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Abstract  

This contribution deals with a new truss element with varying stiffness intended to geometric and physically non-

linear analysis of composite structures. We present a two-node straight composite truss finite element derived by new 

nonincremental full geometric nonlinear approach. Stiffness matrix of this composite truss contains transfer constants, 

which accurately describe the polynomial longitudinal variation of cross-section area and material properties. These 

variations could be caused by nonhomogenous temperature field or by varying components volume fractions of the 

composite or/and functionally graded materials (FGM´s). Numerical examples were solved to verify the established 

relations. The accuracy of the new proposed finite truss element are compared and discused. 

© 2007 University of West Bohemia. All rights reserved.   
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1. Introduction  

The composite structures (e.g. laminate, sandwich structures, or FGM´s) are often used in many 

applications. Their FE analyses require creating very fine mesh of elements even for relatively small 

sized bodies, what increases computational time, particularly in nonlinear analyses. Usually, the 

analysis of composite bar structures can be performed using the truss or beam elements with con-

stant �average� cross-sectional area and Young modulus. Sufficient accuracy can achieved by incre-

asing the number of integration points in the assembled stiffness matrix, with refining the mesh, and 

by choosing of elements with higher order interpolation polynomials. In addition, the linearisation 

of the nonlinear expressions is the reason for increasing solution inaccuracy. The main aim of this 

paper is to present new more effective truss element with continuous variation of the stiffness along 

its axis suitable for the solution of geometric and physical nonlinear problems. The nonincremental 

nonlinearised Lagrangian formulation of the nonlinear FEM-equations will be used to avoid inaccu-

racy caused by the linearisation of the Green-Lagrange strain tensor increment. A new shape functi-

ons of a truss element [3,4] have been used to overcome the problems associated with using an ina-

ccurate description of stiffness variation along the element length.  

2. Basic equations 

2.1. New shape functions for a truss element with varying stiffness 

To avoid element size influence on the accuracy of the results, we will first describe new 

shape functions for the truss element with varying stiffness and then we will use these shape 

functions for the expresion of the axial displacement in stiffness matrix derivation of the non-
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linear truss element satisfying equilibrium conditions both locally and globally. It can be as-

sumed that the variation of the parameters defining the cross-section area A(x) can be then ex-

pressed in following polynomial form 
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Young modulus E(x) is defined similarly  
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In eqs. (1) and (2) subscript i denotes the variables value at node i of the element (see Fig. 1). 

The polynomials η(x) are defined as follows: the polynomial for the variation of cross-

sectional area and the Young modulus are ηA(x) = A(x)/Ai and ηE(x) = E(x)/Ei, where Ai and Ei

are their values at node i. σy(x) and ET(x) is the yield stress and elastoplastic modulus, defined 

by a similar way as below. Then the variation of axial elastic stiffness can be written as 

 ( ) ( ) ( ) ( )xEAxxEAxExA AEiiAEii η=ηη=)( . (3) 
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Fig. 1. Two node truss element with variation of geometry and material properties in the initial state. 

 

2.2. Shape functions for axial displacement 

The elastic kinematical relation between first derivative of the axial displacement function 

u(x) and axial force N(x) at x is  

 
)(

)(

)()(

)(
)(

xEA

xN

xExA

xN
xu

AEii η
==′ . (4) 

If we define the second derivative of the transfer function d2e(x) for pure tension-compression as 
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then the solution of the differential equation (4), assuming that all element loads are transferred 

to the nodal points and axial force is constant (N(x) = Ni), is a function of axial displacement 
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By replacing x = L
0

in eq. (6), displacement u(L
0
) = qk and ee dLd 2

0
2 )( ′=′ is the value of the 

first derivative of the transfer function, which is also called a transfer constant for pure tensi-

on-compression. Deriving the axial force Ni from this equation and by its back substitution in-
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to eq. (6) the expression relating the axial displacement of an arbitrary point x and the axial 

displacements of nodal points i and k becomes, 
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Then, the shape functions of the first (i = 1) and second (k = 2) nodal points for two node truss 

element (first index  u = 1 determines the local displacement direction) are defined as 
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The evaluation of the transfer constants for tension-compression is performed using a simple 

numerical algorithm published in [1,2,3]. For a constant stiffness, xxd e =′ )(2 and 0

2 Ld e =′ and 

eq. (7) leads to the standard shape functions for the truss element. The first derivatives required 

for the stiffness matrices (see later eqs. 14-17) are  
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2.3. Nonincremental geometric nonlinear FEM equations without linearisation 

