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Abstract

An analytical solution of stress wave propagation in a thin rectangular viscoelastic plate with special
orthotropy under transverse impulse loading is presented. The solution is based on the approximate theory of
thin plates using the Kirchhoff and the Rayleigh corrections. Constitutive equations for two-dimensional linear
viscoelastic Maxwell model of solid are derived using the superposition principle. Transverse impulse loading
has been allowed to effect on an arbitrary point of the plate surface and it has general behaviour in time. Results
in the form of displacement, velocities and stress components are obtained.
© 2007 University of West Bohemia. All rights reserved.
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1. Introduction

Most of works concerning transient vibrations of thin plates focus above all on elastic iso-
tropic problems while anisotropic (e.g. orthotropic) problems are solved sporadically, see [3].
A considerably less number of studies deals with the solution of transient vibration or, more
precisely, with the solution of stress waves in viscoelastic isotropic plate. These few studies
were carried out in the first half of the last century see [4] and [5]. The solution of transient
vibration in viscoelastic anisotropic plate is at its beginning. The analysis of transient vibra-
tion or, more precisely, wave propagation in an orthotropic viscoelastic thin plate has been
presented sporadically and therefore it was an object of authors’ investigation, e.g. [9], [10],
[6], [7], etc.

This contribution represents a part of investigation of rectangular plate vibrations caused
by a transverse impulse loading. Previous solutions of isotropic or orthotropic elastic and iso-
tropic viscoelastic plate vibrations can be found in [1], [2], [11], [12]. The new solution of vi-
brations (or more precisely wave propagation) in an orthotropic thin plate with viscoelastic
behaviour described by several rheological models (Voigt-Kelvin [8], Maxwell [7], Zener-
standard model, etc.) will be compared.

This study gives fundamentals and some improvements of the classical plate theory pro-
posed by Kirchhoff. It is known that any plate theory is an approximation of the three-
dimensional theory and this approximation always results in some loss of accuracy. There-
fore, results obtained via approximate theories are compared with those obtained by three-
dimensional finite element solution. In this research, four analytical models were used for the
description of thin plate behaviour. In the first of them (known as the Kirchhoff model), the
plate is assumed to be in the state of pure bending in which plane cross-sections of the plate
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remain plane and perpendicular to the midplane of the plate. Thus, shear deformation is not
included in this model. A state of plane stress is also supposed and the effects of rotary inertia
are neglected. In the second model (known as the Rayleigh model), the effects of rotary iner-
tia are also included without any shear deformation. The third model (known as the Fliigge
model) incorporates shear deformation, but not rotary inertia effects. The fourth model
(known as the Timoshenko-Mindlin model) takes into account both rotary inertia effects and
shear deformations [2].

The aim of the research is to analyse deformations of thin plate under transient, impulse,
impact loading and to obtain the dependence of fundamental mechanical quantities (i.e. dis-
placement, deflection angles, velocities, accelerations, forces, moments, etc.) on time. These
quantities are obtained by analytical methods for two-dimensional problem.

z

Wl N S S

on

Fig. 1. Schema of solved problem. Fig. 2. Geometry of deformed plate.

The scheme of the problem solved is shown in fig. 1. The transverse pressure loading
p(x; y,; t) with the resulting force F) is uniformly distributed over a small circle having diame-
ter 2¢ and centre coordinates (xg, yr). This loading is applied to the upper face of a thin rec-
tangular simply supported plate of dimensions a x b x h. The time and space dependence of
applied loading is described by an arbitrary function. The plate material is supposed to be lin-
ear, viscoelastic, homogenous and orthotropic and principal material and body axes are con-
sidered identical (the plate with special orthotropy). Initial conditions of the problem are as-
sumed zero, the plate is unloaded. Let u, v, w denote displacements in the directions of axes x,
¥, z, respectively and p is the material density.

