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Abstract

The study is concerned about the application of the smoothed particle hydrodynamics (SPH) method within

the computational fluid dynamics and elastodynamics. A brief description of the SPH model for an incompressible

fluid and for an elastic solid is presented. The implemented model of incompressible fluid is tested for internal

flows as well as for flows involving a free surface of the fluid. The implemented elastic solid model is examined

during the simulation of the mechanical response of rubber rings.
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1. Introduction

The smoothed particle hydrodynamics (SPH) method is a truly meshless Lagrangian numer-

ical technique first introduced to solve gas dynamics problems in astrophysics. The first papers

on the SPH method were published by Gingold and Monaghan [2] and Lucy [5] in late 1970s.

During the three decades of its existence, the SPH method spread into numerous branches of

computational physics, [4]. Its meshless character makes the method very flexible and enables

simulations of physical problems which might be difficult to capture by conventional grid-based

methods. This contribution is concerned about its application within computational continuum

mechanics with a focus on the problems of hydrodynamics and elasticity. The meshless char-

acter of the SPH method is advantageous e.g. during simulations of elastic materials undergo-

ing large deformations, during simulations of free surface flows and fluid-structure interaction.

These advantages may be well employed within industrial as well as biomedical applications.

Naturally, the reliability and the stability of the SPH simulations (as well as the stability

of other numerical methods) can be endangered by unphysical numerical fluctuations under

certain circumstances. That can be prevented by additional numerical stabilising terms (such

as artificial viscosity, artifical stress etc.). The SPH material models (the incompressible fluid

model and the elastic solid model) involving the stabilising terms are implemented and applied

to several test problems. The original SPH governing equations were derived for problems,

where the boundaries were in infinity or could be neglected. An application of appropriate

boundary conditions is also discussed.

2. SPH model

Within the SPH formulation, the computational domain is discretised by a finite set of inter-

polating points (particles) with invariant coordinates in the material frame. The SPH particles
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represent a finite mass of the discretised continuum and carry the information about all physical

variables which are evaluated at their positions. The function values and their derivatives at

a specific particle are interpolated from the function values at surrounding particles using the

interpolating (smoothing) function and its derivatives, respectively,

fi =
∑

j

mj

ρj

fjW (|ri − rj|, h), (1)

∇ifi =
∑

j

mj

ρj

fj∇iW (|ri − rj|, h), (2)

where m is the mass, ρ is the density and W is the interpolating (smoothing) function with a

continuous derivative ∇iW . The index i, j respectively, denotes the variables at the particle i,

j respectively, and ∇i denotes a derivative according to ri which is the position vector.

The smoothing function W is defined so that its value monotonously decreases as the dis-

tance between particles increases. It has a compact support domain, which radius is defined by

the smoothing length h. The smoothing function is normalised and in the limit case, when the

smoothing length goes to zero, the smoothing function becomes the Dirac delta function, see

[4] for details. Within this study, the cubic B-spline smoothing function is applied, [6].

2.1. Incompressible fluid

The conservation laws describing the dynamics of the incompressible fluid are discretised

using the relations (1) and (2) so that a symetric form of the SPH governing equations satisfying

the third Newton’s law is obtained. The conservation of mass is assured by the continuity

equation
dρi

dt
=
∑

j

mj(vi − vj) · ∇iWij , (3)

where v is the velocity vector and Wij = W (|ri − rj|, h).
The conservation of momentum is described by the Navier-Stokes equation in the form

dvi

dt
= Pi + Vi + fi, (4)

where Pi is the pressure term, Vi represents the viscous forces and fi is the body force. The

pressure term is derived so that

Pi = −
∑

j

mj

(

pi

ρ2
i

+
pj

ρ2
j

)

∇iWij , (5)

where p is the pressure. The viscous forces are modelled by a term derived by Morris et al. [10]

Vi =
∑

j

2µ
mj

ρiρj

(ri − rj) · ∇iWij

|ri − rj|2 + η2
(vi − vj), (6)

which combines a standard SPH and a finite difference approximation of the first derivative. The

symbol µ stands for the dynamic viscosity and η2 = 0.01h2 is a corrective constant avoiding a

creation of singularity when particles are approaching each other.
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The presented SPH model implies the quasi-incompressible representation of the incom-

pressible fluid through the equation of state, [6],

pi = 0p+K

[

(

ρi

0ρ

)Γ

− 1

]

, (7)

whereK is the bulk modulus

K = 0ρ
0c2

Γ
. (8)

Constants 0p and 0ρ indicate the initial pressure and the initial density respectively. The initial

sound speed value 0c is defined so that the resulting Mach number is less than 0.1. A constant

parameter Γ is usually set equal to 7.