With the objective to minimize negative influence of commonly used linearisation of in-

cremental equations to derive stiffness matrices we will use a new nonincremental formulati-

on without any linearisation [1,4]. From the principle of virtual work,  
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the general nonlinear equation can be derived in the current configuration in nonincremental form as 

 kki

A

i

V

ijklijklijklijklij

V

klijkl qFdAuFdVeeCdVeeC δ+δ=δηη+δη+δη+δ ∫∫∫
r

000

)( , (10b) 

where Cijkl is a tensor of material properties defining constitutive relation of second Piola-

Kirchhoff stress tensor Sij and Green-Lagrange deformation tensor Eij = eij + ηij, where 

)( ,,2
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1=η is its linear and nonlinear part, respectively. Further,  ui,j is 

the current displacement gradient, Fi are the surface tractions ( iuδ is the variation of displace-

ment field), and δqk are virtual displacements of points of application of kF
r

. Integration is per-

formed through the initial (undeformed) volume V
0

and initial area A
0

of a finite element. Let 

the unknown displacement field of the element be ui = φik qk, where φik are the shape functions 

and qk are the nodal displacement components. By substituting these relations into eq. (10b) and 

after necessary modifications, we obtain the following equation 
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Equation (11) can be rewritten in a simpler form Knm qm = Fn or in matrix notation  

 K(q) q = F , (12) 

where Knm are the components of local nonlinear stiffness matrix K(q), qm are the components 

of nodal displacement vector q, and Fn are the components of external loading vector F at nodal  
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points. The local nonlinear stiffness matrix consists of one linear and three nonlinear parts  

 )()()()()( 321 qKKKKKKqK NLLNLNLNLL qqq +=+++= . (13)  

The components of linear stiffness matrix K
L

can be derived from the first integral of eq. (11)  
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Equation (14) corresponds to the classical linear stiffness matrix from the linear FEM theory. 

The three nonlinear stiffness matrices K
NL1

, K
NL2

and K
NL3

 contains following components 
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The nonlinear system of equations is solved by an iterative method. To ensure the quadra-

tic convergence of the solution (e.g. in the Newton-Rhapson iteration scheme), the tangent 

stiffness matrix for the element needs to be assembled according to the expression 
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where  K
NLT

(q) is the nonlinear part of tangent stiffness matrix KT(q) [5]. 

 

2.4. Geometrically nonlinear local stiffness matrix of the truss element for linear elastic analysis 

Substituting (9) into eqs. (14-17) and for dV = A(x)dx = AiηA(x)dx, where the tensor of 

elasticity is Cijkl ≡ E(x), we obtain linear and three nonlinear stiffness matrices of the truss 

element. For the local coordinate system of the truss element the free indices m, n are 1 and 2, re-

spectively. The linear stiffness matrix of the truss element with varying stiffness has the form 

 








−

−

′
=

11

11

2e

iiL

d

EA
K . (19) 

The first, second and third nonlinear stiffness matrices have then the form of  
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Equations (15) and (16) leads to the integral ∫ ′′
0

2

2 ))((
L

e dxxd . Expression (17) contains the integral 

∫ ′′
0

3

2 ))((

L

e dxxd . Substituting the integrant by eq. (5) and rewriting )())((
2

xx AEAE ηη = and 

)())(( 3 xx AEAE ηη = yields 
e

L

e ddxxd 2

2

2
0

))(( =′′∫ and 
e

L

e ddxxd 2

3

2
0

))(( =′′∫ . These are the new transfer 

constants of the truss element, since )(xEAη and )(xEAη are again polynomials. These transfer con-
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stants can be computed by using simple numerical algorithm mentioned above. The final local non-

linear stiffness matrix of the truss element, with varying stiffness, can be then written in the form 
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where the linear part of truss element stiffness is  
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The matrix form of the local equation of equilibrium is then given by eq. (12), where K(q) is 

defined by (11), the vector of nodal displacements is q = [q1 q2]
T

and F is the vector of ex-

ternal local nodal forces.  