2. Solution

When we use linear theory, in which the displacement components are small compared
with the plate thickness /4, the displacement components

u=ulx,yzt, v=vx,yzt), w=wlxy i (1)
can be expressed by relations (see fig. 2)
U=-zoy, V=-z0,.
Strain components can be then written in the form
0 0 0
LN . LA [l M 1
ox ox oy Ox oy  Ox
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ov o, Oou ow ow
Sy:—:—Z 9 yvz:__'__ = 7/xz:__¢x’ (2)
oy oy T 0z Ox ox
£ = % —-0: = @ + % = = % —
Toz SR PP T oy 154
where ¢y(x, , 1), py(x, y, t) are slopes of the plate normal corresponding to x and y directions,

respectively.
For the Kirchhoff and the Rayleigh models, when shear strain .. = 0 and y,. = 0, we can
write

~ 0 _ dw _ B 0w
7.=0=2¢ =—=¢, —zax2 Vi 0:>(py——:>8y —ZW,
2
Vo =22 ow . (3)
’ Ox0y

The constitutive equations for orthotropic linear viscoelastic Maxwell model are derived
using the principle of superposition. The rheological equation of the orthotropic Maxwell
solid can be expressed in tensor notation as

4O T CjOr = dijmng mn o 4)
where the vector oy, components of stress tensor is expressed in the form
T
Ouy= {O-x =0,0,=0,,,0, =03, T,=0,,7,,=0;,T, :023} 5

the vector &,, components of stress rate tensor is expressed in the form

. . . . . . . . . . . o . T
O'kz:{O'x:allao-yzo-zzvo-zzo-mo Ty =01250,, =03,T,, 20-23} )

and the vector &, components of strain rate tensor is expressed in the form

gmn = {gx =glli'gy =‘9221"92 2833’7/)()) =812’7/xz =813’ yyx :523} :

Then for the case of orthotropic continuum, the general rheological equation (4) reduces to

a, a, a, 0 0 0ol |¢ ¢, ¢35 0 0 0|o,
ay dy a3 0 0 0 flo) |¢ ¢ ¢ 0 0 0]o,
a, a, a; 0 0 0 |o, N c;; € €3 0 0 0 o, B

0 O a, 0 0 |z, 0 0 0 ¢ 0 0]7,
0 o0 0 a5 0|z, 0 0 0 0 ¢ 0|7,
00 0 0 0 aglr. [0 0 0 0 0 c4l7.

d, d, d, 0 0 0]

d21 d22 d23 0 O 0 y

d31 d32 d33 0 O 0 .z

- 0 0 d, 0 0|,

0 0 0 dy 0 (7.

| 0 0 0 0 dg|7.
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For the derivation of equation, describing the vertical vibration of thin viscoelastic
orthotropic rectangular plate for Maxwell model, it is useful to write constitutive equations in

integral form [6]
O, = bijklgkl _J-Lijkl (t - T)gkl (T)dT .
0
Introducing constants

E E G
5)6: x’ 5y=_ya 5xy=_a
A, A n
under the assumptions
v, 5 S V.V
s.==22, 5 =Y% ang o (5)
H, H, Hou,
and supposing that the potential exists and using the Betti’s theorem
1%
A A D , respectively,
E. E, A A
stress-strain relations can be written as [7]
E, | f ‘ |
o, =———l¢& +us, —5xj(8x +p,E,) e dr |,
~ 1 - ll’lx‘ll’ly L ’ 0 a
E I 0 -o,(t-7 |
0y =l e, v g, =5, [ (e, pe) " dr . ©)
/ux'/uy L 0 _

Txy = G|:7/xy - 5ny.7/xy e(sx}:(tf)drj| s
0

where E and G represent the Young modulus of elasticity and the shear modulus, 4 and 7 are
coefficients of normal and tangential (shear) viscosity and g, v denote Poisson ratios corre-
sponding to elastic and viscous part of the Maxwell model, respectively.

Substituting relations (1) and (3) into equations (6) we obtain constitutive relations for the

Kirchhoff and the Rayleigh model of thin plate

-z E, 62w t o*w
Gx = y _5 j y 2
l—p u, ox’ 8y 0 oy
-zE, | 0*w o*w of 0w
o, = . 7 TH _5y.[ 7t
l—p p,| Oy ox o\ Oy

2 t 2
7, =-2zG ow -0, I—ﬁ Yo
i’ oxdy 7y oxoy
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Fig. 3. Differential element of plate subjected to external load with all internal effects
(forces and moments per unit length).

