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Abstract

The vibration analysis of a clamped beam structure representing vibrating machining body tool is solved in this

paper. The required modal properties of beam are obtained by application the reinforcing core with circular cross

section. The perfect adhesion between core material and basic beam material is considered. The different material

properties of beam and core are considered. The fundamental mathematical formulations describing the bend-

ing vibrations of this composite beam structure are presented. The effect of material properties and geometrical

parameters of reinforcing core on natural frequencies of cantilever composite beam structure with circular and rect-

angular cross section is presented. This form of composite beam structure provides effective tool to modification

of its dynamical properties.
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1. Introduction

The requirements on design and production of the structures, machines and tools with higher

performance, material and economical effectivity have been increased in the recent years. The

performance growth is mostly achieved by increasing of operating velocities and cycles. The

requirements on material effectiveness during design process tend to the constructions with

decreasing stiffness. All these changes affect the dynamical properties. Consequently, the

structures are often loaded by external dynamical periodic loads producing undesirable dynamic

effects which very often induce resonant vibrations.

The beam structure can be considered as one of the most important structural elements,

which is very often used in machines and constructions. Moreover, many of the machining

tools (e.g. lathe tools, boring tools, a.o.) have the shapes corresponding to beam structures and

they are representative structures similar to cantilever beam. During the machining process,

the tools are subjected to the several exciting effects [1, 4]. The cutting velocities and forces,

chip creation processes, stiffness of the system MTW (Machine-Tool-Workpiece) are the most

significant effects influencing on the dynamics of MTW system as well as machining process

(roughness of machined surface, tool wear, damage of tool or workpiece, noise level a.o.). It

can be expected that the tools are the most critical members of the MTW system [8, 10]. The

most serious problems occur when the frequency of periodical change some of the significant

effects of machining process is near to some of the natural frequencies of machining tool —

the resonant state appears. The resonant state has deteriorating effect on functionality of the
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machining tool as well as on the quality of machining process [6, 7]. The dynamical properties

of machining tool (considered as a cantilever beam structure) such as natural frequencies and

mode shapes are dependent on geometrical parameters and material properties. The machining

tool bodies are normally made of homogeneous materials, but very often the requirements to

change the dynamical properties by some technological or design treatments of machining tool

body and requirements to eliminate inconvenient dynamical effects are occurred.

The manner of creation of the body tool presented in this paper is focused on obtaining of

the required dynamical properties of the beam structure by embedding the reinforcing core into

beam. The technique of the modification of dynamic properties of this beam composite structure

is based on changes of material properties and dimensions of beam core. The arrangement of

the beam structure makes it possible to create a light-weight structure consisting from closed

outer profile (load supporting part of the profile) with inner space of the profile filled by material

of lower rigidity (e.g. aluminium foam). Contrary, the core can be used as reinforcing part of

composite profile, i.e. the core is load supporting part of the profile.

To the best author’s knowledge, no analysis of the similar beam structure, presented in this

paper, is available in literature on design of machining tool bodies. It has to be noted, that

in accordance with the expected requirements, also other structures can be created, which are

based on the layered structures — sandwich or laminated beams. However, in many cases,

the applications of the layered structures to the machining tool bodies can have design as well

as technological restrictions, e.g achieving the required dynamical properties of layered beam

structure mainly for uniaxial loading effect, delamination, chemical instability of the material

layers subjected to contact with coolant a.o.

In this paper, the natural frequency characteristics of cantilever beam structure (as a model

of machining toll body) for various diameters and material properties of core are obtained. The

sensitivity of individual parameters is assessed from the change of the natural frequency of

cantilever beam with circular cross section of reinforcing core.

2. Formulation of the problem

In this paper the cantilever beams with uniform circular and rectangular cross sections are anal-

ysed. The cross section of beam consists of a basic shape of profile (circle or rectangle) and

centred reinforcing core with uniform circular cross section (see Fig. 1).

Fig. 1. The models of beam with circular uniform cross section of reinforcing core
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2.1. Theoretical description of computational model

The mathematical formulation of free bending vibration of Euler-Bernoulli beam with homo-

geneous uniform cross section is described by well-known partial differential equation of 4th

order [9], i.e.

ρS
∂2w(x, t)

∂t2
+ EJ

∂4w(x, t)

∂x4
= 0, (1)

where ρ – density of beam material,

S – area of beam cross section,

EJ – flexural rigidity of beam,

E – Young modulus of beam material,

J – inertia moment of beam cross section,

w(x, t) – beam deflection in plane xz.

The solution of equation (1) is supposed in the form

w(x, t) = W (x)eiωt. (2)

Next, we introduce non-dimensional parameters

W̄ (ξ) =
W (x)

L
, ξ =

x

L
. (3)

Using equations (2) and (3), the equation of motion (1) is transformed into equation

W̄ IV (ξ) − β4W̄ (ξ) = 0, (4)

where W̄ IV (ξ) = d4W̄ (ξ)
dξ

and β = 4

√

ω2L ρS

EJ
– eigenvalue.