2.2. Elastic solid

Within the SPH model of elastic solid material, the conservation of mass is represented

by the continuity equation (3) as it is done within the model of incompressible fluid. The

conservation of momentum for the elastic material is derived analogously to the equation of

motion (4). The resulting SPH equation of motion utilising the Einstein’s summation convention

according to the coordinates α and β may be written as follows

dvα
i

dt
=
∑

j

mj

(

σ
αβ
i

ρ2
i

+
σ

αβ
j

ρ2
j

)

∂Wij

∂x
β
i

+ fα. (9)

The stress tensor σ is defined so that

σ
αβ
i = −piδ

αβ + S
αβ
i , (10)

where p is the hydrostatic pressure, Sαβ is the deviatoric stress and δαβ is the Kronecker delta.

The rate of change of the deviatoric stress is given according to the Jaumann’s formulation of

the Hooke’s law

dSαβ
i

dt
= 2µ

(

ǫ̇
αβ
i −

1

3
δαβ ǫ̇

γγ
i

)

+ S
αγ
i Ωβγ

i + Ωαγ
i S

γβ
i , (11)

where µ is the shear modulus of the modelled material, ǫ̇ and Ω are the strain rate and rotation

rate tensors respectively. The hydrostatic pressure p is calculated from the state equation

pi = 0c2(ρi −
0ρ), (12)

while the bulk modulus of the represented material is given so that

K = 0ρ 0c2. (13)

3. Stabilising terms

There is a number of cases, when the SPH simulations may suffer of instability due to their

meshless Lagrangian nature. High numerical oscillations may be observed during the simula-

tions involving shocks and an unphysical particle motion caused e.g. by the tensile instability,

[8], can appear during the simulations of both incompressible fluids and elastic solids.
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In order to prevent the numerical instability of the SPH calculation, two additional numerical

terms, the artificial viscosity and the artificial stress, can be implemented in the corresponding

equation of motion. Then, the pressure term in the Navier-Stokes equation (4) becomes

Pi = −
∑

j

mj

(

pi

ρ2
i

+
pj

ρ2
j

+ Πij +Rijφ
n
ij

)

∇iWij (14)

and the equation of motion for the elastic solid (9) is

dvα
i

dt
=
∑

j

mj

(

σ
αβ
i

ρ2
i

+
σ

αβ
j

ρ2
j

+ Πijδ
αβ +R

αβ
ij φ

n
ij

)

∂Wij

∂x
β
i

+ fα. (15)

The artificial viscosity term Πijδ
αβ is applied in order to smooth the unphysical numerical

oscillations, while the artificial stress term R
αβ
ij φ

n
ij (note that n is the exponent) reduces the

tensile instability.

3.1. Artificial viscosity

The artificial viscosity can be defined as a combination of terms analogous to bulk and von

Neumann-Richtmyer viscous pressures used in finite difference methods, [9],

Πij = −ζ1
(ci + cj)(hi + hj)

2(ρi + ρj)
ψij + ζ2

(hi + hj)
2

2(ρi + ρj)
ψ2

ij , (16)

ψij =

{

(vi−vj)·(ri−rj)

|ri−rj |2+η2 , (vi − vj) · (ri − rj) < 0,

0, (vi − vj) · (ri − rj) ≥ 0,
(17)

where ζ1 and ζ2 are constant artificial viscosity parameters. The term Πij is positive when parti-

cles are aproaching each other and null otherwise. The first term in the equation (16) introduces

the shear and the bulk viscosity and the second term helps to prevent particle interpenetration.

