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ABSTRACT 

With the growing popularity of pen-based computers comes the need to display clear handwritten characters at 

small sizes on low-resolution displays. This paper describes a method for automatically constructing hinted 

TrueType fonts from on-line handwriting data. Hints add extra information to glyph outlines in the form of 

imperative constraints overriding side effects of the rasterization process. We use an aggressive matching 

strategy to find correspondences between an input glyph and a previously-hinted template, considering both 

global and local features to allow hinting even when they differ in shape and topology. Recognizing that stroke 

width statistics are among features that characterize a person’s handwriting, we recalculate global values in the 

control value table (CVT) before transfer to preserve the characteristics of the original handwriting.
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1. INTRODUCTION 
Handwriting plays an integral role in our thought 

processes, functional tasks, and communication with 

peers, and perhaps even offers some insight into 

personality traits [Bra91].  How we write, along with 

what we write, defines who we are. 

With all that we rely on handwriting for, it is perhaps 

unsurprising that pen-based computers are growing 

in popularity.  Appearing as small handheld devices, 

personal tablet computers, and large whiteboard 

displays, numerous systems since Sketchpad [Sut63] 

have demonstrated stylus-based interaction to be a 

concise, effective means of user input. 

While many handhelds accept character-by-character 

input as stylized “graffiti” [Mac97], as the popularity 

of pen-based computing continues to grow, an 

increasing number of people will rely on applications 

with freehand input.  Advertisements for tablet 

computers, targeting users who work away from the 

desk, tout them as being as natural to write on as a 

pad of paper. 

Much work has been done in the areas of recognition 

[Mac94], simulation [Dev95], and learning-based 

synthesis of handwriting [Guy96, Wan02], but less 

attention has been paid to the problem of rendering 

the resulting characters on screen.  Whether they 

were synthesized, scanned, or written directly onto a 

tablet screen, digital handwriting must at some point 

be rendered legibly and without loss of quality. 

Recognizing the demand for onscreen text that is 

both readable and unique to the user, digital type 

foundries have begun offering “personal handwriting 

fonts”, typefaces designed based on a customer’s 

signature or writing samples.  Like other typefaces, 

some of these fonts contain essential gridfitting 

instructions, hints, that specify the appearance of 

characters at varying point sizes and display 

resolutions.  While some handwriting fonts are 

manually hinted (an extremely time-consuming task), 

most are either hinted automatically by a typeface 

authoring system such as Macromedia Inc.’s 

Fontographer or contain no hints at all.  While 

Fontographer’s auto-hinting system is effective for 

traditional typefaces of size 24 pt or larger, 

handwritten glyphs are a special case that most 

existing auto-hinters do not handle well. 
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We propose a hybrid method for automatically 

hinting handwriting by considering global and local 

features of each glyph against knowledge of already-

hinted templates.  Though in this paper we discuss 

these techniques in the terms of TrueType template 

fonts and hint instructions, we see them as applicable 

in the more general context of intelligent rendering 

of handwriting.  Here we implement the specific case 

of converting handwritten characters from a 

polylines on a tablet device to TrueType glyphs.  The 

results are encouraging and suggest an application 

scenario in which the user can create a more legible 

form of his or her own handwriting directly on a 

tablet without having to wait for a company to 

digitize and hint writing samples as a typeface. 

2. BACKGROUND
Although many alternative representations have been 

proposed [Knu86, Kla93, McG95], outline fonts are 

still the format most widely used today. Outlines 

avoid many of the problems that plagued earlier 

bitmap fonts (every required size must be hand 

designed, they are tuned to a specific printer, and the 

footprint of a font grows quickly with the size of the 

characters), but to be displayed on screen, they must 

eventually be converted to bitmaps [Rub88]. 

Hinting gives a typographic engineer fine control 

over the appearance of glyphs when rasterized. With 

these gridfitting instructions, the typographer 

specifies constraints between knots of a glyph or 

between a knot and a gridline. Though it is a 

laborious task, hinting is essential for legible 

rendering of glyphs. Stroke width uniformity, stroke 

continuity, glyph spacing: all are controlled by 

hinting. The difference in quality between hinted and 

unhinted glyphs is most apparent for small point 

sizes displayed at typical screen resolutions of 72-

120 dpi. Hinting also improves the appearance of 

small text faxed at 200 dpi or printed at 300-600 dpi 

[Sta97]. 