Internal effects arising in the plate due to external load can be expressed by following integral

relations:

h h
2 2
- bending moments m_= I o zdz, m, = Iayzdz ,
_h _h
2 2
h
2
- twisting moment m, = I 7,,zdz, ®)
_h
2
h h
2 2
- shearing forces q.= I r.dz, q,.= ITyZdZ.

Introducing equations (7) into equations (8) we obtain internal moments as the functions of

plate deflection w
A2 2 t( a2 2 ]
mx=—Dx o ‘;V"i_/'lya Zv_é‘xj. ‘ 1:}_I—/uya 1:} eiéx(tif)dr >
| Ox oy o\ Ox oy i
[ 62w o*w of 0*w O*w)\ s (1-0) |
m,=-D, P TH, P _5y'[[6y2 tH, 8x2je T, )
L 0 ]
2 t 2
mxy = myx = _2ny a v - 5)6)),[ a " e_é"“’(t_r)dz- b
Ox0y " Ox0y
ENW E Gnr
v

D Dy=—
12— p )

where =,
12(1- p 1)
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With respect to fig. 3, the equation of motion in vertical direction can be written for all
models as

oq 0q,. 0w
—E +——+p(x,v,t)=ph 10
x o P y,0)=ph—3 (10)
and the moment condition of dynamical equilibrium
om._ Om,, om, Om,
qxz_ - - :djxﬂ qyz_ = — ) =$y’ (11)
ox oy oy ox

where right-hand sides of (8), depend on model used:
- for the Kirchhoff model D=0, D=0,
o’'w o’'w oh’
- for the Rayleigh model &b, =J ——, & =] ——, J = . 12
v * = mor T Tyt T 12 (12

Substituting ¢,. and ¢g,. from equations (8), into equation (8); we obtain
2 o’m_ 0'm O ob 2
8nzx+2 >+ 2)’+a X4+ y+p(x,y,t):phazv.
ox oxoy Oy ox oy ot
Finally, introducing equations (9) into equation (13) we obtain the final motion equation for

3
the Kirchhoff model (cpr :O, CDyK :()) and for the Raylelgh model (¢XR =Jp aaa\/tvz )
X

(13)

3

D,=J > ) in the form

70
4 4 4 ¢ ad 4
Dva—?+D,a—Zv+2(D +2.D, )%_Dx(sxj"@ Z"e—dx(t—r)d D5 J‘a A
" Ox ! Gy g " Ox 8y 0 ox
oo o*w B
—4D 2 arp,| 5, [ e gz | (14
Xy ny-a.XZay u }l; ax4 ( )

y
= 9 7t7
57 s ayj P(x,,1)

where D, =D u, =D pu, and p(x,y,t) = Fo TH?) X(xp) Y(yr).
As an example, we outline the solution of rectangular Kirchhoff or Rayleigh thin plate

from fig. 1 having simply supported edges.

In this case we may assume the solution of equation (14) in the form

w30 =Y SO X(6) Y (), (15)

m=1 n=1

where X(x) = sin(a, x), Y(y) =sin(f,y) and «,, = m7 , B, =—.
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The function W(¥) represents the time dependence of displacement w. Substituting solution
(15) into equation (14) and after some lengthy rearrangements of equations for W(¢) [7], we
obtain

4 @ W(t) + AW (1) - j /40 [A e 4 4,670 +Ase_5“’(t_r)]dr=AﬁTF(t), (16)
where A1=1,
A, =[D,at+D, gt +2(D, +2D, )’ B2 (ph A)",
4,=5.(D,at +D, a2 B )phA)", (17)
4,=6,(D, B} +D,a’ B )phA)",
A;=4D, 5Wamﬂn (phd)™,
_ APw_p
abphA
and 4=1+Y¥  and Y. =0 for the Kirchhoff model,

2

or ¥, = fz (oc + B ) for the Rayleigh model.

ab
The function p,,, is defined as p, = j j X(x)Y(y,) X(x)Y (»)dxdy.
00

Using the Laplace transformation with new parameter s we get the integral transform of
unknown function w

