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Abstract

A model of railway vehicle movement is presented. This model takes into account arbitrary shape of wheel

and rails. Therefore models of contact of surfaces of arbitrary geometry are built in. The contact forces are found

with possibility of choice from methods of rolling contact mechanics. The shape irregularities cause vibrations,

therefore a model of track and its rails, sleepers and ballast is incorporated and also the vehicle model includes

vibration-damping elements. Overall it makes a complete model of the vehicle movement with focus on the wear

prediction and vibrations due to the corrugation.
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1. Introduction

Problem of modelling of railway vehicle motion is very common in engineering practice

(large projects such as the DFG priority programme System Dynamics and Long-term Behav-

iour of Vehicle, Track and Subgrade in Germany, work of the State Key Laboratory of Traction

Power in China). It helps predict many difficulties that can occur during the vehicle service,

e.g. derailment prevention, wear prediction and estimation of vibrations and noise.

Two models focused on effects and prediction of corrugation were presented in literature in

past years. The model created by Andersson [1] uses the FASTSIM algorithm (presented in

[8]) to calculate the contact forces. The model created by Jin [7] uses the formulas by Shen,

Hedrick and Elkins presented in [8]. It was shown in the previous work of the author [5] that

neither of these approaches may not be good enough when dealing with worn shape of rails and

wheels where a non-Hertzian contact occurs. The CONTACT algorithm is more suitable for

these problems. Therefore a model created to study effects of the shape irregularities as well as

the method of contact force estimation is presented in this paper.

2. Railway vehicle movement model

Railway vehicle is a complex system, therefore its model has to be simplified with respect

to goal of the study. This study is focused on calculation of contact force distribution, thus the

most important part of the model is the model of contact forces and the shape irregularities are

also taken into account. They also cause vibration, so models of vibration of the vehick and the

track are present.
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3. Track model

Track is modelled on three levels. The first level is the model of track geometry - curves,

climbs and superelevation of the track have a great influence on dynamics of the vehicle and

take effect on centrifugal forces and shifts in force distribution between the wheels. The second

level is the model of track dynamics where rails are modelled as beams and sleepers and ballast

as multibody system connected to the rails. This model is focused on vibrations caused by the

vehicle and it is local because the vibrations are significant only about ten meters in front of

and behind the vehicle. The third level of track model is the surface function which is used to

calculate the contact forces and described in section 4.1.

3.1. Track geometry

Shape of the track in the global coordinate system is described by two functions. The first

one is the function of the centreline of the unloaded track

Γk =
[

xk (λ) , yk (λ) , zk (λ)
]T

(1)

where λ is distance from the beginning of the track. The track radius and gradient can be

obtained using principles of differential geometry on this three-dimensional curve. The other

function is the superelevation of the track se(λ). Using these functions the local coordinate

system can be created in such a way that its x−axis coincides with the tangent of the track

centreline and its y−axis coincides with the superelevation of the track. The z−axis completes
right-handed coordinate system. Origin of this coordinate system is set to be on the track cen-

treline and to put the vehicle centre of gravity in the yz−plane.

3.2. Model of track dynamics

Properties of the track regarding its behaviour during passage of a train including damping

of vibrations caused by the train were investigated in many work thus far. Rails are modelled as

elastic beams and sleepers and ballast are modelled as a multibody system shown on fig. 1. The

ways to create a multibody system of the track is proposed in [9, 10]. Model used by the author

was inspired by [1, 7]. However both studies differ in the way how rails are described. In [1]

rails are modelled using finite elements as a solid body. On the other hand in [7] the analytical

solution is used. In this model rails are discretized using a beam element (BEAM4 element of

ANSYS as in [2]). However, all other properties of the model are the same as in [1]. The model

is implemented in MATLAB to achieve best compatibility with other parts of the model.

Fig. 1. The track model (B - ballast, S - sleeper, R - rail, W - wheelset).
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Loads on the rails are obtained as the contact forces of the wheel-rail contact. These forces

have an arbitrary position so they are divided into closest nodes. Then the system of differential

equations is transformed into a state function which is input of the Runge-Kutta integration

method in the way presented in [1].