The two major font standards, TrueType and 

Postscript (or Type 1), though both using outline 

representations of characters, incorporate two very 

different hinting philosophies. While Postscript fonts 

leave control of a character’s final appearance to the 

rasterizer [Ado90], a typographer embeds explicit 

gridfitting instructions in the outline description 

when designing a TrueType font [App96, Con97, 

Typ96].

2.1 Postscript hinting 
In the description of a Postscript font, semantic 

features of each glyph are marked, and hints contain 

information about vertical and horizontal bands 

across these features. It is up to the rasterizer to use 

this information to optimize the distribution of pixels 

by stretching or compressing glyph outlines within 

the defined bands. Because control of the character’s 

final appearance falls to the rasterizer, the 

typographer cannot specify exactly what it will look 

like when rendered. However, the relative simplicity 

of Postscript hints makes it more straightforward to 

develop automatic hinting systems based on 

recognition of semantic features. 

2.2 TrueType hinting 
In TrueType, there is no concept of bowls, stems, or 

other semantic features of a character; there are only 

knots and splines. The designer of a TrueType font 

can control the precise layout of a glyph’s pixels at a 

particular size by programming explicit gridfitting 

instructions into the description of the font. Tools 

such as Fontographer  and Visual True-Type [Sta98] 

generate hint instructions in high-level, declarative 

languages that are then compiled to the TrueType 

assembly language. Like Zongker et al. [Zon00], we 

discuss hint translation in terms of the VTT Talk 

language provided by Visual TrueType [Mic97]. 

A single VTT Talk instruction specifies a constraint 

between two knots in a glyph, between a knot and a 

gridline, or on a group of knots in a contour. The 

following types of VTT Talk hints are defined: An 

anchor rounds a parent-less knot to the grid or to a 

gridline specified by a CVT entry. A child knot’s 

position is maintained relative to its anchored parent 

with the use of distance and link constraints. A 

distance constraint specifies the absolute distance to 

maintain while a link refers to a CVT entry. Both 

parent and child are rounded to gridlines such that 

there is a minimum distance of 1 pixel between the 

two. A child knot’s position is maintained relative to 

two parents with an interpolate instruction. A shift 

maintains a child’s distance to its parent even if 

hinting has moved the parent. Unlike with a link, the 

child’s position is not rounded to the grid, thereby 

allowing movements of less than a full pixel. Deltas 

and moves, known as exceptions, are used to specify 

the exact number of pixels at a point at a particular 

glyph size. A delta affects a single size while a move 

applies to all sizes of a glyph. 

There has been significant earlier work on automatic 

“tuning” of typefaces including [Her91, Hob93, 

Her94, Zon00, Sha03]. 

Hersch and Bétrisey [Her91] developed model-based 

methods for automatic hinting, transferring 

gridfitting instructions from specially constructed 

intermediate models. The model for each glyph 

includes both an outline description of shape as well 

as a listing of its semantic parts. After matching the 

outlines of the glyph to be hinted to those of the 



model, the semantic features of the target glyph can 

be labeled and hints generated. 

Zongker et al. [Zon00] adapted this work to create a 

production tool for hinting TrueType fonts. Rather 

than using a manually constructed model as a bridge 

between knots on the outline character and the 

semantic features needed for hinting, their method 

uses an already-hinted TrueType font as the 

template. The template can be cleverly chosen to be a 

good match to the target font, resulting in good 

quality hints. The instructions transferred using this 

method retained the hinting techniques particular to 

the individual typographer. 

3. METHOD 
Our hinting method is motivated by earlier work on 

model-based shape matching [Her91] and example-

based hinting of TrueType fonts [Zon00]. These 

automated hinting systems transferred instructions 

from a manually-hinted template to a new input 

glyph. We build on techniques introduced in these 

systems to automatically hint handwritten glyphs that 

often differ from the predefined templates. 

The first step is to determine correspondences 

between template and input knots.  We first calculate 

global correspondences between a glyph and the 

same glyph from the template set and then 

calculating local correspondences through 

comparisons to analogous curves of other template 

glyphs. This hybrid approach allows us to find 

matches even for input/template glyph pairs that are 

topologically very different. 