W (s)= 4T, (s)F (s),

where F(s )_s +5 a2+sa1+a0' (18)
ZbSﬂ_SSfi
i=0
Solving the algebraic equation
5
D b7 =0, (19)
i=0
where a,=0,+6,+4,, b, =1, b,=a,,
=0,0,+0,6,,+06,0,, b,=a,+ Aa,, b, =a,+ A,a,,
=0,0,0,,, b =4,a,, b, = A,a,,

we find five roots of polynomial in the denominator of relation (18). Three different types of
roots exist depending on coefficients bs_; which are functions of material parameters p, E, G,
A, n, u and plate dimensions a x b x h:

1. two complex conjugate roots s,, = B tiw,, s;, = 5, Tiw, and one real root s; = f; .
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2. one complex conjugate root s,, = f *iw and three real roots s3, 54, 55

3. five real roots.

With respect to supposed physical behaviour of vibrating plate, we will deal with the first
case. In this case, the equation (18) can be rewritten in the form

F(s)=F () + Fy(s)+ Fy(s), (20
Where F_;(S)zzqg——i_Dl, F_'Z(S) =ZC’2S—+D2’ F;(S) — D3
s+ ps+q, s“+p,s+q, s+ B,

and the coefficients p; and ¢, are defined as p=2, and ¢, = @, .

l

Unknown coefficients C;, C», D;, D, and D; can be found using the equality of relations
(18) and (20) that leads to following system of linear algebraic equations

C +C,=0,
Cp,+C,p, +(Cl +C2)ﬂ3 +D,+D, =1,
Cq,+C,p,+D,p,+D,p, +(C1p2 +C,p,+ D, +D2)ﬂ3 +D3(ql +4q, +p1p2): a,,
(Clq2 +C,q,+ D,p, + D, p, ),6’3 +Dg, + D,q, + D, (qlp2 +q,p, ) =a,,
(Dig> +D14,)B; + 414> = .
The Laplace transform of the unknown function W (s) is then expressed by relation
W (5)= AT (5)|Fi(5) + Fy(s)+ Fi(s)].

The original function W(f) can be obtained by inverse transformation using convolution
theorem and then it gives

t 2 _
Wi(t)= b ;56"?\Pmn ).(I).TF (T){; {eﬁ’ (=) (Cl. cosw,(t — r)+ QT(ji’Bisin o,(t—1) |+

i

+Dye 0 ldr . Q1)

Introducing equation (21) into (15), we get the final relation for displacement w

4F0 o ®© p ) ) t 2 .
w(x, y,t)= = —sin(e,, x)sin(B, x) | T (¢ e C,cosw,(t—7)+
(o0 abphmz_;n_llwym (@, X)sin(f; )! P ){Z[ ( (t-7)

D -C.p5 . Ca
+’—"B’sma),.(t—r))}+D3e Al ”}dt. (22)
a)i

Then others required quantities can be derived:

Displacements components by substitution of eq. (22) into eq. (1), (2)

ow 4zF, &S~ a,p .
u(x,y,z,t)=—z—=-— —=cos(a,, x)sin( S, y) T (t) ,
(x,¥,2,1) ~ phab;;1+‘1’ (a, x)sin(f, y) T, (?)

mn
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v(x, y,z,t) ——z%——sziob;; PP s1n(a x)cos(B, )T, (1) .
Components of velocities
u(x,y,z,t)=-z 2;2; = ;;Zb ;; FsPon cos(a x)sin(f,y) 87;;(0 ,
v(x,y,z,t)=—z2 2;2; =~ ;Z}b ;; PP sm(a x)cos(f,y) aTgt(t) ,
w(x,y,z,t)= (zvtv p4hljzbm§;nwll 4 $ sin(ex,, x)sin( 5, y) OTat(t) .

