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Introduction
The goal of the Interpretable Semantic Textual Similarity task is to go deeper with the

assessment of semantic textual similarity of sentence pairs. It is requested to add an explanatory
layer that offers a deeper insight into the sentence similarities. The sentences are split into
chunks and the first goal is to find corresponding chunks (with respect to their meanings) among
the compared sentences. When the corresponding chunks are known, the chunks are annotated
with their similarity scores and their relation types (e.g. equivalent, more specific, etc).

Machine Learning Approach
The main effort of our team was focused on the machine learning approach to the task.

We divided the task into to three classification / regression tasks:
Alignment binary classification – we decide whether two given chunks should be aligned with
each other.
Score classification / regression – we experiment with both classification and regression of the
chunks similarity score.
Type classification – we classify all aligned pairs of chunks into a predefined set of types.

Classifiers
We experiment with the following classifiers: Maximum Entropy Classifier, Support Vec-

tor Machines Classifier Multilayer perceptron and Voted perceptron neural networks and with
Decision / regression tree learning.

Features
We use following features for classifiers: word base form overlap, word lemma overlap,

chunk length difference, word sentence positions difference, parse tree path and position differ-
ence features, number of part of speech differences and WordNet puth differences. The main
feature is chunk semantic similarity estimate. Our attempts to estimate the similarity score be-
tween chunks are based upon estimating semantic similarity of individual words and compiling
them into one number for a given chunk pair. We experiment with Word2Vec [2] and GloVe
[3] for estimating similarity of words. We compile all the word similarities in one number that
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reflects semantic similarity of whole chunks via lexical semantic vectors.
Modified lexical semantic vectors method is based upon [1]. At first we create a com-

bined vocabulary of all unique words from chunks CHa
k and CHb

l : L = unique(CHa
k∪CHb

l ).
Then we take all words from vocabulary L: wi ∈ L and look for maximal similarities with
words from chunks a and b, respectively. This way we get vectors ~m and ~n containing maximal
similarities of chunk words and words from the combined vocabulary:

mi = max
j:1≤j≤|CHa

k|
sim(wi, wj) : ∀wi ∈ L

ni = max
j:1≤j≤|CHb

l |
sim(wi, wj) : ∀wi ∈ L

(1)

where mi and ni are elements of vectors ~m and ~n. The similarity of words is given by the
Word2Vec semantic space. We compare the vectors ~m and ~n with cosine distance

Results

Run Ali Type Score T+S Rank
1 0.6672 0.6212 0.6248 0.6377 1
3 0.6708 0.6296 0.6114 0.6373 2
2 0.6206 0.6013 0.4748 0.5656 12

Table 1: Official system evaluation. of out system with 3 different configurations

Conclusion
In the overall comparison of the ‘Gold standard chunk scenario’, our supervised system

took the first and second places among other 19 systems from 10 international teams (see Table
1). Our unsupervised system placed in the middle. SemEval is a highly respected workshop in
the NLP field.
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