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Abstract

A numerical model of the aerosol transport and deposition in human airways is presented. The model was

acquired from a CT scan a living person and consist of 6-9 bifurcations giving around 100 terminations of the tree.

The oral/nasal cavity was not modelled in the presented work. The deposition of the particles is given for two

breathing regimes, the resting conditions with a tidal volume of 0.5 liter and 15l/min ventilation with period

of 4sec/cycle and full exercise conditions with 3.33 liter tidal volume and 120l/min minute ventilation with cycle

period of 1.25sec/cycle. The aerosol concentration was assumed 50µg/m3 distributed in the three size classes PM10,

PM 5 and PM 1. The results shows deposition in different segments of the tracheo-bronchial tree as well as velocity

profiles at different time steps of the breathing cycle.
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1. Introduction

Computational Fluid Dynamics simulation of airflow and particle transport and deposition in

the human respiratory tract has been pursued by a number of researchers. Some recent exam-

ples (not exhaustive) are presented in [1] and [3] or [6]. While CFD simulation of the nasophar-

ynx/oropharynx have been quite successful [5], the complexity of the human tracheobronchial

tree has defied detailed simulation of airflow in anything else than small sections, e.g. [8] or

[2]. Although most of the simulation found in literature presents results for steady-state sit-

uation of inhale phase, some transient results with deposition appeared recently [9]. to study

the progress of the deposition in subsequent generations of the airways in time, transient sim-

ulations has been carried for two breathing regimes, namely resting conditions and maximum

exercise.

2. Model description

2.1. Geometry description

The air flow and aerosol deposition has been modelled on a real geometry of a living per-

son using high resolution CT scan from St. Anna hospital in Brno (see fig. 1). The data from

the scan has been transformed into triangulated surface mesh using STL format. The mesh was

smoothed and cleaned off unnecessary details and by means of an automatic mesh generator first

the surface and then the volume meshes were created. The model contains 3.5 million of tetra-

hedral control volumes with high local refinement in the locations of high velocity gradients.

These are namely the location around the bifurcations. At the outlet, pressure conditions (with
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(a) CT scan – frontal view. (b) CT scan – side view.

Fig. 1. CT scan.

given static pressure) were ascribed. For the modeling purposes, the nasal/oral cavity was omit-

ted and the inlet to the airways was placed above the glottis. The solution domain with selected

planes in which results were analyzed is shown in fig. 2 (human front view).

Fig. 2. Computational domain.

Commercial CFD code Star-CD was used for computations using PISO algorithm with sec-

ond order discretisation in time (Crank–Nichoslon) and space (QUICK) schemes. Calculations

were done using low reynolds formulation of k − ω turbulence model [7] with a hybrid wall

function of STAR-CD applied on the rigid walls. The Euler-Lagrange Eddy Interaction Model

by Gosman and Ioannides [4] for particles transport has been employed for aerosol particles

transport. The particles are injected in three planes, where 60 points for each particle size was

defined uniformly supposing strong dispersion effect from the oral/nasal cavity flow.
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Two regimes, namely resting conditions and maximum exercise were simulated with the in-

let conditions given in tab. 1. Both regimes were calculated in the transient mode consisting

of inspiration and expiration that followed a sinusoidal curve according to the formula:

V (t) = Vtsin(2πft), (1)

where Vt is a tidal volume, f is frequency and t is time. The total volume of the lungs from

the CT scan was 4.1 litres. For the aerosol description three size classes were defined, were

Resting conditions Maximum exercise

Tidal volume Vt[liter] 0.5 3.33

Flow rate [l/min] 15 120

Breathing frequency [Hz] 0.25 0.8

Period [s] 4 1.25

Tab. 1. Modelling scenario.

the concentrations of the different sizes follows the measurements at the street canyon in the city

of Brno as shown in tab. 2. The concentration for each class at the inlet is defined to obey

the concentrations with respect to the inlet velocity.

Particle diameter [µm] Concentration [µg/m3]
10 25

5 9

1 16

Tab. 2. Aerosol characteristics.

3. Results

First the flow–field at the maximum inhale velocity (at 1/4 of the breathing period) are ex-

amined. These results show a slight asymmetry in the flow rate distribution between the left

and right airways under both, the resting conditions and maximum exercise. The asymmetry

can be seen in fig. 3 where the mass fluxes for resting condition are relative to the mass–flux

to the airways as well as the mass–fluxes at the maximum exercise are relative to the mass–flux

under the maximum exercise condition. This graph shows that the asymmetry is not influ-

enced by the velocity in the airways except for the right hand side generations 4 and 5 respec-

tively. At both regimes, the flow into the first generation is influenced by the flow pattern just

behind the bend upstream, in the plane marked T3 (see fig. 2) that partially blocks the flow

into the right airways. Thus we can see for 18 per cent lower flow rate into the right airways.