4. Contact geometry

4.1. Rail corrugation and shape irregularities of wheel

Shape of each wheel is described in the wheelset cylindrical coordinate system (ρd, αd, yd)
of the wheelset it belongs to. The yd−axis coincides with the wheelset axis and the ρdαd−plane
is normal to it. The origin of the coordinate system lies in the wheelset centre of gravity. In

this coordinate system the shape is described with the function R which is the sum of the ideal

wheel radius Rid (e.g. the S1002 profile) and the shape irregularities Rirr:

R (αd, yd) = Rid (yd) +Rirr (αd, yd) (2)

Shape of rails is described in the rail coordinate system (xr, yr, zr). It is set accordingly to the
position of the rail so its origin is placed in the immediate position of center of rail section and

it is rotated to the same position as in the model of track dynamics. The rail surface function N

is again sum of the ideal rail shape Nid (e.g. the UIC60 profile) and the corrugation Nirr:

N (xr, yr) = Nid (yr) +Nirr (xr, yr) (3)

4.2. Distance of the surfaces

The distance of the undeformed surfaces h is the key input for the estimation of the normal

contact force. It can be expressed in two ways: as distance from a point of the wheel hw (αd, yd)
or as distance from a point of the rail hr (xr, yr).
When the distance is calculated, points of the both surfaces on the same line normal to one of

the surfaces have to be obtained first as well as the orientation of the normal. The point of the

rail xr and the normal vector nr are:

xr =
[

xr, yr, N (xr, yr)
]T

(4)

tr,1 =
[

1, 0, ∂N
∂xr

]T
tr,2 =

[

0, 1, ∂N
∂yr

]T

nr =
tr,1 × tr,2
‖tr,1 × tr,2‖

(5)

Similarly the point of the wheel xw and the normal to the wheel nw are:

xw = CWR ·





R · cosαd

yd

R · sinαd



+ xwcg (6)

tw,1 =
[

dR
dαd

· cosαd − R · sinαd, 0,
dR
dαd

· sinαd +R · cosαd

]T

tw,2 =
[

dR
dyd

· cosαd, 1,
dR
dyd

· sinαd

]T

nw = CWR · tw,1 × tw,2

‖tw,1 × tw,2‖
(7)
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where CWR is the matrix of transformation from the wheelset Cartesian coordinate system to

the rail coordinate system and xwcg is the position of the wheelset centre of gravity in the rail

coordinate system. Corresponding points and their distance can be found using vector equation

0 = xr + hr · nr − xw (8)

for a point of the rail or equation

0 = xr + hw · nw − xw (9)

for the point of the wheel. Both equations make systems of three non-linear equations. The

eq. 8 has to be solved as a three-dimensional problem because inverse function to R (αd, yd)
cannot be found in most cases, thus point xw (xr, yr) cannot be expressed explicitly. However,
in the solution of the eq. 9 the problem can be reduced to one dimension:

xr = −hw · nw,1 + xw (αd, yd)

yr = −hw · nw,2 + yw (αd, yd)

0 = −hw · nw,3 + zw (αd, yd)− N (xr, yr) (10)

So the distances from the points of the wheel are easier to calculate, however the function is

expressed in cylindrical coordinates so it does not provide actual shape of the gap/penetration

of the surfaces. On the other hand the distances from the points of the rail are harder to get but

they are an actual representation of the gap/penetration of the surfaces.

5. Contact forces

Next step is the calculation of the contact forces. Information required for the estimation of

the normal force is the distance of the surfaces which was found in the previous step. For the

tangential force the rolling velocity and relative velocities are required.

When solving the contact forces in the wheel rail contact, two different approaches can be used.

It can be assumed that the contact patch is in the shape of ellipse or that the contact patch has

an arbitrary shape.

5.1. Normal forces

5.1.1. Hertzian contact

Hertz theory of contact assumes that the contact patch is elliptic. The inputs of the algorithm

are the normal of the surface and the minimum of the distance function which is found using

the simplex method. It can be greater than zero (gap between the wheel and the rail) or less

than zero (wheel and rail in contact and deformed). In the point of the extreme the centre of the

contact ellipse is expected.

