
A Hybrid Approach to Rendering Handwritten Characters

Sara L. Su
Massachusetts Institute of

Technology
Computer Science and Artificial

Intelligence Laboratory
200 Technology Square

 Cambridge, MA, 02139, USA

sarasu@mit.edu

Chenyu Wu
Carnegie Mellon University

Robotics Institute
5000 Forbes Avenue

Pittsburgh, PA 15213, USA

chenyuwu@cmu.edu

Ying-Qing Xu,

Heung-Yeung Shum

Microsoft Research Asia
5/F, Beijing Sigma Center

No.49 Zhichun Road, Hai Dian
Beijing, China 100080

{yqxu,hshum}@microsoft.com

ABSTRACT

With the growing popularity of pen-based computers comes the need to display clear handwritten characters at

small sizes on low-resolution displays. This paper describes a method for automatically constructing hinted

TrueType fonts from on-line handwriting data. Hints add extra information to glyph outlines in the form of

imperative constraints overriding side effects of the rasterization process. We use an aggressive matching

strategy to find correspondences between an input glyph and a previously-hinted template, considering both

global and local features to allow hinting even when they differ in shape and topology. Recognizing that stroke

width statistics are among features that characterize a person’s handwriting, we recalculate global values in the

control value table (CVT) before transfer to preserve the characteristics of the original handwriting.

Keywords

Handwriting, automatic hinting, digital typography, shape matching, pen-based interaction.

1. INTRODUCTION
Handwriting plays an integral role in our thought

processes, functional tasks, and communication with

peers, and perhaps even offers some insight into

personality traits [Bra91]. How we write, along with

what we write, defines who we are.

With all that we rely on handwriting for, it is perhaps

unsurprising that pen-based computers are growing

in popularity. Appearing as small handheld devices,

personal tablet computers, and large whiteboard

displays, numerous systems since Sketchpad [Sut63]

have demonstrated stylus-based interaction to be a

concise, effective means of user input.

While many handhelds accept character-by-character

input as stylized “graffiti” [Mac97], as the popularity

of pen-based computing continues to grow, an

increasing number of people will rely on applications

with freehand input. Advertisements for tablet

computers, targeting users who work away from the

desk, tout them as being as natural to write on as a

pad of paper.

Much work has been done in the areas of recognition

[Mac94], simulation [Dev95], and learning-based

synthesis of handwriting [Guy96, Wan02], but less

attention has been paid to the problem of rendering

the resulting characters on screen. Whether they

were synthesized, scanned, or written directly onto a

tablet screen, digital handwriting must at some point

be rendered legibly and without loss of quality.

Recognizing the demand for onscreen text that is

both readable and unique to the user, digital type

foundries have begun offering “personal handwriting

fonts”, typefaces designed based on a customer’s

signature or writing samples. Like other typefaces,

some of these fonts contain essential gridfitting

instructions, hints, that specify the appearance of

characters at varying point sizes and display

resolutions. While some handwriting fonts are

manually hinted (an extremely time-consuming task),

most are either hinted automatically by a typeface

authoring system such as Macromedia Inc.’s

Fontographer or contain no hints at all. While

Fontographer’s auto-hinting system is effective for

traditional typefaces of size 24 pt or larger,

handwritten glyphs are a special case that most

existing auto-hinters do not handle well.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972

WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

We propose a hybrid method for automatically

hinting handwriting by considering global and local

features of each glyph against knowledge of already-

hinted templates. Though in this paper we discuss

these techniques in the terms of TrueType template

fonts and hint instructions, we see them as applicable

in the more general context of intelligent rendering

of handwriting. Here we implement the specific case

of converting handwritten characters from a

polylines on a tablet device to TrueType glyphs. The

results are encouraging and suggest an application

scenario in which the user can create a more legible

form of his or her own handwriting directly on a

tablet without having to wait for a company to

digitize and hint writing samples as a typeface.

2. BACKGROUND
Although many alternative representations have been

proposed [Knu86, Kla93, McG95], outline fonts are

still the format most widely used today. Outlines

avoid many of the problems that plagued earlier

bitmap fonts (every required size must be hand

designed, they are tuned to a specific printer, and the

footprint of a font grows quickly with the size of the

characters), but to be displayed on screen, they must

eventually be converted to bitmaps [Rub88].