3.2. Artificial stress

The artificial stress term acts as a repulsive force between particles which is increased when

the separation between particles decreases. That is achieved through the scaling function φij

which is defined as a ratio of the smoothing function values for the actual distance between the

pair of particles rij and the initial particle spacing 0r,

φij =
W (rij)

W (0r)
. (18)

Within the incompressible fluid model, the artificial stress value Ri is taken as

Ri = ξ
pi

ρ2
i

, (19)

when the value of the pressure pi is negative, and null otherwise, [8]. The value of parameter ξ

is set according to the value of the exponent n and the smoothing length. In the following, the

value of exponent n is set equal to 4 and ξ is taken equal to 0.3.
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Within the elastic solid model, the artificial stress value is considered

R
αβ
i ∼ −ξ

σ
αβ
i

ρ2
i

, (20)

when the value of the stress σ
αβ
i is positive, and null otherwise, refer to [3] for further details.

The resulting value of the artificial stress factor between two particles is assumed

R
αβ
ij = R

αβ
i +R

αβ
j . (21)

3.3. Correction of particle motion

The stability of the entire calculation may be also improved by implementing the particle

motion correcting term, [7], which corrects the value of particle velocity according to the aver-

aged velocity of all neighbouring particles

dri

dt
= vi + ε

∑

j

2mj

vj − vi

ρi + ρj

Wij . (22)

A constant parameter ε is from an interval 〈0; 1〉. This term (sometimes called the XSPH cor-

rection term) is usually applied in order to prevent an unphysical particle motion during high

speed flows and during simulations of problems involving tension.

4. Implementation

An introduction of the relations (1) and (2) enables the evaluation of the function values

and their spatial derivatives without a presence of a computational grid. The connectivity of

grid-based methods is replaced by the search for the neighbouring particles within the compact

support domain of the smoothing function. The time integration of the SPH equations is per-

formed by an explicit numerical integration scheme (the predictor-corrector scheme is applied

within this study). When rigid boundaries are involved in the simulation, either of two imple-

mented SPH rigid boundary representations can be applied, the ghost particles or the boundary

particles.

4.1. Ghost particles

The ghost particles are created by reflecting the fluid particles in the vicinity of the boundary

across its interface at every timestep, [1]. The width of the reflected region is equal to the width

of the smoothing function support. In order to prevent the boundary penetration by fluid and

to model the no-slip boundary conditions, the ghost particle’s velocity vector is opposite to the

fluid particle’s one.

4.2. Boundary particles

The boundary particles consist of two sets of particles, the interface and the wall particles,

[11]. The position of the boundary particles does not change in time. The interface particles are

placed along the boundary surface, while the wall particles fill the boundary region to the width

of the smoothing function support. The density and pressure of the wall particles is evolved

through the governing equations, but the density and pressure of the interface particles is not

updated. When a static rigid boundary is modelled, the velocity of all the boundary particles is

equal zero.
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Fig. 1. Couette flow velocity profile development

in time (Re = 0.5).
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Fig. 2. Poiseuille flow resulting velocity profiles

for several Reynolds numbers.

5. Numerical simulations

The performance of the implemented SPH code is examined using several examples which

are given below. First, the reliability of the SPH results is tested against the analytic solution

of laminar flow problems. Features of the SPH implementation of the incompressible fluid

model are then employed within the periodic hill flow problem and within the free surface flow

simulation. The elastic solid material model is tested on an example of a collision of two rubber

rings. All simulations are performed in a two-dimensional space.

5.1. Couette and Poiseuille flow

Within both Couette and Poiseuille flow problems, the fluid is located between two parallel

infinite plates. Initially, both the fluid and the walls are stationary. The Couette flow is generated

by a movement of the upper plate in longitudinal direction. The plate starts to move with a

constant velocity at zero time. On the contrary, the Poiseuille flow is generated by a body force

acting in a longitudinal direction while both plates remain stationary. Analogously, the body

force is constant and starts to act suddenly at zero time. As both Couette and Poiseuille flows

can be solved analytically, the SPH solution of laminar viscous flow evolution in time can be

easily examined for both studied cases, [4].