The mass flow gradually decreases as the airways continue to bifurcate and distribute the air

flow into the smaller airways. In the fig. 4 and fig. 3. the Reynolds number is shown that re-

flects not only the flow rate of the air but also the influence of the diameter of the individual

airways in the appropriate generation. We can see an increase of the Reynolds number from

the first to the second generation which is due to the increase of the velocity in the appropri-

ate generation with the smaller cross section. This increase in the Re number can influence

the deposition of aerosols due to changes in the turbulence and thus the aerosol transport char-

acteristics. In the lower generations, the Re number gradually decreases due to both, the airflow
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rate and airways diameter reduction. For the maximum exercise, the regime gradually changes

from turbulent to laminar, but the CFD modeling was carried out for turbulent regime, which

may influence the deposition of aerosols due to a higher lateral dispersion. In the future work,

the authors will focus on the study of turbulence characteristics and the influence of turbulence

model and changes in the turbulent characteristics on the aerosol transport and deposition.

Fig. 3. Relative mass flux in a left and right part of the bronchial tree.

Fig. 4. Reynolds number in different generations at max. inhale velocity – resting condition.

3.1. Aerosol Deposition

Here the deposition of the solid aerosol in three size groups in a transient regime is analysed

for the resting condition. The size groups are named D 1, D 5 and D 10 in the graphs corre-

sponding to the PM1, PM5 and PM10 respectively. First the asymmetry in the deposition is

shown in fig. 6 for the smallest particles PM1. The relative deposition is shown for the gen-

erations 1 to 6, where the deposition count is relative to the overall deposition in the given

generation during one breathing cycle. In the first generation the deposition in the right airways
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Fig. 5. Reynolds number in different generations at max. inhale velocity – maximum exercise.

Fig. 6. Relative deposition in left and right generations.

is much larger than the deposition in left airways. We can suspect that the flow pattern behind

the bend upstream the plane T3 is responsible for the differences in the deposition. The left

sided airways dont show so much directional changes as the right sided airways do, that means

the deposition by impaction doesnt appear so frequently and mainly the sedimentation is re-

sponsible for the deposition. However in the subsequent generations the deposition is higher in
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Fig. 7. Relative deposition by mass in subsequent generations.

Fig. 8. Relative deposition by mass in subsequent generations.

the left airway during the whole period. Graphs also shows that the deposition roughly follows

the sinusoidal profile of the inlet velocity. Again the flow–field differences as well as the differ-

ent length of the generations are caused by the asymmetry.

To compare different deposition in the generations fig. 7, where the relative mass deposi-

tion is plotted with respect to the overall deposition in the whole model during the breathing cy-

cle. While fig. 6 is based on the count of particles, this graphs shows deposited mass of aerosol.
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The deposition in the first generation is only 1.5 per cent at the maximum, deposition at further

generation is higher. In the forth generation reaches the maximum value of 3.6 per cent and

then in the fifth and sixth generation s again lower but always following the sinusoidal profile

of the velocity. The highest deposition rate is shown for PM1 in the 3rd and 4th generation which
could be attributed to the length of these generations which offer the sufficiently long residence

time for the particles to settle down and to several local vortexes that trap the small particles

and end their life. Large part of aerosols leaves the airways at the terminating outlets without

being deposited. This figure also shows the relative proportions of the size classes on the de-

position. Most of the deposited mass consist of the PM5 particles, while the PM1 is deposited

the least and at the lowest velocities at the start and end of the inhale phase it is not deposited

at all. It concludes that the PM1 particles follows the flow–field to the subsequent generations

not included in the model. This result is in accord with the literature and theory showing that

the impact of particles on the wall is the main mechanism of deposition in the part of the airways

modelled.

Fig. 8 shows the mass based deposition for the part of the trachea modelled. Here mainly

PM1 particles are deposited, reaching 50 per cent of the deposition in the trachea. We suspect

that the main mechanism is sedimentation at the low velocities greatly enhanced by the tur-

bulent dispersion while heavier particles are carried further downstream. However this effect

needs to be studied further employing large–eddy simulation methods. The impact deposi-

tion plays also its role, as all three classes follows smoothly velocity profile in time as a result

of a particular shape of the airway.

4. Conclusion

Computational modeling of the transport and deposition of aerosols of three size classes

PM1, PM5 and PM10 was performed in the model of a respiratory tract acquired from the CT

scan of a real human. The model contains 6 generations and isnt idealized as for the individual

bifurcations. In this way the surface of the individual airways is not smooth, the individual

generations have different cross sections that are not rounded but differ in shape from each

other. All these singularities result in more realistic results of the deposition.

We can conclude the following:

• Aerosol deposition is influenced by local obstacles like bends, which results in different

deposition rate. Local obstruction can create local vortexes in which smallest particles

are trapped and end their life. Thus the deposition can be increased.

• The deposition is also influenced by the asymmetry in the first bifurcation caused by an ob-

stacle in the form of a bend, which results in different flow rates into the left and right

airways and thus influences the whole process in the lower airways.

• At the higher flow rate (maximum exercise) the major deposition mechanism is im-

paction for larger aerosols accompanied by the high deposition of smallest aerosols cap-

tured in the local vortexes.

• In general, deposition is higher at the higher flow rate than at the lower flow rate. The ma-

jor contribution to the deposition at the higher flow rate is impaction that is accompanied

by the sedimentation.
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