Undeformed distance of the surfaces in contact according to the Hertz theory of contact as

presented in [8, 3] is in the form of

dcs = D1,1 · x2 +D2,2 · y2 − h (11)

whereD1,1 andD2,2 are the principal curvatures of the contact pair. They can be calculated with

the algorithm described in [4]. They are used to get excentricity m through the axial function
∣

∣

∣

∣

D1,1 − D2,2

D1,1 +D2,2

∣

∣

∣

∣

= m2 · D (m
2)−C (m2)
E (m2)

(12)
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as shown in [8]. The size of the normal force is then

N =
2 · π · G
3 · (1− µ)

·
√

E · (−h)3

(D1,1 +D2,2) · ke ·K3
(13)

and the half-axes of the contact ellipse are

ke =

{

1− m2 for D1,1 ≤ D2,2
1

1−m2
for D1,1 > D2,2

(14)

ace =
3

√

3 · N · (1− µ) · E
2 · π · G (D1,1 +D2,2) · ke

(15)

bce = ace ·
√

ke (16)

G is the modulus of rigidity and µ is the Poissons ratio, C, D, E, K are complete elliptic

integrals, ke is ratio of squares of half-axes. The normal force is then

N = N · nw (17)

5.1.2. NORM algorithm

The NORM algorithm is the first step of the CONTACT algorithm created by Kalker (de-

scribed in [8] and [3]). It is a method based on boundary element method and methods of

nonlinear optimization. The expected contact area is discretized and the influence matrix ac-

cordingly to the representation of Boussinesq and Cerruti (as presented in [8]) is calculated for

each element. The original NORM algorithm was created on assumption of elastic half-space.

However, when arbitrary geometry is used, this supposition is no longer valid. To compansate

this a complementary principle for arbitrary geometry was derived in [6]. According to this

principle a new version was created. Now the input of the algorithm is not only the distance

of the contact surfaces but also the normal of the rail surface for each element. Because the

surface is curved now, the assumption of the elastic half-space does not hold. However, the

deformation of the influence area is considered very small compared to the size of the wheel or

the rail. Therefore the assumption of the elastic half-space is kept with supposition that results

are still accurate enough. Then the normal tractions are found when the system of equations

eI = hI + AI3Jj · pJj (18)

eI = 0 if element I lies inside the contact patch
pJj = 0 if element I lies outside the contact patch

is solved and all elements are correctly placed into or out of the contact patch. eI is the de-

formed distance, hI is the undeformed distance, AIiJj is the influence matrix and pJj is the load

on the surface. Normal force is calculated as

N =
∑

I

pI3 · nr,I · dSI (19)

5.2. Tangential forces

Tangential forces depend on the velocity of the vehicle, on relative velocities in the contact

patch, on the normal forces and on the coefficient of adhesion. The velocity of the wheelset

centre of gravity can be considered the rolling velocity

vrol = ‖xwcg‖ (20)
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and its magnitude is labelled V . They are important inputs into the algorithms of the tangential

force calculation. The algorithms created for the elliptic contact patch require projection of the

rolling velocity into the principal coordinate system of the contact ellipse:

vrol,CP =





1 0 0
0 1 0
0 0 0



 ·CT
CP · ẋwcg (21)

CCP is the transformation matrix of the principal coordinate system of the contact ellipse which

is found with principal curvaturesD1,1 andD2,2 used in eq. 11 and it is obtained by the algorithm

described in [4].

