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Abstract

In this paper we present an optimal flow problem in the context of internal laminar incompressible flows of

Newtonian liquid. The flow optimization problem is introduced in variational form of the stationary Navier-Stokes

equations. The parametrization of design domain using the free-form deformation (FFD) approach allows an easy

mesh adaptation w.r.t. shape changes. Numerical examples are given for two kinds of optimization objectives:

enhancing flow uniformity in a control region and minimizing pressure losses.
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1. Introduction

Our interest in shape optimization for the problems of fluid mechanics has been motivated

by vast applications in automotive, aerospace and other industries. Those applications involve

both internal (e.g. efficient cooling, exhaust piping) and external (e.g. wing, blade profiles,

vehicle aerodynamics) flows. Shapes of channels or obstacles to flow play an important role in

mechanical and (bio)chemical processes such as convected reaction-diffusion (catalysis, drug

delivery, . . . ), combustion, mixing, etc.

Our ultimate aim is to develop shape optimization tools for real life problems (3D complex

geometries). We focus mainly on internal flows (ducts, channels) from the point of view of

various merits of optimization, namely obtaining a desired velocity profile at a “control” part

of the channel to improve efficiency of downstream parts, minimizing pressure losses, reducing

wear of downstream parts or reducing noise. In this paper we restrict this broad topic to laminar

incompressible flows of Newtonian liquid with sufficiently high kinematic viscosity (∼ 10−3).
In [5] we have proposed a variational formulation of an optimal flow problem in closed

channels. The shape sensitivity formulas as well as computational domain parametrization

using the free-form deformation (FFD) approach, cf. [3], [6], were presented and employed to

compute numerical examples using a simplified Stokes problem.

Here we briefly recall the formulation, introducing the flow optimization problem in varia-

tional form in Section 2. Then we show the first results of the shape optimization procedure with

full incompressible Navier-Stokes equations for stationary laminar flow in Section 3. Finally

we present, as an outlook, a promising approach to stabilization of a Navier-Stokes problem so-

lution in Section 4, according to [2], as a way of tackling low viscosity (air) flows in the context

of finite elements.
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2. Problem setting

Let us recall the variational formulation of an optimal flow problem, as introduced in [5].

2.1. Variational formulation of an optimal flow problem

The problem is defined in an open bounded domainΩ ⊂ IR3 with two (possibly overlapping)

subdomains defined as

Ω = ΩD ∪ ΩC with ΓC = ∂ΩD ∩ ∂ΩC , (1)

where ΩC is the control domain and ΩD is the design domain, see Fig. 1. The shape of ΩD is

modified exclusively through the design boundary, ΓD ⊂ ∂ΩD \ Γin−out where Γin−out ⊂ ∂Ω
is the union of the “inlet-outlet” boundary of the channel; in general Γin−out consists of two
disjoint parts, Γin−out = Γin ∪ Γout.

Γin Γout
ΓD

ΓD

ΓC ΩC

ΩD

Ω

Fig. 1. The decomposition of domain Ω, control domain ΩC at the outlet sector of the channel.

We seek a steady state of an incompressible flow in Ω by solving the following problem:

find a velocity, u, and pressure, p, fields in Ω such that (ν is the kinematic viscosity)

−ν∇2u+ u · ∇u+∇p = 0 in Ω ,

∇ · u = 0 in Ω ,
(2)

with the boundary conditions

u = 0 on ∂Ω \ Γin−out , u = ū on Γin ,

−pn+ ν
∂u

∂n
= −p̄n on Γout ,

(3)

where n is the unit outward-normal vector on Γout,
∂

∂n
= n · ∇ and ū is a given inlet velocity

profile. Note that by (3)2 we prescribe the stress in the form of pressure p̄, so that we enforce
the condition of ∂u

∂n
= 0, i.e. the flow is uniform in the normal direction w.r.t. Γout.

Now we introduce the following functional forms (i = 1, 2 or i = 1, 2, 3, summation con-
vention is employed):

aΩ (u, v) := ν

∫

Ω

∇u : ∇v = ν

∫

Ω

∂ui

∂xk

∂vi

∂xk

,

cΩ (w, u, v) :=

∫

Ω

(w · ∇u) · v =

∫

Ω

wk

∂ui

∂xk

vi ,

bΩ (u, p) :=

∫

Ω

p∇ · u , gΓout (v) := −

∫

Γout

p̄ v · n dS ,

(4)
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and the space of admissible velocities

V0 = {v ∈ H1(Ω) | v = 0 on ∂Ω \ Γout} , (5)

where H1(Ω) = [H1(Ω)]3. Using the forms (4) we obtain the following weak problem: find
u ∈ V0(Ω) and p ∈ L2(Ω) such that

aΩ (u, v) + cΩ (u, u, v)− bΩ (v, p) = gΓout (v) ∀v ∈ V0 ,

bΩ (u, q) = 0 ∀q ∈ L2(Ω) .
(6)

2.2. Shape optimization problem

Our objective is to minimize the objective functionΨ(u, p) w.r.t. some criterion (see below)
by means of varying ΓD:

min
ΓD

Ψ(u, p) ,

subject to: (u, p) satisfy (6) ,

ΓD in Uad(Ω0) .