The solution of (4) has the form [5]

W̄ (ξ) = A sin βξ + B cos βξ + C sinh βξ + D cosh βξ. (5)

The boundary conditions for cantilever beam are expressed by following equations

W̄ (0) = W̄ ′(0) = W̄ ′′(1) = W̄ ′′′(1) = 0. (6)

Then by introducing the solution (5) into boundary conditions (6), the frequency equation

and the first four roots following from this equation are

1 + cosβ cosh β = 0 ⇒ β1 = 1,875 1, β2 = 4,694 1, β3 = 7,854 8, β4 = 10,995 5 (7)

For given geometrical parameters and material properties, the natural angular frequencies

are calculated from equation

ωi =

(

βi

L

)2
√

EJ

ρS
. (8)

Next, we consider the cantilever beam with uniform cross section of basic profile having

reinforcing core with uniform circular cross section. The term “reinforcing” is not quite correct,

because the effect of reinforcement by core is generated only for such cases when the material

properties of core are characterized by higher rigidity than rigidity of the basic material of beam.
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The following assumptions are expected for mathematical modelling of beam with core:

core of beam is located symmetrically along reference axis; cross section of beam is perpen-

dicular to the reference axis x and planar before and during deformation; material properties

of individual parts of beam are isotropic and homogeneous; perfect adhesion on the interface

between beam and core.

The equation of motion of beam modified by core under formulated assumptions can be

expressed in the form [3]

[ρS + (ρ − ρc)Sc]
∂2w(x, t)

∂t2
+ [EJ + (E − Ec)Jc]

∂4w(x, t)

∂x4
= 0, (9)

where ρc is density of core material, Sc is area of core cross section, Ec is Young modulus of

core material, Jc is inertia moment of core cross section.

Using equations (2) and (3) into equation (9), the following equation are obtained

W̄
IV

m (ξ) − β4W̄m(ξ) = 0, (10)

β4 = ω2
mL

ρS(1 + ∆ρS)

EJ(1 + ∆EJ)
, (11)

where

– parameter of mass modification ∆ρS = (κρ − 1)κS, (12)

– parameter of flexural rigidity modification ∆EJ = (κE − 1)κJ , (13)

– ratio of densities κρ =
ρc

ρ
, (14)

– ratio of Young’s modulus κE =
Ec

E
, (15)

– ratio of cross sections κS =
Sc

S
, (16)

– ratio of inertia moments of cross sections κJ =
Jc

J
, (17)

– ratio of dominant dimensions of cross sections (see Fig. 1, beam with circular cross section

D = d; beam with rectangular cross section D = h)

κd =
dc

D
. (18)

The natural angular frequency can be expressed from equation (11) in the form

ωm,i =

(

βi

L

)2
√

EJ(1 + ∆EJ)

ρS(1 + ∆ρS)
= ωi

√

1 + ∆EJ

1 + ∆ρS

. (19)

From this follows that the effect of core properties on natural frequencies of beam with core

can be expressed by modification function

fm(∆ρS, ∆EJ) =
ωm,i

ωi

=

√

1 + ∆EJ

1 + ∆ρS

, (20)

where ωi – natural angular frequency of beam without reinforcing core,

ωm,i – modified natural angular frequency of beam with reinforcing core.
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The modification function fm represents shift of the values of natural frequencies caused

by changes of core parameters — material density, diameter, Young modulus. From relation

(20) can be seen that the modification function is identical for all natural angular frequencies,

i.e. the value of ith natural angular frequency of modified beam structure is expressed as a

product of the value of ith natural angular frequency of original (unmodified) beam structure

and modification function fm.

2.2. Sensitivity analysis

Using the sensitivity analysis, the influence of changes of independent variables on the analysed

function can be investigated. Generally, the sensitivity, represented by partial derivates, denotes

the influence of changes of independent variables on the function.

In some instance, the concept of relative sensitivity representing the influence of relative

changes of independent variables on relative variation of function is more convenient to express

the influence of parameters. The definition of relative sensitivity of function f on parame-

ter pj [2] is expressed in the form

S[f |pj] = lim
∆pj→0

∆f/f

∆pj/pj

=
pj

f

∂f

∂pj

, (21)

where f = f(p1, p2, . . . , pn) is investigated function, pj is independent variable, resp. some

parameter of structure.

The concept of relative sensitivity is used to analyse the effect of individual structural pa-

rameters on modification function fm.