Rolling contact theories assume the x−axis of the contact patch is identical with the direction
of the rolling velocity; therefore the coordinate system of the contact patch has to be once again

rotated about the angle εrol

Crol =





cos εrol − sin εrol 0
sin εrol cos εrol 0
0 0 1



 (22)

The velocity of the point of the wheel in the coordinate system of the rolling velocity is

vc = C
T
rol ·CT

CP ·



ΩWR ·CWR ·





R · cosαd

yd

R · sinαd



+ ẋwcg



 (23)

whereΩWR is the matrix of the angular velocity of the wheelset and it can be rewritten into the

form of vector ωWR. Angular velocity of the wheelset is:

ωc = C
T
rol ·CT

CP · ωWR (24)

The coordinate system is bound to the rail so these values are the rigid slip and the rigid spin in

the contact patch. Values of the longitudinal creepage υx, lateral creepage υy and spin creepage

φz are

υx =
vc,1

V
(25)

υy =
vc,2

V
(26)

φz =
ωc,3

V
(27)

Now the contact forces can be calculated.

5.2.1. Kalker’s linear theory of rolling contact

The linear theory of rolling contact in [8] assumes adhesion in the whole contact patch. The

tangential forces and the spin moment have linear dependence on the creepages

Tx = −G · ace · bce · C11 · υx (28)

Ty = −G · ace · bce · C22 · υy − G · (ace · bce)
3

2 · C23 · φz (29)

Mz = −G · (ace · bce)
3

2 · C32 · υy − G · (ace · bce)
2 · C33 · φz (30)

Here C11, C22, C23 = −C32 and C33 are Kalker’s creepage coefficients which are functions

of half-axes of the contact ellipse ace and bce obtained in eq. 15 and 16. They are calculated

numerically and tabulated in [8].
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5.2.2. Vermeulen & Johnson theory

While the contact forces are linearly dependent on creepages in the previous step, in reality

they saturate on value

T = f · N (31)

where f is the coefficient of adhesion. Therefore accordingly to the Vermeulen & Johnson

theory as presented in [8] the tangential forces calculated by the linear theory are modified by

the following function:

T =
√

T 2x + T 2y (32)

w′ =
T

3 · f · N (33)

T̄ =

{

f · N ·
[

1− (1− w′)2
]

pro w′ ≤ 1
f · N pro w′ > 1

(34)

T̄x =
Tx

T
T̄ (35)

Ty =
Ty

T
T̄ (36)

Now slip is taken into account. However, the Vermeulen & Johnson theory is applicable only

when spin is zero or insignificant.

5.2.3. FASTSIM algorithm

The FASTSIM algorithm (in [8], [3]) has to be applied in order to calculate the contact

forces when spin is significant. Then the contact area is discretized and the simplified theory of

contact is used. In the simplified theory the bodies in contact are replaced by a set of springs

capable of bending. Their bending stiffness can be calculated

L =

8·ace

3·G·C11
· |υx|+ 8·ace

3·G·C22
· |υy|+ π·a2ce

4·G·C23·
√

ace·bce

· |φz| ·
√

ace · bce
√

υ2x + υ2y + ace · bce · φ2z
(37)

Rigid slip of an element is

cI,1 = (υx − yI · φz) · V (38)

cI,2 = (υy − xI · φz) · V (39)

Then in the adhesion area the tangential tractions are

pH
Iτ (t) = pIτ · (t − dt)− dt

L
· cIτ (40)

In the slip area

pS
Iτ = f · 2 · N

π · ace · bce

·
(

1− x2I
a2ce

− y2I
b2ce

)

· pH
Iτ

‖pH
Iτ‖

(41)

sIτ = cIτ +
L

dt
·
[

pS
Iτ (t)− pIτ (t − dt)

]

(42)
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The contact forces are

Tx =
∑

I

pI,1dS (43)

Ty =
∑

I

pI,2dS (44)

Mz =
∑

I

(xI · pI,2 − yI · pI,1) dS (45)

5.2.4. TANG algorithm

The TANG algorithm (in [8], [3]) succeeds to the NORM algorithm. Its principles are simi-

lar. For the same elements the influence matrices AIiJj (current influence) and BIiJj (influence

of the previous time step) are created. The input of the TANG algorithm is the rigid slip cIτ of

each element of the contact patch. This rigid slip is the relative velocity of the element

cIτ = vc,Iτ (xr, yr) (46)

Then system of equations

sIτ = cIτ +
AIτJj · pJj (t)− BIτJj · pJj (t − dt)

dt
(47)

sIτ = 0 if element is in the adhesion area
sIτ = −SI · pIτ

fpI3

and p2I1 + p2I2 = f 2p2I3 if element is in the slip area

is solved and all elements are placed into the right area. Then tangential force is

T =
∑

I,τ

pIτ · tr,Iτ · dSI (48)

where tr,Iτ are the tangential axes of the element surface.