(7)

Above (7)2 imposes the admissibility of the velocity and pressure fields, whereas (7)3 restricts

shape variation of ΓD w.r.t. some “initial” shape inherited from the reference domain Ω0 which
defines the associated set of admissible shapes, Uad(Ω0), given by the parametrization of ΩD

shape, see [5].

In the examples below we use the following objective functions (possibly in combination):

1. Uniform flow in control region:

Ψ1(u) =
ν

2

∫

ΩC

|∇u|2 =
1

2
aΩC
(u, u) . (8)

Here we wish to enhance flow uniformity by reducing the gradients of flow velocities

in ΩC . The objective function does not depend on the pressure p. Moreover, if ΓD ⊂
∂ΩD \ (Γin−out ∪ ∂ΩC), the control domain ΩC does not depend on design modifications,

which simplifies the sensitivity formulae.

2. Inlet-outlet pressure difference:

Ψ2(p) = (

∫

Γin

p)− p̄ . (9)

In this case the pressure loss is minimized. Recall that p̄ is a given outlet pressure.

2.3. Numerical solution

The weak problem (6) is discretized by an inf-sup stable finite element discretization (ful-

filling the Babuška-Brezzi condition), namely by P1B/P1 elements (piecewise-linear velocities

enriched by a bubble function and piecewise-linear pressures). The resulting system on non-

linear algebraic equations can be solved by either the Newton iteration or Oseen iteration, see

also Section 4.1. All computations were performed by our software which can be found at

http://ui505p06-mbs.ntc.zcu.cz/sfe, cf. [7].
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3. Numerical examples

In the examples presented below we use ν = 1.25 · 10−3. A consistent unit set {m, s, kg} is
used. Concerning the boundary conditions, the velocity component in the tube direction is set

to 1 on the inlet part of the boundary. On the walls we assume no-slip condition u = 0. On the
outlet we specify p̄ = 0. The boundary of the control domain ΩC does not depend on design

changes: ΓD ∩ ∂ΩC = ∅. The results are summarized in figures which show the domain shape

and the fluid flow within, as well as control boxes that govern the FFD parametrization of the

domain and hence the domain shape.

3.1. Simple elbow shape

In Figs. 2 3 we can see results of shape optimization of a simple elbow tube with the follow-

ing parameters: diameter 6 cm, inner elbow diameter: 14 cm. Two choices of objective function

were considered: a) Ψ(u) = Ψ1(u) and b) Ψ(u, p) = 0.9Ψ1(u) + 0.1Ψ2(p). The control do-
main ΩC of Ψ1(u) was situated next to the outlet of the tube. We can see that in case of a) a

flow uniformity was improved by straightening the tube segment preceding ΩC , the inlet-outlet

pressure difference increased, though, as the tube was squeezed in the sharp bend prior to the

straightening. On the other hand, in case b), the pressure gradient was reduced considerably, in

addition to a more uniform flow in ΩC .

initial design

Fig. 2. Flow and domain control boxes. Control domain ΩC for Ψ1 next to the outlet.
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a) final design, Ψ1

b) final design, 0.9Ψ1 + 0.1Ψ2

Fig. 3. Flow and domain control boxes. Control domain ΩC for Ψ1 next to the outlet.

3.2. More complex shape

In Fig. 4 a computation with Ψ(u) = Ψ1(u) is shown on a more complex tube geometry
(diameter: 1 cm). Again, the flow uniformity in ΩC , denoted by two grey planes in the figure,

was forced by straightening the tube. Note, however, that the shape changes of the domain are

local — only the control boxes relevant to the objective improvement move.
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initial design

final design, Ψ1

Fig. 4. Flow and domain control boxes. Control domain ΩC between two grey planes.

