elastic wave modes are generally coupled,

they are referred to as quasilongitudinal and quasitransverse, quasishear horizontal modes and

quasithermal. For wave propagation in the direction of higher symmetry (see Section 4), some

wave types revert to pure modes and lead to a simple characteristic equation of lower order, and

consequently to the loss of pure wave modes in the direction of general propagation. Here Fig. 2

depicts the dispersion curves for the direction cosines of propagation l1 = 0.259, l2 = 0.542,

and l3 = 0.799, whereas Fig. 3 demonstrate the dispersion behavior when the direction cosines

of propagation are same but the coupling constant ε = 0, i.e., thermal and elastic fields are not

coupled.

Similarly, dispersion curves with the direction cosines of propagation l1 = 0.195, l2 =
0.515, and l3 = 0.834 are shown in Fig. 4, whereas when the direction cosines of propagation

are same but the coupling constant ε = 0.

Similarly, on considering the direction cosines of propagation l1 = 0.125, l2 = 0.707, and

l3 = 0.696 dispersion curves are shown in Fig. 6, whereas when the coupling constant ε = 0,

keeping the same direction cosines dispersion curves are shown in Fig. 7.

It is observed that in generalized thermoelasticity, at zero wave number limits, each figure

(Figs. 2, 4 and 6) displays four thermoelastic wave speeds corresponding to one quasilongitudi-

nal, two quasitransverse and one quasithermal. It is apparent that the largest value corresponds

to the quasi-longitudinal and the additional mode appears is a quasi-thermal mode. At low wave

number limits, modes are found to highly influenced and also vary with the direction. A small
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Fig. 2. Phase velocity versus wave number for the

direction cosine l1 = 0.259, l2 = 0.542 and l3 =

0.799 in generalized thermoelasticity

Fig. 3. Phase velocity versus wave number for the

direction cosine l1 = 0.259, l2 = 0.542 and l3 =

0.799 when the coupling parameter is zero

Fig. 4. Phase velocity versus wave number for the

direction cosine l1 = 0.195, l2 = 0.515 and l3 =

0.834 in generalized thermoelasticity

Fig. 5. Phase velocity versus wave number for the

direction cosine l1 = 0.195, l2 = 0.515 and l3 =

0.834 when the coupling parameter is zero

change is observed in these modes values as ξ increases and others higher modes appear, one

of the modes seems to be associated with quick change in the slope. It is also observed that

with change in direction, lower modes appear to have large influence than the higher modes

where a small variation is noticed. When the when the coupling constant ε = 0, i.e., thermal

and elastic fields are not coupled, Figs. 3, 5 and 7 demonstrate the dispersion behavior of wave

speed modes with different angles of propagation. From these figures, it is observed that at

low wave number limits, although wave speed modes are dispersive, but are different from the

coupled case. Thus in generalized thermoelasticity, at low values of the wave number, only
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Fig. 6. Phase velocity versus wave number with

direction cosine l1 = 0.125, l2 = 0.707 and l3 =

0.696 in generalized thermoelasticity

Fig. 7. Phase velocity versus wave number for the

direction cosine l1 = 0.125, l2 = 0.707 and l3 =

0.696 when the coupling parameter is zero

Fig. 8. Phase velocity versus wave number in GL

theory of thermoelasticity with thermal relaxation

times τ0 = 2 · 10−7, τ1 = 2 · 10−6

Fig. 9. Phase velocity versus wave number in GL

theory of thermoelasticity with thermal relaxation

times τ0 = 2 · 10−7, τ1 = 10 · 10−7

the lower modes hihgly affected and the little change is observed at the relatively high values

of wave number. The low value region of the wave number is found to be of more physical

interest in generalized thermoelasticity. As high wave number limits exhibit no effect on wave

speeds, therefore the second sound effects are short lived in the laminated composites plates in

generalized thermoelasticity.

To observe the influence of the thermal relaxations, selected values of thermal relaxation

times τ1 and τ0 are cosidered, Figs. 8–10 demonstarte the variations of phase velocity with

wave number and the dispersive character of quasilongitudinal, quasitransverse and quasither-
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Fig. 10. Phase velocity versus wave number in GL

theory of thermoelasticity with thermal relaxation

times τ0 = 2 · 10−7, τ1 = 4 · 10−7

Fig. 11. Phase velocity versus wave number in LS

theory of thermoelasticity with thermal relaxation

times τ0 = 2 · 10−7

mal modes are represented. Quasilongitudinal, quasitransverse (two) and quasi-thermal waves

are found coupled with each other due to the thermal and anisotropic effects, also wave-like be-

havior of the quasi-thermal modes is characterized in Green and Lindsay (GL) thermoelasticity

theory. Also Fig. 11 is drawn by considering τ0 only, a single time constant which represents

the dispersion curve in Lord and Shulman (LS) theory.

Although the thermal relaxation times τ1 and τ0 are derived from distinctively different

physical assumptions and physical laws, the dispersion behavior described by LS and GL the-

ory for thermoelastic waves are remarkably similar even in laminated composites plates. It is

probably due to the fact that even though the theories are entirely different in their approach to

form a coupled thermoelasticity theory, they are remarkably similar in their formulation.

6. Conclusion

Dispersion of a 3D layered heat conducting composite plate in an arbitrary direction in the

theory of generalized thermoelasticity is studied. Equations of motion for 3D continuum for-

mulated for an infinite layered plate of an anisotropic thermoelastic medium with uniformly

distributed temperature. The Floquet method is used for the derivation of general solution of

displacements and temperature distributions. Special cases such as classical, free waves and

coupled thermoelasticity are also presented and discussed. Influence of wave propagation di-

rection on plate dispersion is analysed numerically and analytically.
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