After knot correspondences have been found, hint 

instructions are translated from template to input in a 

relatively straightforward process.  In addition to 

glyph-specific hints, global data in the control value 

table (CVT) used to unify structural elements across 

glyphs are also translated.  One could argue that the 

CVT is not useful when dealing with the 

irregularities of handwriting. However, though the 

constraints are hardly as rigid as those of traditional 

typefaces, there still exists a degree of uniformity 

across characters in most handwriting.  Indeed, it is 

these patterns and shared features that aid a reader in 

identifying the familiar handwriting of a friend.  We 

recompute values in the CVT based on 

measurements at input glyph knots, creating new 

CVT entries for features not sufficiently captured in 

the template. 

3.1 From strokes to points and curves 
Many fonts originating from brushed or penned 

strokes take their glyph shapes from the physical acts 

of creating them. Unlike many traditional typefaces, 

the appearance of script, calligraphic, or 

“handwriting-like” glyphs has more to do with letter 

formation patterns than with intentional typographic 

form. 

Our goal is to preserve the characteristic stroke 

widths of handwritten characters using hints. In this 

section, we describe the process of extracting outline 

knots of a variable-width handwritten stroke. 

3.1.1 Reconstructing variable-width strokes 
Input strokes could come from a variety of sources: 

scanned from paper, created in a digital painting 

program, or input directly from a tablet device. 

Currently, most pen-input devices render 

handwriting as fixed-width polylines.  However, 

most do record physical information, such as 

direction and speed of pen movement, that can be 

used to reconstruct the variable-width stroke as it 

might appear on paper. 

To simulate pen movement, we use a straightforward 

physical model for rendering the pen strokes with 

variable width.  We assume that the pen's movement 

involves only translation and regard the pen tip as a 

perfect circle at the point of initial contact. As the 

pen moves, extrusion forces in the x- and y-

directions cause the circle to deform into an ellipse of 

constant area as illustrated in Figure 1. 

In addition to the direction and speed of pen 

movement, pen pressure is taken into account in 

calculating the deformation of the virtual pen tip. 

Rendering the changing position and shape of the 

ellipse through time produces the variable-width 

stroke from whose outline knots can be extracted to 

create a TrueType glyph. 

This deformation method works well for 

reconstructing a variable-width, brush-like stroke.  

Arabic language fonts, as well as some Latin 

calligraphic fonts, require a different model. In these 

cases, the pen tip is rigid, and it is the nib angle and 

direction of pen movement that determine the stroke 

thickness. 

Figure 1. Extrusion forces deform the pen tip into an 

ellipse as the pen moves. f(tm) indicates the extrusion 

force at tm.



3.1.2 Curve-fitting 
By sub-sampling the outline of a variable-width input 

stroke, we can extract all control points to form the 

point-and-curve description of the TrueType glyph. 

TrueType outlines are defined by on-curve and off-

curve points. Adjacent on-curve points are connected 

with straight line segments while off-curve points, 

along with neighboring on-curve points, define 

Bézier curve segments.  In this case, we only use on-

curve points.  Though their use results in a larger-

footprint outline description, this larger set of on-

curve points preserves more of the topology of the 

input character.  In the future, we may pursue 

alternative curve-fitting techniques capable of also 

approximating off-curve points, resulting in a 

smaller-footprint outline description. The points are 

renumbered according to their location on glyph 

contours before being written to the final font file.  

These points will be used in the outline glyph 

definition in the TrueType font file to be manipulated 

by the auto-hinting processes. 

3.2 Correspondence search 
In order to transfer hints from a template character 

set (an already-hinted font), we must determine the 

correspondence between the template font and input 

glyphs, or more specifically, between the template 

and input knots. 

We first attempt to match the overall topology of an 

input glyph with the corresponding template glyph.  

For reasonably similar template and input character 

sets, this global correspondence search is sufficient.  

However, for glyphs whose shapes differ 

significantly from their templates, more than a global 

topological search is required.  In this case, we also 

perform a local search for correspondences in similar 

curves of different template glyphs. 

3.2.1 Global search 
Suppose we wish to hint an input glyph Gi based on 

its corresponding template glyph Gt.  For each knot 

of Gt, we attempt to find an analogous knot in Gi.  