 

2.5.  Local nonlinear tangent stiffness matrix 

The tangent stiffness matrix is defined by eq. (18) where the matrix K(q) is defined by ex-

pression (23). After the indicated differentiation, we obtain the tangent stiffness matrix of the 

truss element, with varying stiffness, in the form 
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2.6.  Global nonlinear stiffness matrix 

Since the local nonlinear tangent stiffness matrix (25) is not invariant to rigid body motion, it 

is not possible to use the conventional transformation, known from the linear theory. If the lo-

cal displacements are substituted with the invariant stretching  
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we obtain the invariant nonlinear tangent stiffness in the form 
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Using invariant nonlinear tangent stiffness (28) in the local tangent stiffness matrix (25), the 

global nonlinear tangent stiffness matrix G

TK can be expressed in classical form as 

TqKTK )(T
T

G
T = . Matrix T is transformation matrix for the truss in plane and has the form 
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where α is the angle determining the location of local axis in current configuration (current 

nodal coordinates and current truss length L), i.e.  cosα = (xk - xi)/L and sinα = (yk - yi)/L .

2.7.  Internal forces 

To overcome problems with transformation of internal forces from local to global coordinate 

system, we rewrite nonlinear stiffness matrix (23) using stretching parameter (27) to the form 
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In the solution process the vector of global internal forces has to be calculated. Global internal 

forces are calculated through the internal axial force (32) and transformation matrix T .

2.8. Nonincremental FEM equations for geometric and physically nonlinear analysis 

In this contribution only bilinear stress-strain relation is considered (Fig. 2) with isotropic 

and kinematic hardening. In the following derivation we use decomposition of axial strain 

ε = εσy + εep due to nonincremental solution. If another constitutive law of stress-strain rela-

tionship or cyclic loading will be considered, incremental formulation and traditional decom-

position of strain  ε = εe + εp and plastic modulus H(x) are needed. 

The cross-sectional area A(x) and elasticity modulus E(x) are defined using eqs. (1) and (2). 

The elastoplasticity modulus ET(x) is defined by similar expresion 
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Then the variation of axial elastoplastic stiffness can be written as 

 ( ) ( ) ( ) ( )xEAxxEAxExA
TT AETiiEATiiT ηηη ==)( . (34) 

If the axial stress exceeds the yield stress σy, it is neccesary to establish new relationship be-

tween the stress increment  and the strain in the bar.  
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Fig. 2. One-dimensional bilinear stress-

strain relationship with hardening. 
Fig. 3. Von Mises structure with varying stiffness:  

geometry and restrictions. 

 

If plasticity condition in the bar is reached, it is sufficient to change the linear elastic term  ke

in eq. (30) to the elastoplastic term  kep 
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where 
yσλ is the bar stretching when yield stress is reached, epepep ddd 222 ,, ′′′ are the transfer 

constants for elastoplastic loading case. These transfer constants have a similar meaning as 

the transfer constants in elastic loading state, but they are callculated from second derivative 

of transfer function 
)(

1
)(2

x
xd

TAE

ep η
=′′ .

The internal force before yield stress in the bar element can be calculated using formulae (32) 

and with the stress in the bar beyond the elastic limit, elastoplastic part of internal force can 

be calculated from 
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Axial stress in elastoplastic domain can be calculated from  

 
aver

iep

y
A

N
+=σσ , (37) 

where  σy is an �average� value of the yield stress function of the bar and Aaver is an �ave-

rage� value of the function describing the bar cross-sectional area. 

In the elastic state stiffness matrix  KT (q) is expressed by (25) in the form 
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In the elastoplastic state it changes to form 
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3. Numerical experiment � von Mises structure using trusses with varying stiffness 

For examining  the accuracy of the presented truss element, two numerical examples were 

solved. Three different types of variability of cross-sectional area and material properties were 

caried out. Modification of the stiffness polynomial order was considered, but ratio of maxi-

mum/minimum stiffness along the bar remained constant: (A(x)E(x))max/(A(x)E(x))min = 2.0 (see 

Fig. 5). In the first example only linear elastic material response was considered. In the second 

example, were carried out for bilinear elastoplastic material behaviour with isotropic as well as 

kinematic hardening. A typical example of the geometric nonlinear behaviour is the von Mises 

structure (Fig. 3). The dependence displacement vs. internal/global force for linear elastic solu-

tion of the bar with uniform cross-section is well known from literature (thin solid line in Figs. 

4c and 4d). For elastoplastic behaviour this dependence is shown in this figure and comparison 

with the linear elastic solution is presented. 