Within these simulations, the rigid boundaries are represented by the ghost particles and the

periodic boundary conditions are applied in x direction. The channel width is 4 mm, the length

of the modelled channel section is 2 mm and the modelled fluid has the properties of water. The

Couette flow velocity profile evolution in time is displayed on Fig. 1. The Reynolds number

in that case is equal to 0.5. The resulting steady state solution (the solution at time when the

flow becomes fully developed) of the Poiseuille flow for several values of Reynolds number is

shown on Fig. 2. Both Couette and Poiseuille flow simulations are performed for relatively low

Reynolds numbers. Due to the character of the rigid boundary representation, there are slight

pressure waves propagating from the boundary through the fluid. As the geometry of both

examples is very simple, the pressure waves are reflected and grow during the evolution of the

flow. These pressure waves become significant during simulations of higher Reynolds number

flows and the calculation becomes unstable. The computation can be stabilised by decreasing

the sound speed value so that the artificial compressibility of the model is encreased. The
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Fig. 3. Periodic hill flow: contours of velocity in

x direction [ms−1].
Fig. 4. Periodic hill flow: contours of velocity in

y direction [ms−1].

Fig. 5. Periodic hill flow: resulting velocity pro-

file at x = 0.056m compared to data published

in [11].

Fig. 6. Periodic hill flow: resulting velocity pro-

file at x = 0.14m compared to data published in

[11].

difference between resulting SPH flux and an appropriate analytic solution is less than 1% for

all presenteded cases. In case, the rigid boundaries were represented by the boundary particles,

the difference between computed fluxes and the analytic solution would grow up to 4%.

5.2. Periodic hill flow

The ability of the SPH code to capture the laminar flow along a curved boundary is tested

on an example of a flow over a periodic hill, which narrows the horizontal channel by one third,

[11]. The flow (which is evolved in time from the initial state when the fluid is at rest) is driven

by a body force in longitudinal direction so that the resulting Reynolds number based on the

hill height and the bulk velocity is 50. The length of the simulated channel section is nine times
the hill height, which is 28 mm. The modelled fluid is water. The periodic boundary conditions

are applied in the direction of the flow. The rigid boundaries are modelled by the boundary

particles. Representing the curved boundary by the ghost particles would become difficult as

the reflection of particles and their velocities close to the convex as well as concave boundary

curves is not trivial.

The contour plot of the resulting velocity distribution in x and y direction is shown on Fig. 3

and Fig. 4, respectively. As the SPH simulations are dynamic, slight numerical fluctuations in

the resulting velocity distribution may be observed if the computation continues running after

the steady state is reached. Due to this fact, Fig. 3 and Fig. 4 shows the averaged data which are

obtained after the steady state. Despite the velocity fluctuations, the SPH solution remains stable

while the numerical simulation keeps running. There is an obvious recirculation zone at the rear
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Fig. 7. Free surface flow in a cylindrical tube: fluid distribution at time 0.0 s, 0.1 s, 0.24 s, 0.35 s, 0.44 s
and 0.55 s.

part of the hill. That is apparent also on Fig. 5, where the resulting velocity profile through the

channel cross-section at x = 0.056 m is compared to the results published by Violeau and Issa

in [11]. Fig. 6 compares the resulting profiles of the same authors at the position x = 0.14 m.

5.3. Free surface flow

The presented SPH incompressible fluid model is capable of simulating free surface flows

without a need for a special treatment of the free surface boundary. This advantage of the SPH

approach is often utilised within simulations of gravity current flows, e.g. [1], [7]. Within this

study, the SPH ability to deal with a free surface boundary is presented on an example of a fluid

which is settling down in a cylindrical tank after a sudden removal of a vertical dam, Fig. 7.

This example also shows the applicability of the presented curved boundary implementation

involving the boundary particles. The initial configuration of the simulation is apparent from

the top left frame on Fig. 7. The cylinder radius is x = 0.05 m, the simulated fluid is water and

the tank bottom is dry initially. The gravity force x = 9.81 ms−2 acts in the vertical direction.