We first attempt to balance the number of strokes 

with a strategy similar to that employed by [Arv00]. 

We join strokes of Gi that are nearly collinear and 

split those containing sharp corners. Note that this 

step does not physically split or join strokes; rather 

the strokes are merely hinted as though these 

operations have been applied. The rendered 

appearance of the character is not altered. 

In order to maximize the number of hints transferred, 

we find a matching input knot for each on-curve 

template knot. If later a match is deemed 

inappropriate, the related hints can be ignored in the 

translation step.  We consider all permutations of 

correspondences between knots.  While earlier 

attempts to find the best correspondence have been 

primarily heuristic-based, our algorithm calculates 

the optimal correspondence based on the “energy” 

required for morphing the input character to the 

template, calculated as the sum of the squared 

distances between template and input knots.  Though 

simple, this measure of cost is quite effective. In the 

future, it would be worthwhile to consider including 

other factors in the cost such as the energy required 

to distort glyph features during morphing. 

Alternatively, we could apply a physically-based 

shape-blending such as that described in [Sed92]. 

Information about the approximate location of each 

knot is used reduce running time.  As a pre-

proc FindCorrespondences(Glyph Gi, Glyph Gt ) 

 while ( |Gi| > |Gt| and Gi.hasCollinearStrokes( ) ) { 

  //join the most collinear strokes of Gi

} 

 while ( |Gi| > |Gt| and Gi.hasCorners( ) ) { 

  //split Gi at the sharpest corner 

 }

CorrespondenceSet Cmin

 Cmin.numKnots  Gi.numKnots 

 for each knot i in Gi {

  Cmin.knots[0][i]  Gi.knots[i] 

} 

 Cmin.energy  

 //consider all permutations of correspondences 

 for each CorrespondenceSet C  {

  C.energy  0 

  for each (knot J, knot K) in C  {

   C.energy  C.energy 

     +(J.x-K.x)2 +(J.y-K.y)2 

  } 

  if ( C.energy < Cmin.energy ) { 

   Cmin  C

} 

 return Cmin 

Figure 2.  Global search algorithm. 

Figure 3.  The global correspondence search attempts to 

match each knot on an input glyph with one on the 

corresponding template. 



processing step, each glyph is segmented into four 

geographic regions, each knot being tagged with this 

information. Local energy is only calculated for pairs 

of template and input knots located in the same 

region. 

With fairly uniform handwriting, a single template 

font is usually sufficient.  However, as mentioned 

above, handwriting exhibiting a high degree of 

variance across glyphs cannot be accurately matched 

with a single template. Given a number of possible 

templates, we must choose the one most closely 

matching the input. Comparing each possible 

template against our input, we determine the best 

match to be the one with the least total energy. 

3.2.2 Local search 
Figure 3 shows the results of the global 

correspondence search for two pairs of glyphs.  A 

complete set of correspondences can be found for the 

‘e’ glyphs, with each template knot paired with an 

input knot. The match for the ‘m’ glyphs is less 

successful. A successful global correspondence 

search requires a high degree of similarity between 

two glyphs. When this is not the case, the global 

search will fail to find a complete match.  In addition, 

a number of letters appear in multiple topological 

forms, for example lowercase ‘a’, ‘g’, and ‘r’, and 

uppercase ‘I’ and ‘Q’.  Such cases motivate the need 

for a local correspondence search that considers 

matches with other glyphs of the character set. 

As a pre-processing step, template and input glyphs 

are split into component strokes based on the degree 

of curvature at each on-curve point. To approximate 

letter formation patterns, we determine stroke splits 

at knots with a high degree of curvature. 

Each template we initially consider contains a 

component stroke that could possibly fit a section in 

the input glyph well.  By analyzing the number of 

contours, start and end points, variation in the 

skeleton direction, and glyph region, we determine 

the template most closely matching the input. 

Next, we calculate the feature points of the given 

contour in a three-step process.  Using curvature to 

determine feature points results in many redundant 

points due to the large number of on-curve points in 

the input. Therefore, we consider only the most 

prominent feature points (maxima and minima) and 

map each of these to feature points in the input. Next, 

we map the pairs of feature points (manually labeled 

in the template) that we have found in the first step, 

with pairs extracted from the input. Finally, we map 

the remaining feature points in the template with the 

translated points in the input. Note that these 

translated points are selected from several candidate 

points by preserving most of the topological structure 

among feature points in the template. In this way, we 

maintain the original hinting style and accuracy. 