Where convolution integral

Di=Ch sin a)i(t—f)j}LD3 e‘ﬂ3(’_’)}dr )
@

i

T ()= IT (z‘){ l:_ﬂ'”_”(Cicosa)i(t—r)Jr

Stress components oi(x, y, z, t), o(x, ¥, z, t), To(X, ¥, z, t), can be derived by substitution of eq.
(22) into eq. (7)

= (a +ﬂylg )pmn .
o (x,y,z,t = sin(e,, x)sin(f,y) -
L5y 2) = ﬂvﬂyabhp;; T (a,x)sin(B,y)
t
-{TK ()= 0, jTK (T)e_(s*(’_r)df:| ,
0
zE S (o + B, . .
o (x,y,z,t)= M "L sin(a, x).sin( B, y) -
Ly, z,1) = - yxyyabhpmz;z 1 (@,,x).sin(f3,)

-[TK (t)-35,. j T, (7) e_ﬁ)’(t_r)dr} ,
0

8zGF,
7, (x,y,2,0)=— th ZZ a’"ﬂ P cos(,, x)cos(f, ) -
p m=1 n=1

-[TK (t)-o, jTK (7) eﬁ""(”)dr} .

3. Conclusion

Results of this work, which lie in the solution of plate vibration for the case of the Max-
well material model, will help us in finding the solution for the case of the Zener model of

standard viscoelastic solid.

Acknowledgements

The work has been supported by the grant project GACR 101/07/0946.

665



J. Soukup et. al / Applied and Computational Mechanics 1 (2007) 657 - 666

References

[1] V. Adamek., Analytické numerické a experimentalni vySetfovani nestacionarni napjatosti tenké viskoelas-
tické desky. Dizertaéni prace. FAV ZCU Plzen, 2004.

[2] J. Cerv, F. Vales, J. Volek,. A thin orthotropic plate under transverse impuls loading. In.: Proc. of 13"
International Congress on Sound and Vibration. Vienna, 2. — 6. 7. 2006.

[3] N.J. Huffington, W. Hoppmann, On the transverse vibrations of rectangular orthotropic plates. Journal
Applied Mechanics, vol. 25, 1958, pp. 389-395.

[4] H. Kolsky, The propagation of stress waves in viscoelastic solids. Applied Mechanics Reviews. Vol. 11,
pp. 465-468, 1958.

[5] M.J. Leitman, The linear theory of viscoelasticity. Encyklopedia of Physics, ed. S. Fliigge, Vol. VIa/3
Mechanics of solids III, edd. C. Trusdell, Springer, Berlin, 1973.

[6] Z.Sobotka, Rheology of Materials and Engineering Structures. Academia, Praha, 1984.

[7] J. Soukup, J. Volek, Transient vibration of thin viscoelastic orthotropic plate under transverse impuls
loading I. In.: Proc. of VI. Conf. Dynamic of rigid and deformable solid 2007. University of J. E. Purkyné
Usti n. L., 2007.

[8] J. Soukup, J. Volek, Transient vibration of thin rectangular viscoelastic orthotropic plate plate under
transverse impuls loading. In: CD-ROM Proc. of the National Conference with International Participation
Engineering Mechanics, 2007, Svratka, 2007, extended abstracts proc. pp. 257-258.

[9] J. Volek, Pfechodové dynamické chovani tenkych viskoelastickych desek. In.: Sb. IV. konferencia Numer-
ické metody v mechanike, str. 324-329, Vratna dolina, 1989.

[10]1J. Volek, Raz a ptenos impulsu v soustavé elastickych a viskoelastickych jedno- a dvourozmérnych téles.
Vyzkumna zprava PVT Litoméfice, 1990.

[117J. Volek, J. Soukup, Transversal impact of elastic rod on thin elastic isotropic and orthotropic rectangular
plate. In.. CD-ROM Proc. of the National Conference with Internatinal Participation Engineering Me-
chanics 2003, extended abstracts proc. pp. 384-385. Svratka, 2003.

[12]J. Volek, J. Soukup, B. Skocilasova, Odvozeni vztahti pro posuvy, rychlosti a napéti v tenké ortotropni
desce s piicné plisobicim zatizenim na jedné plose II. Bulletin védeckych, vyzkumnych a pedagogickych
praci UTRV za r. 2003, str. 103-110. UTRV UJEP Usti n. L., 2004.

666