After a dam removal, the fluid wave moves towards the right side of the tank where it is slowed

down at the steep slope and the backward facing wave is formed consequently. The fluid flows

from side to side till it settles down.
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Fig. 8. Colliding rings: position at time 0.0 s, 0.015 s, 0.026 s, 0.40 s, 0.76 s and 1.10 s.

Fig. 9. Colliding rings: components of stress tensor σxx, σyy and σxy [Pa] at time 26 ms.

5.4. Colliding rubber rings

The SPH model of elastic solid is applied to problem of colliding rubber rings, [3], where

the rubber is modelled as an elastic material. The relative velocity of the rings at the moment of

collision is equal to 0.12 times the soundspeed of the simulated material and the ratio between
its shear modulus and its bulk modulus is 0.22 for the results presented on Fig. 8 and 0.11 for
the results on Fig. 9. The ring thickness is equal to 0.25 times its outer diameter. The evolution
of ring deformation in time is displayed on Fig. 8 and the contours of stress distribution in

the deformed rings are visualised on Fig. 9. During the impact, rings become significantly

deformed, afterthen they bounce off each other and travell appart while oscillating. During the

simulation for the shear and bulk modulus ratio 0.22, the rings stay compact and keep oscillating
till the simulation is stopped. The impact of the rings which ratio between shear and bulk

modulus is equal to 0.11 results in numerical fragmentation. Fig. 9 presents the stress contours
before the fragmentation occured. It is obvious that the absolute values of the stress components
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are distributed symetrically across the impact plane. As expected, the highest values of the x

component of the stress tensor are obtained in the region of the lower and the upper arch.

6. Conclusion

The SPH method is a numerical tool, which is able to analyse a wide range of physical

processes. Its meshless character brings a number of advantages as well as disadvantages. It

is capable of solving complex problems such as the free surface flow, but an SPH boundary

definition may cause problems at some point. Eventhough a ghost particle boundary definition

produces more accurate results for problems with a simple geometry, the boundary particles are

feasible for the complex geometry simulations. The results of elastic material simulations are

promising for the future work involving large deformations and the overall SPH character is

promising for analysis of the fluid-structure interaction problems.

Acknowledgements

This work is supported by the research project MSM 4977751303 of the Ministry of Edu-

cation, Youth and Sports of the Czech Republic.

References

[1] A. Colagrossi, M. Landrini, Numerical simulation of interfacial flows by smoothed particle hy-

drodynamics, Journal of Computational Physics 191 (2003) 448-475.

[2] R.A. Gingold, J.J. Monaghan, Smoothed Particle Hydrodynamics: theory and application to non-

spherical stars, Monthly Notices of the Royal Astronomical Society 181 (1977) 375-389.

[3] J.P. Gray, J.J. Monaghan, R.P. Swift, SPH elastic dynamics, Computer Methods in Applied Me-

chanics and Engineering 190 (2001) 6641-6662.

[4] G.R. Liu, M.B. Liu, Smoothed Particle Hydrodynamics, World Scientific Publishing, Singapore,

2003.

[5] L. Lucy, A numerical approach to the testing of the fission hypothesis, Astronomical Journal 82

(1977) 1013-1020.

[6] J.J. Monaghan, Smoothed Particle Hydrodynamics, Annual Review of Astronomy and Astro-

physics 30 (1992) 543-574.

[7] J.J. Monaghan, Simulating free surface flows with SPH, Journal of Computational Physics 110

(1994) 399-406.

[8] J.J. Monaghan, SPH without a tensile instability, Journal of Computational Physics 159 (2000)

290-311.

[9] J.J. Monaghan, R.A. Gingold, Shock simulation by the particle method SPH, Journal of Compu-

tational Physics 52 (1983) 374-389.

[10] J.P. Morris, P.J. Fox, Y. Zhu, Modeling low Reynolds number incompressible flows using SPH,

Journal of Computational Physics 136 (1997) 214-226.

[11] D. Violeau, R. Issa, Numerical modelling of complex turbulent free-surface flows with the SPH

method: an overview, International Journal for Numerical Methods in Fluids 53 (2007) 277-304.

L. Lobovský et. al  / Applied and Computational Mechanics 1 (2007) 521 - 530

530