This algorithm is perhaps most easily discussed in 

the context of an example. Figure 4 illustrates the 

steps to finding the local correspondence between a 

template and input glyph.  

Figure 4. Steps in finding a local correspondence. (1) 

Feature points are identified in the x- and y-directions. 

(2) The analogous point to the feature point of interest is 

identified. (3) After matching B’ with B and F’ with F, 

we get the triangle B’C’F’. The sets of points B, C, F, 

and B’, C’, F’, define a unique affine transformation 

leading to a new triangle B”C”F” with side B”F” 

overlapping BF. By selecting a feature point from C, p1, 

p2, p3 and p4, with minimal distance from C”, a 

translated triangle BCF can be found that most closely 

matches the original triangle B’C’F’. 



3.3 Hint translation 
After correspondences between input and template 

knots have been found, hint translation is relatively 

straightforward. Hint programs are copied from the 

templates and attached to the input glyphs, 

substituting corresponding knot numbers in the VTT 

Talk instructions.  Hints involving a knot for which 

only a weak final correspondence was found are 

discarded. 

We translate hint instructions that preserve location, 

distance, and proportions: Distances, links, and shifts 

maintain the width of a stroke and the relationships 

between structural elements of the glyph. Interpolates 

maintain alignment of and proportions between 

structural elements.  While slight deviations of a 

glyph's knots from the grid are acceptable to the 

human eye, anchors help maintain the consistency 

across a string of glyphs. Delta and move exceptions 

are not translated as they are typically applied by the 

typographer on a case-by-case basis. Global-scope 

instructions (Smooth(), for example) are also not 

translated for individual glyphs. As such instructions 

typically apply to all glyphs, they can be applied 

separately in post-processing. 

3.4 Stroke width regularization 
Because each instruction is a local operation, hints 

alone cannot provide a typographer with complete 

control over consistency among glyphs. This 

additional expressive power is provided by the 

control value table (CVT), a shared table of distances 

referenced by hint instructions. References to entries 

in the CVT regularize the appearance of structural 

elements within a single glyph (e.g. when referenced 

by a distance instruction) or across glyphs (e.g. in the 

case of the link instruction) [Ado01]. Use of the CVT 

guarantees that values the typographer intended to be 

equal at design time are rendered as such. 

It could be argued that the CVT is not appropriate for 

use with handwriting fonts because it introduces too 

much uniformity. We limit the restrictiveness of the 

CVT by tailoring it to the features of the input. As 

discussed in [Zon00], the CVT entry numbers of 

template can certainly still be used for our input.  

However, the values in these entries, designed for the 

particular features of the template, are no longer 

appropriate. We must calculate new values for the 

entries based on measured features of the input. We 

consider every instance where a specific CVT entry 

is referenced by template glyphs.  We then average 

the actual values at analogous knots in the input 

glyphs to calculate the new CVT entry. Zongker et 

al. discarded as outliers those cases in which the 

measured value was too different from the average 

value. The reasoning is that the difference suggests 

that it is not appropriate to apply this CVT constraint 

in this case. While for uniform typefaces this 

approach results in relatively little loss of hint data, 

when considering handwriting, the wide variations 

found in measured values for a single CVT entry 

preclude use of this method.  

We note that, due to the cross-letter patterns in a 

person's handwriting, these outliers often appear in 

clusters.  While differing greatly from the average 

values stored in the CVT, these outliers are often 

close enough to each other to be considered a 

separate class of reference.  An example is shown in 

Figure 5. Rather than discarding outliers, we partition 

references to a particular CVT entry into clusters of 

references. Sufficiently different references are 

branched into a new CVT entry.  The averaging and 

branching continues until all entries have been 

categorized.  An entry referenced by a single link 

instruction can safely be discarded and the link 

replaced with a distance instruction. 

This clustering and branching approach allows us to 

identify patterns in the input set, retaining as much 

hint data as possible.  