In both examples the final designs were better than the initial designs w.r.t. the objective

functions used. In practice, however, more constraints need to be added to the FFD control

boxes to enforce, e.g. higher degree of continuity of the boundary, or to prevent excessive

bloating of the structure, as in case b) in Fig. 3.
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4. Stabilization of solution

In order to be able to solve low viscosity problems (air flow in a channel, ν ≈ 10−5, a sta-
bilization of the finite element solution is required. In [2] a promising approach was published

recently, combining both the inf-sup stable discretization (fulfilling the Babuška-Brezzi condi-

tion) and convection stabilization strategies. As our software implements those ideas, we recall

here briefly the main results for the sake of completeness.

4.1. Generalized Oseen problem

The nonlinear Navier-Stokes equations (2) can be solved by a fixed-point or Newton-type

iteration. This leads to a generalized Oseen problem, where the convective term u · ∇u is

replaced by b · ∇u with the convection velocity b known (e.g. from the previous iteration step),

f are volume forces (not present in our computations):

−ν∇2u+ b · ∇u+ σu+∇p = f in Ω ,

∇ · u = 0 in Ω .
(10)

The term σu originates from time discretization of the nonstationary Navier-Stokes problem,

σ ∼ 1

∆t
. In the stationary case σ = 0. Let us denote

A ((u, p) , (v, q)) := aΩ (u, v) + cΩ (b, u, v)− bΩ (v, p) + bΩ (u, q) + σ(u, v)Ω ,

L ((v, q)) := (f , v)Ω + gΓout (v) ,

(u, v)G :=

∫

G

u · v . . . L2 inner product on G .

(11)

4.2. Grad-div, SUPG and PSPG stabilization

The weak form of the problem (10) is discretized by finite elements using inf-sup stable

elements (for example Taylor-Hood P2/P1 elements on simplices) leading to the discrete weak
formulation of the generalized Oseen problem: find uh ∈ Xh and p ∈ Mh such that

A ((uh, ph) , (vh, qh)) = L ((vh, qh)) ∀(vh, qh) ∈ (Xh, Mh) , (12)

where Xh, Mh are appropriate finite element spaces. The authors in [2] now introduce a modi-

fied forms

AS ((u, p) , (v, q)) := A ((u, p) , (v, q)) + γ(∇ · u,∇ · v)Ω

+
∑

K∈Th

(

−ν∇2u+ b · ∇u+ σu+∇p, δK(b · ∇v) + τK∇q
)

K

LS ((v, q)) := L ((v, q)) +
∑

K∈Th

(f , δK(b · ∇v) + τK∇q)
K

,

(13)

where
⋃

K∈Th
K = Ω is a triangulation of Ω. The γ term realizes the grad-div stabilization, the

terms with δK correspond to the streamline-diffusion (SUPG) stabilization and the terms with

τK mean the pressure (PSPG) stabilization.

R. Cimrman et. al  / Applied and Computational Mechanics 1 (2007) 393 - 400

399



R. Cimrman et al. / Applied and Computational Mechanics XX (YYYY) XXX - YYY

4.3. Choice of stabilization parameters

Assuming scaling of the Oseen problem such that b∞ := ||b||∞ ∼ 1, and denoting CF ∼
diam(Ω) the Friedrichs constant for Ω, the stabilization parameters are chosen as follows:

γ = ν + b∞CF , (14)

and there exists a constant C such that

0 ≤ τK ≤ δK ≤ C
min(1; 1

σ
)h2

K

ν + b∞CF + σC2
F
+ b2∞min(

C2
F

ν
; 1

σ
)

. (15)

The theoretical considerations in [2] require σ to be a positive constant bounded away from

zero. However, in practice, the stabilization may work even for stationary problems with σ = 0.

5. Conclusion

We have briefly presented a variational form of an optimal flow problem in the context

of internal stationary laminar incompressible flows of Newtonian liquid. Feasibility of our

approach has been demonstrated on numerical examples featuring two kinds of optimization

objectives: enhancing flow uniformity in a control region and minimizing pressure losses. A

steepest descent algorithm was used for the optimization with gradients w.r.t. design computed

by the adjoint equation technique, see [1], [4]. The shape changes of the computational domain

were governed by means of the FFD approach, cf. [3], [6].

We have also summarized main points of the finite element solution stabilization found in [2]

in Section 4, as it is required for low viscosity flows. Our next step will be to derive sensitivity

formulae for the stabilized Navier-Stokes problem (13), analogously to the procedure presented

in [5] for the classical Navier-Stokes problem (6).

Furthermore, to deal with real world fluid dynamics problems, some additional constraints

on domain parametrization need to be added, to allow a better control of the domain shape

obeying space and boundary continuity requirements.
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