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ABSTRACT
In recent years many experimental investigations have been carried out on vasculogenesis and angiogenesis, the 

mechanisms of blood vessels formation. Neovascularization is a hallmark of embryogenesis and many other 

physiological processes, such as wound healing or endometrium vascularization during the mestrual cycle. 

Angiogenesis also plays a key role in tumor growth, tumor metastasis and other pathological processes including 

many inflammatory diseases. Understanding biological phenomena regulating angiogenesis is therefore essential 

for clinical treatment of cancer and other angiogenesis-dependent diseases. This paper describes the 

development of a fully-automated computerized angiogenesis analysis system, which enables angiogenesis 

parameters to be quantified in an in-vitro model. The proposed methodology works on phase contrast 

microscopy snap photographs of cultured endothelial cell plates, and extracts a detailed graph-based 

representation of the blood vessels network thus supporting accurate angiogenesis parameters measurement.  
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1. INTRODUCTION
Neovascularization is defined as the sprouting of 

new blood vessels by expansion of the endothelium 

by proliferation, migration and remodeling [Car00a]. 

Neovascularization is fundamental to healing, 

reproduction as well as embryonic development. 

During development, new blood vessels originate by 

a process called vasculogenesis or are generated from 

pre-existing blood vessels by angiogenesis.

Vasculogenesis and angiogenesis occur normally in 

the human body at specific times in development and 

growth. For example, a developing child in a 

mother’s womb must create the vast network of 

arteries,  veins, and  capillaries that are  found in the  

human body. Vasculogenesis creates the primary 

network of vascular endothelial cells that will 

become major blood vessels. Later on, angiogenesis 

remodels this network into the small new blood 

vessels or capillaries that complete the child’s 

circulatory system. Proliferation of new blood 

vessels also takes place in adults, although it is a 

relatively infrequent event. In women, angiogenesis 

is active a few days each month as new blood vessels 

form in the lining of the uterus during the menstrual 

cycle. Also, angiogenesis is necessary for the repair 

or regeneration of tissue during wound healing and 

plays a key role in tumor growth, tumor metastasis 

and other pathological processes [Car00b]. 

Understanding biological processes regulating 

vasculogenesis and angiogenesis is therefore 

essential for clinical treatment of cancer and other 

neovascularization-dependent diseases.  

The ability to form networking capillary tubes is a 

cell autonomous property of endothelial cells (ECs). 

It is well known that culturing ECs on Matrigel, a 

preparation of basement membrane proteins, 

markedly accelerates their morphological 

differentiation in geometric tubular networks, which 

are almost identical to capillary vascular beds 

observer in-vivo [Kub88a]. In this way, the process 

of formation of a vascular network starting from 

randomly seeded cells can be accurately observed 

through videomicroscopy. Cells migrate over 
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distances which are an order of magnitude larger 

than their radius and aggregate when they get in 

touch with one of their neighbors. In a time of the 

order of ten-twelve hours they form a continuous 

multicellular network. Several in-vitro

vasculogenesis and angiogenesis models have been 

developed which have been proved to be effective in 

the study of neovascularization processes [Fol80a].  

This paper describes the development of a fully-

automated computerized angiogenesis analysis 

system, which enables the angiogenesis parameters 

to be quantified in an in-vitro model. Basically, the 

proposed methodology works on phase contrast 

microscopy snap photographs of cultured EC plates, 

and makes use of various image processing 

techniques in order to extract a detailed graph-based 

representation of the blood vessels network. Once 

such a formal representation is available, accurate 

angiogenesis factors measurement can be performed. 

The advantage of this system is that it easily and 

quickly provides reproducible results, making it 

suitable for supporting experimental studies on EC 

networks formation.  

This paper is organized as follows: in Section 2 the 

overall organization of the proposed technique is 

presented. The following sections illustrate each 

image processing step in details. In particular, 

Section 3 presents a description of the segmentation 

step which allows to separate foreground information 

from background layer. Section 4 illustrates the 

thinning-based skeletonization process, which allows 

to extract essential structural information from the 

binary segmented image. Section 5 illustrates the 

procedure for graph-based representation extraction 

in details. Considerations on angiogenesis parameters 

measurement are reported in Section 6. Finally, in 

Section 7 results achieved using the proposed 

technique are presented and compared with 

experimental observations. 