Hinting gives a typographic engineer fine control

over the appearance of glyphs when rasterized. With

these gridfitting instructions, the typographer

specifies constraints between knots of a glyph or

between a knot and a gridline. Though it is a

laborious task, hinting is essential for legible

rendering of glyphs. Stroke width uniformity, stroke

continuity, glyph spacing: all are controlled by

hinting. The difference in quality between hinted and

unhinted glyphs is most apparent for small point

sizes displayed at typical screen resolutions of 72-

120 dpi. Hinting also improves the appearance of

small text faxed at 200 dpi or printed at 300-600 dpi

[Sta97].

The two major font standards, TrueType and

Postscript (or Type 1), though both using outline

representations of characters, incorporate two very

different hinting philosophies. While Postscript fonts

leave control of a character’s final appearance to the

rasterizer [Ado90], a typographer embeds explicit

gridfitting instructions in the outline description

when designing a TrueType font [App96, Con97,

Typ96].

2.1 Postscript hinting
In the description of a Postscript font, semantic

features of each glyph are marked, and hints contain

information about vertical and horizontal bands

across these features. It is up to the rasterizer to use

this information to optimize the distribution of pixels

by stretching or compressing glyph outlines within

the defined bands. Because control of the character’s

final appearance falls to the rasterizer, the

typographer cannot specify exactly what it will look

like when rendered. However, the relative simplicity

of Postscript hints makes it more straightforward to

develop automatic hinting systems based on

recognition of semantic features.

2.2 TrueType hinting
In TrueType, there is no concept of bowls, stems, or

other semantic features of a character; there are only

knots and splines. The designer of a TrueType font

can control the precise layout of a glyph’s pixels at a

particular size by programming explicit gridfitting

instructions into the description of the font. Tools

such as Fontographer and Visual True-Type [Sta98]

generate hint instructions in high-level, declarative

languages that are then compiled to the TrueType

assembly language. Like Zongker et al. [Zon00], we

discuss hint translation in terms of the VTT Talk

language provided by Visual TrueType [Mic97].

A single VTT Talk instruction specifies a constraint

between two knots in a glyph, between a knot and a

gridline, or on a group of knots in a contour. The

following types of VTT Talk hints are defined: An

anchor rounds a parent-less knot to the grid or to a

gridline specified by a CVT entry. A child knot’s

position is maintained relative to its anchored parent

with the use of distance and link constraints. A

distance constraint specifies the absolute distance to

maintain while a link refers to a CVT entry. Both

parent and child are rounded to gridlines such that

there is a minimum distance of 1 pixel between the

two. A child knot’s position is maintained relative to

two parents with an interpolate instruction. A shift

maintains a child’s distance to its parent even if

hinting has moved the parent. Unlike with a link, the

child’s position is not rounded to the grid, thereby

allowing movements of less than a full pixel. Deltas

and moves, known as exceptions, are used to specify

the exact number of pixels at a point at a particular

glyph size. A delta affects a single size while a move

applies to all sizes of a glyph.

There has been significant earlier work on automatic

“tuning” of typefaces including [Her91, Hob93,

Her94, Zon00, Sha03].

Hersch and Bétrisey [Her91] developed model-based

methods for automatic hinting, transferring

gridfitting instructions from specially constructed

intermediate models. The model for each glyph

includes both an outline description of shape as well

as a listing of its semantic parts. After matching the

outlines of the glyph to be hinted to those of the

model, the semantic features of the target glyph can

be labeled and hints generated.

Zongker et al. [Zon00] adapted this work to create a

production tool for hinting TrueType fonts. Rather

than using a manually constructed model as a bridge

between knots on the outline character and the

semantic features needed for hinting, their method

uses an already-hinted TrueType font as the

template. The template can be cleverly chosen to be a

good match to the target font, resulting in good

quality hints. The instructions transferred using this

method retained the hinting techniques particular to

the individual typographer.