To use our new nonlinear truss element for a practical calculation a code in 

MATHEMATICA software was developed. To compare these results with the results obtained 

by ANSYS two different models was used: 

- one dimensional model divided into 1 and 20 tapered beam elements, 

- solid model meshed to 2400 brick elements grouped to 50 segments with average values of ma-

terial properties in corresponding segment. The geometry of this solid model was carefully 

treated to approximate the variable shape of the cross-section as it was possible.  

Variation of the cross-section area and material properties were considered in accordance with Tab.1. 
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tic hardening of von Mises two bar structure. 
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Fig. 5. Stiffness variation curves of the bar. 

Tab. 1. Combinations of geometric and material properties. 
 

Example 1 

In the first example our new element with ANSYS solutions were compared. In these experiments 

three different variations of elastic bar stiffness Be(x) = A(x) E(x) (Tab. 1) were used.  
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Fig. 6. Axial force � common hinge displacement response for elastic stiffness variation AE3.
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axial force  N

beamANSYS

beamANSYSbarnew

1

)1( −

beamsANSYS

beamsANSYSbarnew

20

)20( −

solidANSYS

solidANSYSbarnew )( −

AE1 0.91 0.26 2.27 

AE2 1.04 5.18 2.28 

AE3 0.19 5.68 1.60 

global reaction  F

beamANSYS

beamANSYSbarnew

1

)1( −

beamsANSYS

beamsANSYSbarnew

20

)20( −

solidANSYS

solidANSYSbarnew )( −

AE1 3.77 2.37 6.04 

AE2 3.89 2.65 6.03 

AE3 2.87 3.66 5.00 

Tab. 2. Absolute percentage difference between new bar analysis to ANSYS solutions [%]. 
 

Example 2 

In the second example our new element with ANSYS solutions were compared. In these experi-

ments three different variations of elastic and elastoplastic bar stiffness Be(x) = A(x) E(x) and 

Bep(x) = A(x) ET(x) (Tab. 1) were considered. 
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Fig. 7. Axial force � common hinge displacement response for stiffness variation AE3 � isotropic hardening. 
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Fig. 8. Axial force � common hinge displacement response for stiffness variation AE3 � kinematic hardening. 

 

Resulting dependence of both the axial force N on displacement uy at the common node are 

given in previous graphs. Only selected responses of axial force-displacement of common node 
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are presented in figures due to similarity. In Fig. 6 the of axial forces for elastic variations of 

stiffness AE3 (Example 1) of our new truss element and ANSYS model are compared. In Tab. 2 

absolute percentage differences between new bar analysis to ANSYS solutions are presented. 

Results obtained from numerical experiments with elastoplastic stiffness variation denoted 

AE3 (Example 2) are shown in Figures 7 and 8. These graphs show response of internal force 

for bilinear material behavior. Figure 8 shows considerable differences for kinematic harde-

ning between our solution and the ANSYS in neighbourhood of yield stress (compressive and 

tensile). This effect is due to fluctuating of longitudinal material properties defined in ANSYS 

solid model. The results of numerical analyses lead to the following conclusions: 

- absolute percentage difference between the new truss element and ANSYS solution for all 

considered stiffness variations in elastic analysis was less then 6% for elastic loading state, 

- the numerical experiments shows good agreement between the solutions of our truss ele-

ment and ANSYS results by consideration of isotropic hardening, especially, 

- increasing of ratio Bmax/Bmin influences also enlargement of differences between our new 

truss element and ANSYS solutions, 

- considerable differences appears only for cases with kinematic hardening. This can be ex-

plained by using �average value�  σy to detect elastic limit in entire new truss element, 

- the differences of new truss element and ANSYS models results increase with the ratio 

AEmax/AEmin, particularly near the yield stress, 

- if stiffness ratio Bmax/Bmin is higher then three, results obtained with the new element are not ac-

ceptable for application in praxis and other solution have to be used for a such truss analysis. 

4. Conclusion 

A geometric and physically nonlinear truss finite element of composite material with con-

tinuous longitudinal stiffness variation is presented in this contribution. Continuous polyno-

mial variation of cross-sectional area along the element has been assumed. Variation of these 

geometric and material parameters is described very accurate using concept of transfer functi-

ons and transfer constants. 

The stiffness matrices of this finite element are derived using the full nonlinear non-

incremental total Lagrangian formulation without any linearisation. The effective longitudinal 

material properties are calculated with the extended mixture rule. The results of numerical expe-

riments showed high effectiveness and suitable accuracy of the new composite truss finite ele-

ment. This new element fulfils the all element equations in both the global and local sense. 
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