2. METHODOLOGY OVERVIEW 
In in-vitro angiogenesis experimental observations, 

capillary patterns are mimicked by ECs cultured on 

basement membrane proteins. On this surface, single 

randomly dispersed cells (Figure 1a) organize to 

form a two dimensional network and later fold up 

creating a net of capillary-like chords (Figure 1b, c 

and d). The proposed computerized angiogenesis 

analysis system enables fully-automated processing 

of phase contrast microscopy snap photographs of 

such EC cultured plates thus providing an invaluable 

support to experimental studies on 

neovascularization. The overall methodology can be 

broken up into several consecutive steps which lead 

to the generation of a graph-based representation of 

the blood vessels network under investigation. Then, 

essential angiogenesis parameters can be quickly and 

easily evaluated by referring to such formal 

representation.  

The procedure is as follows. Human umbilical 

endothelial vein cells are cultured on Matrigel (ECM 

secreted by Engelbroth-Holm-Swarm sarcoma cells) 

a preparation of basement membrane proteins. Cells 

attach, migrate and assemble into irregular network 

of tubular structures radiating out from cell 

aggregates. Cells are observed with an inverted 

photomicroscope (model DM IRB HC; Leica 

Microsystems). Eight-bits 1024 1024 phase contrast 

snap photographs are taken with a cooled digital 

CCD Hamamatsu ORCA camera (Hamamatsu 

Photonic) several hours after seeding and digitally 

recorded. Microscopy photographs are segmented in 

order to obtain binary foreground images. 

Skeletonization is performed on segmented images 

so as to extract a thinned image conveying essential 

structural information in a relatively small number of 

pixels. A formal graph-based description of the cell 

network is then extracted from such a graphical 

representation by using an adaptation of breadth-first 

search. Data collected during graph-based 

representation generation are then used to compute 

capillary chords length in order to validate the 

accuracy of the proposed automated technique. 

(a) (b) 

(c) (d) 

Figure 1. Capillary-like network formation by 

human umbilical ECs: a) 0 hours. b) 1.5 hours. c) 

3 hours. d) 6 hours after seeding. 

3. IMAGE SEGMENTATION 
Segmentation is defined as the process of partitioning 

an image into several constituent components, 

distinguishing features of interest from background 



[Pal93a]. Segmentation allows to reduce image 

complexity for further analysis and therefore plays a 

key role in any automated image processing system.  

To handle the complexity of the particular images 

under consideration, an ad-hoc segmentation 

technique has been developed by keeping into 

particular account biological characteristics derived 

from experimental observations carried out on 

angiogenesis phenomena. Several steps can be 

identified. First a thresholding technique is applied in 

order to extract all those pixels for which the 

probability of belonging to the foreground is 

sufficiently high. For this, two thresholds tl and th

have been experimentally defined in order to separate 

very bright and very dark structures. Pixels whose 

gray value is below tl or above th are painted black 

(foreground) in the output image containing 

segmentation result. Since medial axis of blood 

vessels generated by self-assembly of endothelial 

cells appears darker than vessel contours and vessel 

contours are somewhat smoothed, a higher tl and a 

lower th have been used to process those pixel for 

which the number of immediate neighbors (8-

neighborhood) already belonging to the segmented 

image is greater or equal to two. In this way, 

connectivity is preserved and smoother boundaries 

are obtained. Selected thresholds proved to be 

effective for segmenting all test images. However, in 

the future we expect to evaluate the effect of more 

sophisticated adaptive thresholding techniques.  

Then, a gradient-based technique has been applied to 

process those pixel for which classification is more 

delicate. It should be observed that vessels are 

generally characterized by regular linear orientations. 

Moreover, there exists vessels which are 

characterized by soft gray variations with respect to 

the background. Keeping in mind these 

considerations, a specific multi-oriented gradient-

based technique enabling accurate discrimination 

between foreground and background pixels has been 

designed. In the following, the algorithm for vertical-

like direction is presented. The extension to the 

horizontal-like case is straightforward.