3. METHOD
Our hinting method is motivated by earlier work on

model-based shape matching [Her91] and example-

based hinting of TrueType fonts [Zon00]. These

automated hinting systems transferred instructions

from a manually-hinted template to a new input

glyph. We build on techniques introduced in these

systems to automatically hint handwritten glyphs that

often differ from the predefined templates.

The first step is to determine correspondences

between template and input knots. We first calculate

global correspondences between a glyph and the

same glyph from the template set and then

calculating local correspondences through

comparisons to analogous curves of other template

glyphs. This hybrid approach allows us to find

matches even for input/template glyph pairs that are

topologically very different.

After knot correspondences have been found, hint

instructions are translated from template to input in a

relatively straightforward process. In addition to

glyph-specific hints, global data in the control value

table (CVT) used to unify structural elements across

glyphs are also translated. One could argue that the

CVT is not useful when dealing with the

irregularities of handwriting. However, though the

constraints are hardly as rigid as those of traditional

typefaces, there still exists a degree of uniformity

across characters in most handwriting. Indeed, it is

these patterns and shared features that aid a reader in

identifying the familiar handwriting of a friend. We

recompute values in the CVT based on

measurements at input glyph knots, creating new

CVT entries for features not sufficiently captured in

the template.

3.1 From strokes to points and curves
Many fonts originating from brushed or penned

strokes take their glyph shapes from the physical acts

of creating them. Unlike many traditional typefaces,

the appearance of script, calligraphic, or

“handwriting-like” glyphs has more to do with letter

formation patterns than with intentional typographic

form.

Our goal is to preserve the characteristic stroke

widths of handwritten characters using hints. In this

section, we describe the process of extracting outline

knots of a variable-width handwritten stroke.

3.1.1 Reconstructing variable-width strokes
Input strokes could come from a variety of sources:

scanned from paper, created in a digital painting

program, or input directly from a tablet device.

Currently, most pen-input devices render

handwriting as fixed-width polylines. However,

most do record physical information, such as

direction and speed of pen movement, that can be

used to reconstruct the variable-width stroke as it

might appear on paper.

To simulate pen movement, we use a straightforward

physical model for rendering the pen strokes with

variable width. We assume that the pen's movement

involves only translation and regard the pen tip as a

perfect circle at the point of initial contact. As the

pen moves, extrusion forces in the x- and y-

directions cause the circle to deform into an ellipse of

constant area as illustrated in Figure 1.

In addition to the direction and speed of pen

movement, pen pressure is taken into account in

calculating the deformation of the virtual pen tip.

Rendering the changing position and shape of the

ellipse through time produces the variable-width

stroke from whose outline knots can be extracted to

create a TrueType glyph.

This deformation method works well for

reconstructing a variable-width, brush-like stroke.

Arabic language fonts, as well as some Latin

calligraphic fonts, require a different model. In these

cases, the pen tip is rigid, and it is the nib angle and

direction of pen movement that determine the stroke

thickness.

Figure 1. Extrusion forces deform the pen tip into an

ellipse as the pen moves. f(tm) indicates the extrusion

force at tm.

3.1.2 Curve-fitting
By sub-sampling the outline of a variable-width input

stroke, we can extract all control points to form the

point-and-curve description of the TrueType glyph.

TrueType outlines are defined by on-curve and off-

curve points. Adjacent on-curve points are connected

with straight line segments while off-curve points,

along with neighboring on-curve points, define

Bézier curve segments. In this case, we only use on-

curve points. Though their use results in a larger-

footprint outline description, this larger set of on-

curve points preserves more of the topology of the

input character. In the future, we may pursue

alternative curve-fitting techniques capable of also

approximating off-curve points, resulting in a

smaller-footprint outline description. The points are

renumbered according to their location on glyph

contours before being written to the final font file.

These points will be used in the outline glyph

definition in the TrueType font file to be manipulated

by the auto-hinting processes.

3.2 Correspondence search
In order to transfer hints from a template character

set (an already-hinted font), we must determine the

correspondence between the template font and input

glyphs, or more specifically, between the template

and input knots.

We first attempt to match the overall topology of an

input glyph with the corresponding template glyph.

For reasonably similar template and input character

sets, this global correspondence search is sufficient.