3. Numerical results

The modification function defined by equation (20) is suitable to evaluate the effect of material

and geometrical parameters of individual parts on modification of mass and stiffness character-

istics of composite beam structure and modification of natural frequencies. The fundamental

parameters influencing the function fm are material density, Young modulus and geometry of

cross section. The non-dimensional parameters defined by equations (12)–(18) are used to gen-

eralise obtained results.

The analyses are performed for two cases of beam cross sections:

– type I: circular cross section of beam — circular cross section of core (Fig. 1a),

– type II: square cross section of beam (b = h) — circular cross section of core (Fig. 1b).

The dependency of modification function fm on ratio of dominant dimensions of cross sec-

tions (beam type I; Fig. 1a)

κd =
dc

d
,

for different values of κE and fixed parameters κρ are shown in Fig. 2 and for different values

of κρ and fixed parameters κE are shown in Fig. 3.

The effect of variation of dominant dimension ratio (beam type II; Fig. 1b)

κd =
dc

h
,

on modification function fm for different values of κE and fixed parameters κρ is presented in

Fig. 4 and for different values of κρ and fixed κE in Fig. 5.
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a) b)

Fig. 2. The dependency of modification function fm of beam type I on κd parameter for different param-

eters κE and fixed parameter, a) κρ = 0,5; b) κρ = 2,0

a) b)

Fig. 3. The dependency of modification function fm of beam type I on κd parameter for different param-

eters κρ and fixed parameter, a) κE = 0,5; b) κE = 2,0

From graphs in Fig. 2 to Fig. 5 follows that modification function fm is dependent on mutu-

ally combination of mutually independent parameters, i.e. parameters κE , κρ, κd. To the better

comprehension and explanation of modification of dynamic properties of analysed composite

beam structure, the dependency of modification function fm on parameter of mass modification

∆ρS is shown in Fig. 6. The dependency of modification function fm on parameter of flexural

rigidity modification ∆EJ is presented in Fig. 7.
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a) b)

Fig. 4. The dependency of modification function fm of beam type II on κh parameter for different

parameters κE and fixed parameters κd = 1,0 and a) κρ = 0,5; b) κρ = 2,0

a) b)

Fig. 5. The dependency of modification function fm of beam type II on κd parameter for different

parameters κρ and fixed parameters κd = 1,0 and a) κE = 0,5; b) κE = 2,0
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Fig. 6. The dependency of modification function fm on parameter of mass modification of beam structure

∆ρS for different parameters of flexural rigidity modification ∆EJ

Fig. 7. The dependency of modification function fm on parameter flexural rigidity modification of beam

structure ∆EJ for different parameter of mass modification ∆ρS

The dependencies in Fig. 6 and Fig. 7 are valid for both considered cases of composite beam

structures, resp. for arbitrary beam cross section with cross section of core symmetric to neutral

axis of composite beam structure.

The dependency of relative sensitivity of modification function on parameter of mass mod-

ification ∆ρS is shown in Fig. 8 and dependency of relative sensitivity S[fm | ∆EJ ] of function

fm on parameter of flexural rigidity modification ∆EJ is shown in Fig. 9.
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Fig. 8. The dependency of relative sensitivity of modification function fm on mass modification param-

eter ∆ρS

Fig. 9. The dependency of relative sensitivity of modification function fm on parameter of flexural

rigidity modification ∆EJ

4. Conclusion

The bodies of machining tools can be in many cases considered as a clamped beam structures.

The main aim of this paper was to analyse the dynamical properties (natural frequencies) of the

cantilever beam composite structure representing the vibrating body of machining tool.

The modification of dynamical properties of cantilever beam structure by reinforcing the

core is presented in this paper. The modification of natural frequencies of clamped composite

beam structure is carried out by variations of material properties and geometrical dimensions of

beam core. The modification function (20) to determinate the natural frequencies of modified

beam structure depends on non-dimensional material and geometric core parameters. The inter-
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esting and important result is that the natural frequencies of modified composite beam structure

can be determined by multiplying the natural frequencies of unmodified structure by modifi-

cation function. Moreover, the modification function of modified structure has the same value

for all natural frequencies of the modified structure. Then the required natural frequencies of

composite beam structure can be obtained by convenient combination of the non-dimensional

parameters ∆ρS and ∆EJ . The effect of non-dimensional material and geometric parameters

of composite beam structure on modification function is analysed and presented (see Fig. 2–5).

The dependence of the relative sensitivity analysis of modification function on structural mass

modification and structural flexural rigidity modification was investigated.

After intensive search for the current state of the art in the field of tool body design was

not found the comparable structures. With respect to the facts mentioned in the first part of

this paper, presented manner of arrangement of the composite beam structure fulfils specific

requirements which have to satisfy the machining tool bodies.

The results obtained confirm that this manner of the structural modification of the beam

offers very effective tool to modification of dynamical properties or dynamical tuning for similar

beam structures.
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