For each pixel in the input image, nine gradients are 

computed for each pixel in a 3 × 3 kernel centered in 

the considered pixel. Gradient g(i,j) is defined as 

g(i,j)=abs(c(i,j)-c(i-1,j)) where c(i,j) is the gray value 

of the pixel in position (i,j). A threshold gt has been 

defined. The computed gradient matrix is compared 

with the gradient masks in Figure 2 (dark gray boxes 

mean g(i,j) > gt). When template is matched, central 

pixel is added to the foreground set and painted black 

in the output image. Figure 3 shows pixel 

configurations producing gradient matrices matching 

vertical-like oriented gradient templates. 

Figure 2. Gradient masks for vertical-like 

oriented gradient-based segmentation step (gray 

box means g(i,j) > gt). Oriented gradient matrix 

obtained for current pixel is compared with each 

gradient mask. When template is matched, 

current pixel is added to the foreground. 

Figure 3. Pixel configurations producing gradient 

matrices matching vertical-like oriented gradient 

templates (central pixel of 3 × 3 kernel is 

highlighted).

A predefined set of postprocessing steps including 

opening, closing and smoothing operations is finally 

applied on the output image in order to close up 

breaks in features, opening spaces between just 

touching figures and making vessel contours softer.  

Segmentation of microscopy photograph in Figure 4 

is illustrated in Figure 5. 

Figure 4. Endothelial cells network. ECs were 

plated (125 cells/mm
2
) on Matrigel and phase 

contrast snap photograph of a 4 mm
2
wide portion 

of surface was taken 12 hours after seeding. 



Figure 5. Binary image obtained with the 

proposed segmentation procedure (tl =30, th =220

and gt =5). White is background. 

4. SKELETONIZATION 
A skeleton is presumed to represent the shape of an 

object in a relatively small number of pixels, all of 

which are in some sense structural and therefore 

necessary. Skeletonization, therefore, is defined as 

the act of identifying those pixels belonging to an 

object that are essential for communicating the 

object’s shape: these are skeletal pixels, and form a 

set, the skeleton. The skeletonization step has been 

deployed using a thinning-based approach. The 

majority of thinning algorithms are based on a 

repeated stripping away of layers of pixels until no 

more layers can be removed. There is a set of rules 

defining which pixels may be removed, and 

frequently some sort of template-matching scheme is 

used to implement these rules. In this work, we 

selected well-established Zhang-Suen 

implementation [Zha84a] which is capable of 

producing a sufficiently accurate skeleton. The 

algorithm is broken up into two subiterations. In one 

iteration a pixel I(i,j) is marked for deletion if the 

following four conditions are all true: 

1. its connectivity number is one; 

2. it has at least two black neighbors and not more 

than six; 

3. at least one of I(i,j+1), I(i-1,j) and I(i,j-1) are 

background (white); 

4. at least one of I(i-1,j), I(i+1,j) and I(i,j-1) are 

background.

The connectivity number is a measure of how many 

objects a particular pixel might connect. One such 

measure is 1 2( )n k k k k

k S

C N N N N  where Nk

is the color value of one of the eight neighbors of the 

pixel involved and S={1,3,5,7}. N1 is the color value 

of the pixel to the right of the central pixel, and they 

are numbered in counterclockwise order around the 

center. The value of Nk is one if the pixel is white 

(background) and zero if black (object). The center 

pixel is No, and Nk = Nk -8 if k >8.

At the end of this subiteration the marked pixels are 

deleted. The next subiteration is the same except for 

steps 3 and 4. Pixel is marked for deletion if 

1. its connectivity number is one; 

2. it has at least two black neighbors and not more 

than six; 

3. at least one of I(i-1,j), I(i,j+1) and I(i+1,j) are 

background (white); 

4. at least one of I(i,j+1), I(i+1,j) and I(i,j-1) are 

background.

and again, any marked pixels are deleted. If at the 

end of either subiteration there are no pixels to be 

deleted, then the skeleton is complete, and the 

algorithm stops. 

There are some problems with thinning algorithms 

that show up as artifacts in the skeleton. The first of 

these is called necking, in which a narrow point at the 

intersection of two lines is stretched into a small line 

segment. Also, tails can be created where not exist 

because of excess thinning where two lines meet at 

an acute angle. Finally, hairs or line fuzzes (the 

creation of extra line segments joining a real skeleton 

segment) frequently appear.  