However, for glyphs whose shapes differ

significantly from their templates, more than a global

topological search is required. In this case, we also

perform a local search for correspondences in similar

curves of different template glyphs.

3.2.1 Global search
Suppose we wish to hint an input glyph Gi based on

its corresponding template glyph Gt. For each knot

of Gt, we attempt to find an analogous knot in Gi.

We first attempt to balance the number of strokes

with a strategy similar to that employed by [Arv00].

We join strokes of Gi that are nearly collinear and

split those containing sharp corners. Note that this

step does not physically split or join strokes; rather

the strokes are merely hinted as though these

operations have been applied. The rendered

appearance of the character is not altered.

In order to maximize the number of hints transferred,

we find a matching input knot for each on-curve

template knot. If later a match is deemed

inappropriate, the related hints can be ignored in the

translation step. We consider all permutations of

correspondences between knots. While earlier

attempts to find the best correspondence have been

primarily heuristic-based, our algorithm calculates

the optimal correspondence based on the “energy”

required for morphing the input character to the

template, calculated as the sum of the squared

distances between template and input knots. Though

simple, this measure of cost is quite effective. In the

future, it would be worthwhile to consider including

other factors in the cost such as the energy required

to distort glyph features during morphing.

Alternatively, we could apply a physically-based

shape-blending such as that described in [Sed92].

Information about the approximate location of each

knot is used reduce running time. As a pre-

proc FindCorrespondences(Glyph Gi, Glyph Gt)

 while (|Gi| > |Gt| and Gi.hasCollinearStrokes()) {

 //join the most collinear strokes of Gi

}

 while (|Gi| > |Gt| and Gi.hasCorners()) {

 //split Gi at the sharpest corner

 }

CorrespondenceSet Cmin

 Cmin.numKnots Gi.numKnots

 for each knot i in Gi {

 Cmin.knots[0][i] Gi.knots[i]

}

 Cmin.energy

 //consider all permutations of correspondences

 for each CorrespondenceSet C {

 C.energy 0

 for each (knot J, knot K) in C {

 C.energy C.energy

 +(J.x-K.x)2 +(J.y-K.y)2

 }

 if (C.energy < Cmin.energy) {

 Cmin C

}

 return Cmin

Figure 2. Global search algorithm.

Figure 3. The global correspondence search attempts to

match each knot on an input glyph with one on the

corresponding template.

processing step, each glyph is segmented into four

geographic regions, each knot being tagged with this

information. Local energy is only calculated for pairs

of template and input knots located in the same

region.

With fairly uniform handwriting, a single template

font is usually sufficient. However, as mentioned

above, handwriting exhibiting a high degree of

variance across glyphs cannot be accurately matched

with a single template. Given a number of possible

templates, we must choose the one most closely

matching the input. Comparing each possible

template against our input, we determine the best

match to be the one with the least total energy.

3.2.2 Local search
Figure 3 shows the results of the global

correspondence search for two pairs of glyphs. A

complete set of correspondences can be found for the

‘e’ glyphs, with each template knot paired with an

input knot. The match for the ‘m’ glyphs is less

successful. A successful global correspondence

search requires a high degree of similarity between

two glyphs. When this is not the case, the global

search will fail to find a complete match. In addition,

a number of letters appear in multiple topological

forms, for example lowercase ‘a’, ‘g’, and ‘r’, and

uppercase ‘I’ and ‘Q’. Such cases motivate the need

for a local correspondence search that considers

matches with other glyphs of the character set.

As a pre-processing step, template and input glyphs

are split into component strokes based on the degree

of curvature at each on-curve point. To approximate

letter formation patterns, we determine stroke splits

at knots with a high degree of curvature.

Each template we initially consider contains a

component stroke that could possibly fit a section in

the input glyph well. By analyzing the number of

contours, start and end points, variation in the

skeleton direction, and glyph region, we determine

the template most closely matching the input.

Next, we calculate the feature points of the given

contour in a three-step process. Using curvature to

determine feature points results in many redundant

points due to the large number of on-curve points in

the input. Therefore, we consider only the most

prominent feature points (maxima and minima) and

map each of these to feature points in the input. Next,

we map the pairs of feature points (manually labeled

in the template) that we have found in the first step,

with pairs extracted from the input. Finally, we map

the remaining feature points in the template with the

translated points in the input. Note that these

translated points are selected from several candidate

points by preserving most of the topological structure

among feature points in the template. In this way, we

maintain the original hinting style and accuracy.