5.3. Transformation of the contact forces

The contact forces calculated with each method are placed in the coordinate system the

algorithm used. Therefore they have to be placed into the global coordinate system to study the

vehicle motion.

6. Vehicle motion

The railway vehicle can be modelled as a multibody system of the vehicle body (fig. 2), the

bogies and the wheelsets and the connecting elements - springs and dampers. Thus motion of

each of the bodies is ruled by its inertia, gravity and forces applied on it.

6.1. Wheelset motion

The wheelsets are in contact with the rail so the contact forces are applied on them. The

wheelset are connected to the bogie, therefore springs and dampers connecting the wheelset and
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Fig. 2. The vehicle model (W - wheelset).

the bogie influence the wheelset. Then equations of motion are

ẍwcg =
1

mw

·
(

FL
con + F

R
con +

∑

k

FBW,k

)

+ g (49)

αw = J−1w ·
[(

xL
con − xwcg

)

× FL
con +

(

xR
con − xwcg

)

× FR
con +M

L
con +M

R
con+

+
∑

k

(xBW,k − xwcg)× FBW,k +
∑

k

MBW,k

]

(50)

where FL
con, F

R
con,M

L
con andM

R
con are the contact forces and moments, x

L
con and x

R
con positions

of the contact patches; FBW,k andMBW,k are the forces and moments by springs and dampers

connecting the wheelset to the bogie and xBW,k positions of that forces; mw is the mass of the

wheelset, Jw is the matrix of the moment of inertia of the wheelset; ẍwcg acceleration of the

wheelset translation movement and αw angular acceleration of the wheelset rotation.

6.2. Bogie motion

The bogie is connected to the wheelsets and to the vehicle body, thus its motion is influenced

by the elements connecting it to them:

ẍbcg =
1

mb

·
(

∑

k

FV B,k +
∑

k

FBW,k

)

+ g (51)

αb = J−1b ·
[

∑

k

(xV B,k − xbcg)× FV B,k +
∑

k

MV B,k+

+
∑

k

(xBW,k − xbcg)× FBW,k +
∑

k

MBW,k

]

(52)

where FV B,k andMV B,k are the forces and moments by springs and dampers connecting the

bogie to the vehicle body and xV B,k positions of that forces; mb is the mass of the bogie, Jb

is the matrix of the moment of inertia of the bogie; ẍbcg acceleration of the bogie translation

movement and αb angular acceleration of the bogie rotation.
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6.3. Vehicle body motion

The vehicle body motion is influenced by the connected bogies and aerodynamic resistance:

ẍvcg =
1

mv

·
(

∑

k

FV B,kFAR

)

+ g (53)

αv = J−1v ·
[

∑

k

(xV B,k − xvcg)× FV B,k +
∑

k

MV B,k+

]

(54)

where FAR is the forces caused by aerodynamic resistance; mv is the mass of the vehicle body,

Jv is the matrix of the moment of inertia of the vehicle body; ẍvcg acceleration of the vehicle

body translation movement and αv angular acceleration of the vehicle body rotation.

7. Conclusion

This model can be used to study many phenomenons which may happen in the railway

travel. Its main usage is the estimation of the contact forces or contact pressure for the wear

prediction. But it can be also used to simulate vibrations in the system and events that are very

undesirable like derailments.

The most important part of the model is however the wheel-rail contact. In this model an

arbitrary geometry of the contact forces is expected so it can be used to simulate both rail

corrugation and irregularities of the shape of the wheels and dynamic effects they have on the

system. With further finite element analyses wear prediction, fatigue or material, initiation and

growth of cracks.
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