We adopted a preprocessing stage proposed by 

Stentiford [Ste83a] which allows to minimize these 

thinning artifacts. Since line fuzz is frequently 

caused by small irregularities in the object outline, a 

smoothing step is applied before thinning to remove 

them. Basically, a pass is made over all pixels, 

deleting those having two ore fewer black neighbors 

and having a connectivity number less than two. For 

dealing with necking, acute angle emphasis

procedure is applied, in which all pixels near the 

joint between two lines are set to white if they plug 

up a acute angle.

Finally, since sometimes, when thinning is complete, 

there are still pixels that could be deleted (principal 

among these are pixels that form a staircase) we use 

Holt’s staircase removal [Hol87a] which allows half 

of the pixels in a staircase to be removed without 

affecting the shape of connectedness of the overall 

object by applying a template-matching technique.  

Figure 6 shows the skeleton image resulting from the 

application of our hybrid implementation based on 

the merging of those three methods in the following 

order: Stentiford’s preprocessing scheme feeding 

images into Zhang-Suen’s basic algorithm, with 

Holt’s staircase removal as a post-processor. 



Figure 6. Skeleton obtained by applying the 

proposed hybrid thinning procedure to segmented 

image in Figure 5. 

5. GRAPH EXTRACTION 
We developed an image-based technique enabling 

the extraction of a detailed graph-based 

representation of the blood vessels network from a 

skeleton image. The availability of such a 

representation constitutes the basis for accurate 

angiogenesis parameters measurement.  

An adaptation of the breadth-first search (BFS) 

algorithm was used. Given a graph G=(V,E) where V

is the vertex set and E the edge set, original BFS 

systematically explores the edges of G to “discover” 

every vertex that is reachable from s (where s is a 

distinguished source vertex) producing a breadth-

first tree with root s that contains all such reachable 

vertices. The BFS procedure normally assumes the 

existence of an input graph G represented by means 

of an adjacency list. Moreover, it relies on the 

selection of source vertex v. Here, only a graphical 

representation of the graph (the skeleton image) is 

available and the creation of a sophisticated 

adjacency list maintaining information regarding 

vertex reachability as well as edges related 

information is the actual goal of the automated 

algorithm. Furthermore, the concept of vertex in such 

a graphical graph representation has to be defined in 

a suitable manner. Finally, at least one source vertex 

has to be identified in the graphical graph 

representation. It has to be remarked that a single 

skeleton image can originate more than one breadth-

search tree and, as a consequence, the selection of 

more than one source vertex may be required. In the 

following, template based rules for vertex 

recognition and the BFS-like technique for graph 

extraction are presented.

Vertex recognition 
We defined the following rules to establish whether a 

pixel belonging to the skeleton should be considered 

a vertex of the graph or not. First, the number n of 

skeleton pixels in a 3 × 3 grid centered in the 

considered vertex is computed. The discrimination 

criterion is as follows: 

n < 2: p is a vertex; 

n=2: p is a vertex iff neighboring pixels are 

adjacent;

n=3: p is a vertex iff there not exist a pair of 

adjacent neighboring pixels; 

n=4: p is a vertex iff there not exist more than 

one pair of adjacent neighboring pixels; 

n>4: p is a vertex; 

This criterion is illustrated in Figure 7. Possible 

configurations for n = 0,1,2,3,4  are shown in 

details. The extension to n = 5,6,7,8  is 

straightforward.

Figure 7. Illustration of the template based 

technique for vertex recognition. 3 × 3 grids for

n = 0,1,2,3,4  neighbors satisfying conditions for 

being a vertex. 

Breadth-first search 
First, an initial source vertex s has to be identified. 

The input image is visited beginning from the top-

left corner. As soon as a pixel belonging to the 

skeleton is reached, the algorithm applies the 

available rules in order to establish if the current 

pixel should be considered a vertex. If not, that 

means that an edge of the graph has been reached. 