This algorithm is perhaps most easily discussed in

the context of an example. Figure 4 illustrates the

steps to finding the local correspondence between a

template and input glyph.

Figure 4. Steps in finding a local correspondence. (1)

Feature points are identified in the x- and y-directions.

(2) The analogous point to the feature point of interest is

identified. (3) After matching B’ with B and F’ with F,

we get the triangle B’C’F’. The sets of points B, C, F,

and B’, C’, F’, define a unique affine transformation

leading to a new triangle B”C”F” with side B”F”

overlapping BF. By selecting a feature point from C, p1,

p2, p3 and p4, with minimal distance from C”, a

translated triangle BCF can be found that most closely

matches the original triangle B’C’F’.

3.3 Hint translation
After correspondences between input and template

knots have been found, hint translation is relatively

straightforward. Hint programs are copied from the

templates and attached to the input glyphs,

substituting corresponding knot numbers in the VTT

Talk instructions. Hints involving a knot for which

only a weak final correspondence was found are

discarded.

We translate hint instructions that preserve location,

distance, and proportions: Distances, links, and shifts

maintain the width of a stroke and the relationships

between structural elements of the glyph. Interpolates

maintain alignment of and proportions between

structural elements. While slight deviations of a

glyph's knots from the grid are acceptable to the

human eye, anchors help maintain the consistency

across a string of glyphs. Delta and move exceptions

are not translated as they are typically applied by the

typographer on a case-by-case basis. Global-scope

instructions (Smooth(), for example) are also not

translated for individual glyphs. As such instructions

typically apply to all glyphs, they can be applied

separately in post-processing.

3.4 Stroke width regularization
Because each instruction is a local operation, hints

alone cannot provide a typographer with complete

control over consistency among glyphs. This

additional expressive power is provided by the

control value table (CVT), a shared table of distances

referenced by hint instructions. References to entries

in the CVT regularize the appearance of structural

elements within a single glyph (e.g. when referenced

by a distance instruction) or across glyphs (e.g. in the

case of the link instruction) [Ado01]. Use of the CVT

guarantees that values the typographer intended to be

equal at design time are rendered as such.

It could be argued that the CVT is not appropriate for

use with handwriting fonts because it introduces too

much uniformity. We limit the restrictiveness of the

CVT by tailoring it to the features of the input. As

discussed in [Zon00], the CVT entry numbers of

template can certainly still be used for our input.

However, the values in these entries, designed for the

particular features of the template, are no longer

appropriate. We must calculate new values for the

entries based on measured features of the input. We

consider every instance where a specific CVT entry

is referenced by template glyphs. We then average

the actual values at analogous knots in the input

glyphs to calculate the new CVT entry. Zongker et

al. discarded as outliers those cases in which the

measured value was too different from the average

value. The reasoning is that the difference suggests

that it is not appropriate to apply this CVT constraint

in this case. While for uniform typefaces this

approach results in relatively little loss of hint data,

when considering handwriting, the wide variations

found in measured values for a single CVT entry

preclude use of this method.

We note that, due to the cross-letter patterns in a

person's handwriting, these outliers often appear in

clusters. While differing greatly from the average

values stored in the CVT, these outliers are often

close enough to each other to be considered a

separate class of reference. An example is shown in

Figure 5. Rather than discarding outliers, we partition

references to a particular CVT entry into clusters of

references. Sufficiently different references are

branched into a new CVT entry. The averaging and

branching continues until all entries have been

categorized. An entry referenced by a single link

instruction can safely be discarded and the link

replaced with a distance instruction.

This clustering and branching approach allows us to

identify patterns in the input set, retaining as much

hint data as possible.

4 RESULTS AND DISCUSSION
Figure 6 shows a number of handwritten characters

automatically hinted with our method. The input

characters were manually segmented from complete

words written on a tablet computer. A manually-

hinted Roman font was used as the template for the

global correspondence search; the local search used a

hinted, stroke-like font as the template. We tested the

results of autohinting glyphs displayed at a typical

screen resolution of 96 dpi using Visual TrueType's

internal rasterizer.