4 RESULTS AND DISCUSSION 
Figure 6 shows a number of handwritten characters 

automatically hinted with our method.  The input 

characters were manually segmented from complete 

words written on a tablet computer. A manually-

hinted Roman font was used as the template for the 

global correspondence search; the local search used a 

hinted, stroke-like font as the template. We tested the 

results of autohinting glyphs displayed at a typical 

screen resolution of 96 dpi using Visual TrueType's 

internal rasterizer. 

4.1 Hints and dropout control 
A topic of ongoing discussion among typographers is 

whether italic fonts, fancy fonts and handwritten 

fonts need to be hinted or if for these fonts, only 

Figure 5. Identifying clusters of CVT references. Red 

lines indicate the templates’ link references to the same 

CVT entry. After the hints are translated to the input 

glyphs, it becomes apparent that a new entry should be 

created for the cluster of green links. 



basic hints and a dropout control mechanism are 

needed.  When part of a stroke is thinner than one 

pixel, the resulting hole or “drop” in the raster image 

can be disruptive to perception of the character.  To 

prevent these artifacts, a simple dropout control 

mechanism can be applied at time of rasterization to 

detect the location of drops and to insert an extra 

pixel at the site of the drop.  (For an in depth 

discussion of dropout control, please see [Her93].) 

In Figure 6, we compare glyphs with hints 

automatically applied, those with only dropout 

control applied, and those with both hints and 

dropout control applied. 

As noted in Section 3.1, the handwritten glyphs 

contain no off-curve control points and a much larger 

number of on-curve control points.  Because of this, 

the effect of the dropout control mechanism is to 

simply “connect the dots”, resulting in a single-width 

polyline in many cases. (See, for example, the second 

‘c’ at 18 pt in Figure 6.) 

The automatically hinted glyphs show improvement 

in certain features at the cost of slight distortion of 

other features.  (The ‘m’s in the figure are good 

examples of this.) 

Combining auto-hinting and dropout control 

produces characters that are more legible that those 

using either mechanism alone and that are clearly a 

great improvement over unhinted characters. 

Still, the matching algorithm is far from perfect; in 

some of the glyphs (e.g. the first ‘b’ at 18 pt, the first 

‘e’ at 24 pt), the translation of inappropriate hints 

actually degraded the appearance.  But while this and 

other automatic hinting systems still have a ways to 

go to come close to the hinting accuracy of expert 

typographers, these early results are encouraging. 

4.2 Choosing templates 
The choice of template, as well as the choice of 

whether to hint both globally and locally, depends on 

the purpose the hinted handwriting will serve. If the 

goal is to have consistently readable text, the best 

choice may be a professionally-hinted highly-

uniform font template for global hinting only.  If the 

goal is to provide the user with a “typographically 

nice” form of their writing, use of a large database of 

local templates will increase the likelihood of a close 

match. One could imagine using one automatically-

hinted font as a template for another, but this would 

degrade the results. 

4.3 Applications 
Contextual handwriting fonts. The new OpenType 

standard, developed jointly by Adobe and Microsoft 

[Ado01], provides support for contextual fonts which 

can store multiple definitions of each glyph. Several 

typeface companies have already taken advantage of 

this technology in the handwriting fonts they 

produce.  Typographers at Signature Software, Inc. 

use a semi-automatic system to design multiple forms 

for each cursive character so that each can connect 

naturally to one preceding. While the resulting fonts 

are more regularized than a person's actual 

handwriting, the contextually changing character 

connection locations help give the appearance that 

the person might have written the text. The 

techniques described in this paper make it feasible to 

automatically hint a large number of variations of 

each glyph for very realistic handwriting. 

Hinting of arbitrary curves. Our hybrid 

correspondence search could be applied to discover 

structure in an arbitrary curve.  We are interested in 

pursuing the extension to hinting of logos and vector 

graphics for optimal display on low resolution 

devices. 

General rendering of handwriting. In this paper, 

we discussed example-based methods of improving 

rendering of handwriting in the context of TrueType 

font hinting.  It would be worthwhile to consider the 

application of these techniques in a more general 

context, replacing the font templates and TrueType 

hints with a more general template and additional 

rendering information. 
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Figure 6.  Comparison of glyphs without hints, with hints automatically applied, with only dropout control 

applied, and with both hints and dropout control applied.   Manually-hinted Roman and stroke-like 

glyphs were used as the templates for the global and local correspondence searches, respectively.  Results 

are shown at typical screen resolution of 96 dpi. 