The algorithm moves along that edge until a vertex is 

reached. When the first vertex is discovered, 

modified BFS implementation can be used since a 

source vertex is available. Like the basic BFS, the 

proposed implementation relies on a first-in, first-out 

queue Q to maintain vertices that have still to be 

processed. Furthermore, the proposed 



implementation keeps track of progress by coloring 

each visited vertex and edge using a specific color 

representing its state. In the initialization step, vertex 

s is added to the empty queue Q as well as to the 

adjacency list. Then, a loop is executed which 

iterates as long as there remain vertices to be 

processed in Q. The vertex at the head of Q is 

considered and its neighboring pixels (8-

neighborhood) belonging to the skeleton are painted 

gray. As long as there exists neighboring gray pixels, 

one of this pixels is considered. This pixel represents 

the initial point of an edge leaving the current vertex. 

An edge is therefore added to current vertex. The 

algorithm follows the edge until a node is reached, 

adding pixels to the edge. If the vertex has not yet 

been discovered, the vertex is added to the queue and 

to the adjacency list as well. The execution continues 

with the remaining neighboring gray pixels of the 

current vertex. Once the edges originating from each 

gray neighboring pixel has been considered, current 

vertex is removed from Q and the following vertex in 

the queue is considered. Visited edges and vertices 

are canceled in the input image as soon as they have 

been discovered. When all the vertices in Q have 

been considered, a partial adjacency list representing 

a breadth-first tree is available. This procedure is 

repeated as long as source vertices can be found in 

the input image. At the end, an adjacency list 

containing all the vertices together with pixels 

belonging to the edges leaving each vertex for the 

whole image is generated. Note that this step allows 

only to identify all those edges leaving from a 

particular vertex. Since our aim is the creation of an 

undirected graph, a post-processing step is performed 

in order to complete the adjacency list. That is, for 

each node, for each leaving edge an entering edge is 

created by inverting the pixels constituting the 

leaving edge. Modified implementation of the BFS 

procedure is illustrated in Figure 8. A graphical 

representation of the formal graph description 

obtained using modified BFS is shown in Figure 9. 

Pruning
Most of the artifacts produced by basic thinning 

algorithms are removed by introducing preprocessing 

and postprocessing steps in the skeletonization 

procedure. Nevertheless, several line fuzzes which 

do not actually represent any structural feature in the 

segmented objects are still present in the skeleton 

(Figure 10.a, 10.b). A pruning operation is therefore 

performed in order to remove these artifacts (Figure 

10.c). This procedure is repeated until no branches 

longer that 20 pixels remain in the image. Removed 

edges and vertices are marked as dead is the 

adjacency list. As a consequence of the pruning 

operation, several vertices with two leaving live  

edges  remain in the graph, which  do not satisfy the 

rules for being a vertex anymore. These vertices and 

edges are removed from the adjacency list and new 

undirected edges are created as the collection of 

constituting canceled edges (Figure 10.d and 12). 

Figure 8. Procedure for graph extraction.

Figure 9. Representation of formal graph. 

6. MEASUREMENTS
The ordered list of skeleton pixels constituting each 

edge of the undirected graph is collected in the 

process of extracting the graph. This information has 

been used to perform edge length measurements. 

Several length measurement techniques have been 

evaluated. We first defined 1  as the sum of the 

pixels constituting the edge. The main drawback of 

this measure is that it underestimates the actual 

length of the edge. This is mainly due to the fact that 

this technique does not take into account the relative 

position of consecutive pixels. Therefore we 

while s FindSource()

     Enqueue(Adj,s) 

     Enqueue(Q,s) 

     while Q

        v head[Q]

        for each n  neighbors[v]

           u AddEdge(v)

           p  n 

          AddPoint(u,p) 

          while IsVertex(p)  true 

               p MoveToNeighbor(p)

              AddPoint(u,p) 

          if p Adj then

              Enqueue(Q,p) 

          Dequeue (Q) 



investigated the effectiveness of more accurate 

measurement techniques based on length estimators 

derived from a characterization of the discrete curve 

representing the edge. For this, we selected the most 

used length estimator which has been presented in  

[Dor87]. According to this approach, we defined 

2 , 0,948 1,343e o e on n n n  where en  is the 

number of vertical and horizontal chain elements and 

on  is the number of diagonal chain elements of the 

edge. We experienced that the major disadvantage of 

this technique is that it is too sensitive to small 

fluctuations around the median axis of the 

skeletonized edge. This translates into an 

overestimation of the actual length of the edge.  