4.1 Hints and dropout control
A topic of ongoing discussion among typographers is

whether italic fonts, fancy fonts and handwritten

fonts need to be hinted or if for these fonts, only

Figure 5. Identifying clusters of CVT references. Red

lines indicate the templates’ link references to the same

CVT entry. After the hints are translated to the input

glyphs, it becomes apparent that a new entry should be

created for the cluster of green links.

basic hints and a dropout control mechanism are

needed. When part of a stroke is thinner than one

pixel, the resulting hole or “drop” in the raster image

can be disruptive to perception of the character. To

prevent these artifacts, a simple dropout control

mechanism can be applied at time of rasterization to

detect the location of drops and to insert an extra

pixel at the site of the drop. (For an in depth

discussion of dropout control, please see [Her93].)

In Figure 6, we compare glyphs with hints

automatically applied, those with only dropout

control applied, and those with both hints and

dropout control applied.

As noted in Section 3.1, the handwritten glyphs

contain no off-curve control points and a much larger

number of on-curve control points. Because of this,

the effect of the dropout control mechanism is to

simply “connect the dots”, resulting in a single-width

polyline in many cases. (See, for example, the second

‘c’ at 18 pt in Figure 6.)

The automatically hinted glyphs show improvement

in certain features at the cost of slight distortion of

other features. (The ‘m’s in the figure are good

examples of this.)

Combining auto-hinting and dropout control

produces characters that are more legible that those

using either mechanism alone and that are clearly a

great improvement over unhinted characters.

Still, the matching algorithm is far from perfect; in

some of the glyphs (e.g. the first ‘b’ at 18 pt, the first

‘e’ at 24 pt), the translation of inappropriate hints

actually degraded the appearance. But while this and

other automatic hinting systems still have a ways to

go to come close to the hinting accuracy of expert

typographers, these early results are encouraging.

4.2 Choosing templates
The choice of template, as well as the choice of

whether to hint both globally and locally, depends on

the purpose the hinted handwriting will serve. If the

goal is to have consistently readable text, the best

choice may be a professionally-hinted highly-

uniform font template for global hinting only. If the

goal is to provide the user with a “typographically

nice” form of their writing, use of a large database of

local templates will increase the likelihood of a close

match. One could imagine using one automatically-

hinted font as a template for another, but this would

degrade the results.

4.3 Applications
Contextual handwriting fonts. The new OpenType

standard, developed jointly by Adobe and Microsoft

[Ado01], provides support for contextual fonts which

can store multiple definitions of each glyph. Several

typeface companies have already taken advantage of

this technology in the handwriting fonts they

produce. Typographers at Signature Software, Inc.

use a semi-automatic system to design multiple forms

for each cursive character so that each can connect

naturally to one preceding. While the resulting fonts

are more regularized than a person's actual

handwriting, the contextually changing character

connection locations help give the appearance that

the person might have written the text. The

techniques described in this paper make it feasible to

automatically hint a large number of variations of

each glyph for very realistic handwriting.

Hinting of arbitrary curves. Our hybrid

correspondence search could be applied to discover

structure in an arbitrary curve. We are interested in

pursuing the extension to hinting of logos and vector

graphics for optimal display on low resolution

devices.

General rendering of handwriting. In this paper,

we discussed example-based methods of improving

rendering of handwriting in the context of TrueType

font hinting. It would be worthwhile to consider the

application of these techniques in a more general

context, replacing the font templates and TrueType

hints with a more general template and additional

rendering information.

ACKNOWLEDGEMENTS
This project was initiated while S. Su and C. Wu

were interns at Microsoft Research Asia, and we

acknowledge our colleagues there, at the Microsoft

Redmond campus, and in the MIT Computer

Graphics Group for insightful discussions about this

work. We also thank the anonymous reviewers for

their feedback.

REFERENCES
[Ado01] Adobe Systems Inc., and Microsoft Corp.

OpenType Specification, 1.3 ed., April 2001.