(a) (b) 

(c) (d) 

Figure 10. Details of the pruning procedure. a) 

Binary segmented image. b) Skeleton (circles 

indicate line fuzz artifacts originated by the 

thinning algorithm). c) Graph-based 

representation reconstructed from the adjacency 

list after pruning step (circles indicate vertex 

which have to be removed from adjacency list 

together with leaving edges). d) Graph-based 

representation after removal of irregular vertices 

and edges (canceled edges are replaced by new 

edges being the aggregation of constituting edges). 

For this reason, we proposed an alternative technique 

which is capable of compensating the discrete nature 

of edge shapes. We defined 3 ( )  as the sum of the 

Euclidean lengths of -pixels segments constituting 

the edge. Finally, 4 ( )  has been defined as the 

average of 3 ( )  lengths measured on the same edge 

by varying the starting pixel of the second segment 

between 1 and 1 . The third technique is more 

accurate with respect to the previous ones. 

Nevertheless, results achievable by means of this 

method can be improved using the fourth technique, 

which makes the dependence on the actual shape of 

the edge being considered negligible.  

For each edge in the graph, length measures using 

the fourth technique have been computed and stored 

in the adjacency list. An example of application of 

the aforementioned techniques on the sample edge in 

Figure 11.a together with achieved measurement 

results are shown in Figures 11.b, c, d. In the future, 

we expect to evaluate the accuracy of additional 

measurement techniques. 

1

(a)

2 ( , )e on n

(b)

3 ( )

(c)

4 ( )

(d)

Figure 11. Example of computation of edge 

lengths using =4. a) 
1

=13. b) 
2
( , )

e o
n n =13,75.

c)
3
( ) =13,21. d) 

4
( ) =13,49.

7. RESULTS AND DISCUSSION 
As shown in Section 6, in order to evaluate the 

accuracy of the proposed computer assisted analysis 

technique, collected data has been processed to 



obtain a measure of vessels length, an essential 

angiogenesis parameter which consistence can be 

easily verified by means of a comparison with results 

achieved in other experimental observations.  

Figure 12. Formal graph after pruning step. 

For this purpose, human endothelial cells from 

umbilical cord veins were prepared, characterized 

and cultured as described in [Gam03a]. Twenty-four-

well culture plates (2 cm2 growth area/well; Becton 

Dickinson) were coated with 0.3 ml of Matrigel (8.8 

mg/ml; Becton Dickinson), which was then allowed 

to solidify at 37° C. Endothelial cells were then 

released from culture plates using trypsin/EDTA, 

pelleted, counted, resuspended in medium at the 

appropriate cell dilution, and added to Matrigel-

coated wells. Cells were incubated at 37° C in a 5% 

CO2 humidified atmosphere for 12-14 hours. During 

time-lapse videomicroscopy constant temperature 

(37° C) and CO2 (5%) were maintained throughout 

the experiment by means of a heatable stage and a 

climate chamber. Phase contrast snap photographs of 

ten different plates were taken twelve hours after 

seeding and digitally recorded. The segmentation 

procedure presented in Section 3  has been applied to 

each recorded snap photograph and binary 

foreground images have been obtained. Skeletons 

have been computed for each segmented image using 

the thinning algorithm described in Section 4. Cells 

network graph based description has been obtained 

for each skeleton as illustrated in Section 5. Finally, 

length measurements have been performed on 

collected data how described in Section 6. In 

accordance with experimental observations in 

[Gam03a], it has been verified that the mean chord 

length measured by applying the aforementioned 

techniques on graph edges is 200 m  (and it is 

independent on the initial cell density n for n

between 100 to 200 cells/mm2).

Other characteristic angiogenesis parameters can be 

easily observed and quantified in a reproducible 

fashion by processing blood vessels network 

geometric information recorded in the formal graph-

based description extracted by means of the proposed 

methodology.  The developed technique proved to be 

an effective instrument for supporting experimental 

studies on neovascularization processes. 
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