[Ado90] Adobe Systems Inc.. Adobe Type 1 Font Format.

Addison-Wesley, 1990.

[App96] Apple Computer Inc. The TrueType Reference

Manual. October 1996.

[Arv00] Arvo., J., and Novins, K. Smart Text: A

synthesis of recognition and morphing. In Proc. of

AAAI Spring Symposium on Smart Graphics, pp. 140-

147, 2000.

[Bra91] Branston, B. Graphology Explained. Samuel

Weiser Inc., 1991.

[Con97] Connare, V. Basic Hinting Philosophies and

TrueType Instructions, Microsoft Corporation, 1997.

[Dev95] Devroye, L., and McDougall, M. Random fonts

for the simulation of handwriting. Electronic

Publishing, Vol. 8, pp. 281-294, 1995.

[Guy96] Guyon, I. Handwriting synthesis from

handwritten glyphs. In Proc. of the 5th International

Workshop on Frontiers of Handwriting Recognition,

1995.

[Her91] Hersch, R.D., and Bétrisey, C. Model-based

matching and hinting of fonts. In Proc. of SIGGRAPH

91, pp. 71-80, 1991.

[Her93] Hersch, R. Font rasterization: the state of the art.

In Visual and Technical Aspects of Type, R. Hersch

(ed.), Cambridge University Press, pp. 78-109, 1993.

[Her94] Hertz, J., and Hersch, R.D. Towards a universal

autohinting system for typographic shapes. Electronic

Publishing, Vol. 7, pp. 251-260, December 1994.

[Hob93] Hobby, J.D. Generating automatically tuned

bitmaps from outlines. Journal of the ACM, Vol. 40,

No. 1, pp. 48-94, 1993.

[Kla93] Klassen, R.V. Variable width splines: a possible

font representation? Electronic Publishing, Vol. 6, No.

3, pp. 183-194, September 1993.

[Knu86] Knuth, D.E. The METAFONT Book. Addison-

Wesley, 1986.

[Mac94] MacKenzie, I.S., Nonnecke, B., McQueen, C.,

Riddersma, S., and Meltz. M. Alphanumeric entry on

pen-based computers. International Journal of Human-

Computer Studies. Vol. 41, pp. 775-792.

[Mac97] MacKenzie, I.S., and Zhang, S. The immediate

usability of Graffiti. In Proc. of Graphics Interface ’97.

pp. 129-137, 1997.

[McG95] McGraw, G.E. Letter Spirit: Emergent High-

Level Perception of Letters Using Fluid Concepts. PhD

thesis, Indiana University, 1995.

[Rub88] Rubinstein, R. Digital Typography: An

Introduction to Type and Composition for Computer

System Design. Addison-Wesley, 1988.

[Sha03] Shamir, A. Constraint based approach for

automatic hinting of digital typefaces. ACM

Transactions on Graphics, Vol. 22, No. 2, April 2003.

[Sta97] Stamm, B. The Raster Tragedy at Low

Resolution. Microsoft Corporation, 1997.

[Sta98] Stamm, B. Visual TrueType: a graphical method

for authoring font intelligence. In Proc. of Raster

Imaging and Digital Typography ’98, pp. 77-92, 1998.

[Sut63] Sutherland, I.E. Sketchpad: A Man-Machine

Graphical Communication System. PhD thesis,

Massachusetts Institute of Technology, 1963.

 [Typ96] TYPE*chimérique Organization. TrueType

Hinting. 1996.

[Wan02] Wang, J., Wu., C., Xu, Y.-Q., Shum, H.-Y., and

Ji., L. Learning-based cursive handwriting synthesis. In

Proc. of the 8th International Workshop on Frontiers in

Handwriting Recognition, 2002.

[Zon00] Zongker, D.E., Wade, G., and Salesin, D.H.

Example-based hinting of TrueType fonts. In Proc. of

SIGGRAPH 2000, 2000.

Figure 6. Comparison of glyphs without hints, with hints automatically applied, with only dropout control

applied, and with both hints and dropout control applied. Manually-hinted Roman and stroke-like

glyphs were used as the templates for the global and local correspondence searches, respectively. Results

are shown at typical screen resolution of 96 dpi.

